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Rheology of colloidal suspensions in confined flow: Treatment of hydrodynamic interactions
in particle-based simulations inspired by dynamical density functional theory
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We investigate the microstructure and rheology of a hard-sphere suspension in a Newtonian fluid confined
in a cylindrical channel and undergoing pressure-driven flow using Monte Carlo simulations. We develop a
hydrodynamic framework inspired by dynamical density functional theory approaches in which the contributions
due to various flow-induced hydrodynamic interactions (HI) are included in the form of thermodynamic work
done by these HI-derived forces in displacing the hard spheres. Using this framework, we can self-consistently
determine the effect of the local microstructure on the average flow field, and vice versa, and coevolve the
inhomogeneous density distribution and the flattening velocity profile with increase in the density of suspended
particles. Specifically, we explore the effect on the local microstructure due to the inclusion of forces arising
from confinement-induced inertial effects, forces due to solvent-mediated interparticle interactions, and the
dependence of the diffusivity on the local density. We examine the dependence of the apparent viscosity of
the suspension on the volume fraction of hard spheres in the cylinder, the flow rate, and the diameter of the
cylinder and investigate their effects on the local microstructure.
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I. INTRODUCTION

Rheology of particle-laden suspensions in flow is im-
mensely relevant in the context of widely ranging fields such
as the physiology of blood flow [1], slurries in construction
industry, petroleum production, manufacturing of cosmetics
and pharmaceuticals, emerging technologies such as three-
dimensional (3D) printing and microfluidics [2], and geolog-
ical flows such as molten lava, and hence is a topic of great
interest for biotechnology, industrial applications, and disaster
management. These colloidal suspensions exhibit complex
microstructures when sheared and are characterized by their
non-Newtonian behavior; namely, the internal shear stress in
these suspensions is a nonlinear function of the applied shear
rate. The apparent viscosity of a suspension, ηapp = η/η0,
defined as ratio of the viscosity of the suspension η to the
viscosity of the pure solvent η0, depends on the suspension
microstructure [3,4] and is determined by properties related
to the solutes such as the size, shape, rigidity, and volume
fraction, as well as external factors such as the type of flow
and the geometry of confinement.

We employ a particle-based approach using Monte Carlo
simulations with the inclusion of hydrodynamic interactions
inspired by dynamical density functional approaches to study
a suspension of hard spheres in a Newtonian fluid flowing
inside a cylinder. We examine the suspension microstructure
and rheological properties as functions of the applied flow
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rate and the diameter of the cylinder. In previous studies,
theoretical approaches have been employed to investigate the
dependence of viscosity on the concentration of the solutes.
Historically, Einstein [5] in 1911 showed that the apparent
viscosity ηapp of a suspension of rigid spheres exceeds the
viscosity η0 of the pure solvent by a factor proportional
to the volume fraction of the spheres φ, ηapp = η0(1 + 5

2φ).
This result is valid in the dilute limit φ < 0.02 when the
spheres are distant enough such that the disturbance in the
fluid elements caused by the first sphere does not affect
the other spheres. Batchelor and Green [6] considered the
velocity disturbances caused by solvent-mediated pair inter-
actions between the particles and showed that the apparent
viscosity in the semidilute limit (0.02 < φ < 0.25) is given by
ηeff = η0(1 + 2.5φ + 7.6φ2). In denser suspensions, where
contact forces dictated by the maximal packing fraction φm

become relevant, Krieger and Dougherty [7] empirically de-
rived the expression ηeff = η0(1 − φ/φm)−Bφm in which B

and φm can be used as fitting parameters in experiments.
Shear-thinning behavior has also been reported in experi-

ments at volume fractions 0.25 � φ � 0.6 in which the vis-
cosity of the hard-sphere suspensions decreases with increase
in shear rate [3,4]. For volume fractions φ � 0.6, a transition
to a shear-thickening behavior has been observed [8,9].

When suspensions are confined between thin slits or in
narrow pores, local ordering in the microstructure leads to
a change in their macroscopic properties such as isothermal
compressibility [10], diffusivity [11], and local viscosity [12].
In addition, when the confined suspensions are subjected
to shear flow, the local microstructure exhibits ordering
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transitions which determine their effective viscosity [13].
The microstructure and rheology of confined suspensions
in flow can be studied using direct numerical simulations
which involve solving the Navier-Stokes equation such as
finite element methods [14], lattice Boltzmann methods [15],
or Stokesian dynamics [16]. Even though these methods
contain explicit details of the hydrodynamics of the problem,
they are limited to small particle numbers, small system
size, and limited timescales by the extensive computational
costs. In addition, unraveling the complexity of interactions
and categorizing them into specific contributions is often
not feasible in these methods because of the multiscale and
multiphysics nature of the problem.

An alternative approach is to study these systems using
field-theoretic approaches such as dynamical density func-
tional theory (DDFT). DDFT [17–20] generalizes the classical
density functional theory framework [21] and incorporates
the time-dependent effects in the one-body particle density
distribution and the corresponding formulation of the free
energy functional. A key assumption commonly invoked in
DDFT is the “adiabatic approximation” that applies the equi-
librium particle correlations to nonequilibrium conditions.
Given this assumption, DDFT has been applied vastly to
confined colloids in the absence of solvent inertia. For in-
stance, the driven hard-sphere dispersions near a confining
wall [22] or within a channel [23] were studied through
including the nonaffine velocity profile arising from the cou-
pling of interparticle interactions with external flow. In the
absence of flow but with solvent-mediated pair hydrodynamic
interactions included, Brownian diffusion of particles trapped
in a time-dependent potential [24,25] or near a planar wall
[20] were investigated. In a two-dimensional (2D) channel
flow of different-sized particles, the particle distributions and
flow rates were characterized with hydrodynamic effects in-
cluded on a single-particle level [26]. In a similar system
of 2D channel flow, the particle-particle pair correlations
were determined by fitting the theoretical and experimental
particle distributions and making use of the forms of the stress
tensor and pair hydrodynamic correlations in the bulk [27].
Beyond the dilute limit, the crowding effects due to local
density-dependent diffusivity were considered, and the results
were compared with Brownian dynamics (BD) simulations
[24,25,28]. Simultaneous inclusion of solvent-mediated pair
hydrodynamic interactions and flow under confinement in
DDFT have not been treated in the studies discussed above.

In Ref. [29], we studied the microstructure of hard-sphere
suspensions confined in cylindrical channels at finite temper-
atures and subject to a pressure-driven flow using dynamical
density functional theory. In this theory, starting from the
Smoluchowski equation for a system of N particles, we de-
rived a mean-field conservation equation for one-body density
distribution by choosing a given representative particle and
integrating out the degrees of freedom of the other N − 1 par-
ticles. Employing the adiabatic assumption that correlations
active under equilibrium conditions can be applied to nonequi-
librium systems, at quasisteady state, the one-body density
was shown to depend on the variation of the excess free energy
with respect to the one-body density, the confining potential
due to the wall, as well as a work done on the given particle
by the lift force as a result of wall-mediated inertial migration.

Applying the smoothed-density approximation (SDA) [30]
that preserves the hard-sphere thermodynamics predicted by
the Carnahan-Starling equation of state [31], the excess free
energy was feasibly determined. Meanwhile, the average flow
field set by the N − 1 particles was predetermined approxi-
mately based on the experimentally observable blunted profile
at the average particle density in the cylindrical channel.

The quasiequilibrium density distribution obtained using
DDFT was compared with Monte Carlo (MC) simulations as
a complementary method to study confined suspensions un-
dergoing flow. We demonstrated that as long as the definitions
of the chemical potential of the particle (e.g., the Carnahan-
Starling form) and the change of potential energy due to the
lift force (the thermodynamic work function) are consistent
with DDFT, the two methods lead to equivalent results. In our
comparisons, the local particle density was shown to undergo
structural ordering due to both interparticle direct interactions
and single-particle wall-mediated inertial migration of the
hard spheres given an applied average flow field. In the dilute
limit, we also showed that the results from our DDFT and
MC simulations matched with results obtained in experiments
in which the hard spheres inside the cylinder were seen to
localize in an annulus close to the Segré-Silberberg fixed point
r/R = 2/3 [32]. However, in this study, the average flow field,
which is known to change as a result of the presence of hard
spheres, was predetermined and assumed to be not influenced
by the evolving microstructure of the suspension. Moreover,
the interparticle interactions between the hard spheres were
limited to direct interactions and no pair-hydrodynamic inter-
actions were considered. While the self-diffusivity of the hard
spheres was assumed to be modified by the wall confinement,
it was considered independent of the local density of the sus-
pension. To address these limitations, it would be appealing
to construct a framework that can determine both the particle
distribution and the flow profile self-consistently.

In this article, we develop a particle-based MC simulation
methodology inspired by the DDFT. By exploiting the equiv-
alence between MC and DDFT, we develop work functions
for pair HI and wall-induced HI contributions and obtain
the converged density distribution of the hard spheres self-
consistently with the evolving flow field. Our methodology
enables us to dissect the various contributions due to HI.
The interparticle or pairwise HI between the hard spheres
contributes to increased layering in the density distribution
of the suspended hard spheres, which is further reinforced
when we consider the dependence of the diffusivity of the hard
spheres on the local density. We then investigate the impact
of the local microstructure of the layered suspension on the
apparent viscosity of the suspension and explore the change
in viscosity with changes in volume fraction, flow velocity,
and confinement.

The paper is organized as follows. In Sec. II, we discuss the
model and give details of the Monte Carlo method. In Sec. III,
we present details of the hydrodynamic framework, in which
we include the contributions of the various hydrodynamic
interactions in the work function and analyze the effect of
these HI on the density distribution and the velocity of the
suspension. In Sec. IV, we study the dependence of the
apparent viscosity of the suspension on the volume fraction
of hard spheres, the flow velocity, and the diameter of the
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FIG. 1. (a) A collection of hard spheres suspended in Newtonian
fluid and confined in a cylindrical channel subjected to a pressure-
driven flow. The hard spheres experience an inertial lift force F L(r )
due to the flow. (b) A schema of a sphere i experiencing solvent-
mediated hydrodynamic interactions (HI) with its neighbors j . The
work done by the ith sphere due to displacement from position r0

to rn in the presence of pair HI is given by WHI . (c) The velocity
profile v(r )/vmax as a function of the radial distance from the axis of
the cylinder r . The dashed line represents a Poiseuille flow for dilute
suspensions and the solid line represents the blunted velocity profile
obtained in the presence of hard spheres. LP represents the length of
the blunted region in the velocity profile.

cylinder. We then conclude with a short section, Sec. V, on
future outlook.

II. MODEL AND THE MONTE CARLO METHOD

A. Model

Our model consists of a suspension of N neutrally buoyant
hard spheres of diameter σ (radius a) in a Newtonian solvent
of viscosity η0 flowing in a cylinder of radius R, length H ,
and volume V = πR2H . The axis of the cylinder is along the
x direction. Periodic boundary conditions are imposed in the
x direction, while the walls of the cylinder are assumed to be
hard with a no-slip boundary condition; see Fig. 1. The hard
spheres cannot overlap with each other, and hence the distance
rij between the centers of two hard spheres i and j is rij � 2a.
The radial distance of the center of a sphere from the center
of the cylinder is given by r = (y2 + z2)1/2, with r = 0 being
the position of the axis of the cylinder. Because of the hard
interaction of the sphere and the wall, r � R − a. We also
define h = R − r as the distance of the hard sphere from the
wall along the radial direction.

The volume fraction of the hard spheres inside the cylinder
is defined as φ = (π/6)ρσ 3, where ρ = N/V . In our simu-
lations, we employ both canonical and grand-canonical MC
methods. In the case of canonical MC simulations, where the
number of hard spheres inside the cylinder N is a constant,

we initiate the simulation with an initial number of hard
spheres inside the cylinder N = 1000. This sets the length of
the cylinder H for a chosen value of R and φ. In the case
of grand-canonical MC simulations, in which the cylinder is
in equilibrium with a reservoir which contains hard spheres
with a volume fraction φR , we initiate the simulation with
N = 400. In this case, the total chemical potential of the hard
spheres inside the cylinder μ = μid + μex is the same as that
of the bulk reservoir μR (φR ). Here, μid = kBT log ρ�3 is
the chemical potential of the ideal gas. The excess chemical
potential of the hard spheres inside the bulk reservoir is given
by the Carnahan-Starling relation, μex

R (φR ) = φR (8 − 9φR +
3φ2

R )/(1 − φR )3 [31].
The initial guess for the velocity profile of the flow is

taken to be Poiseuille with v(r ) = v0(1 − r2/R2), where v0

is the maximal velocity of the flow observed at r = 0. The
particle Reynolds number is then given by Re = av0ρ0/η0

and the Peclet number by Pe = av0/D0. Here, ρ0 is the
density of the solvent, η0 is the viscosity of the solvent, T is
the temperature, and D0 is the Stokes-Einstein diffusivity of
the hard sphere in the solvent given by D0 = kBT/6πη0a. We
assume the temperature to be T = 300 K, diameter of the hard
sphere to be σ = 2a = 5μm, the velocity of the flow to lie
in the range 0–5cm/s, and the viscosity η0 and density ρ0

of the solvent to be the same as water. Since the diameter
of the hard spheres is fixed, a change in the product of the
Reynolds number and Peclet number RePe corresponds to a
change in the velocity of the flow. We vary our parameters in
the range RePe ∈ (0, 4000), and R ∈ (4σ, 8σ ). All lengths in
the system are scaled by the radius of the hard sphere, i.e.,
r → r/a. The density of hard spheres at radial position r is
expressed in terms of the reduced density ρσ 3(r ) [29].

B. Details of the Monte Carlo simulations

We start the simulation with hard spheres randomly dis-
tributed in the cylinder. In order to study the flow-induced
steady-state distribution of the suspension, we include contri-
butions from the various implicitly active hydrodynamic inter-
actions in the suspension in the form of work functions. These
work functions measure the change in energy �U (ro

i → rn
i )

under the influence of these hydrodynamic interactions when
a hard sphere undergoes displacement from position ro

i to
position rn

i . The entire simulation is divided into two stages
(Fig. 2). In the first stage, we can initiate the suspension inside
the cylinder in the canonical or grand-canonical ensemble
[29,33] to realize the different conditions (constant N or con-
stant μ) that may prevail in the experiments. The simulation
in the second stage is carried out entirely in the canonical
ensemble.

In the canonical ensemble, the number of hard spheres N

inside the cylinder is held constant and the MC moves con-
sist solely of displacement moves. A random hard sphere is
chosen and displaced from position ro

i to rn
i = ro

i + [rand]�,
where [rand] is a random number ∈ [−1, 1], and � is the
maximum displacement allowed, which is adaptively varied
such that only 20% of moves are accepted. If the hard sphere
does not overlap with the wall as well as the other hard
spheres, the move is accepted with a probability PD (ro

i → rn
i )
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FIG. 2. Implementation of the hydrodynamic framework using
MC simulations in two stages is shown by the flowchart.

defined as

PD

(
ro
i → rn

i

) = exp

{
− 1

kBT

[
�U

(
ro
i → rn

i

)]}
, (1)

where �U (ro
i → rn

i ) is the change in energy when the hard
sphere is displaced. The change in energy is determined
using the work function W(ro

i → rn
i ) = ∫ rn

i

ro
i
F(r′)dr′ =

−�U (ro
i → rn

i ), where F(r′) are the forces due to the relevant
hydrodynamics interactions acting on the hard sphere. The
details of the work function will be given in the subsequent
sections.

In the grand-canonical ensemble, the density of spheres
inside the cylinder is determined by the chemical potential μ

of the hard spheres which is in equilibrium with the chemical
potential μR of the hard spheres in the reservoir, such that μ =
μR . Therefore, in the grand-canonical ensemble, in addition
to displacement moves, we also include moves in which hard
spheres are added and removed with probabilities PA and
PR respectively. These addition and removal probabilities are
defined as

PA(N → N + 1)

= V

�3(N + 1)
exp

{
1

kBT
[μex − U (N + 1) + U (N )]

}
PR (N → N − 1)

= �3N

V
exp

{
− 1

kBT
[μex + U (N − 1) − U (N )]

}
. (2)

Here, U (N ) is the potential energy of the N -particle system.
The MC moves in the grand-canonical ensemble consist of

MD attempts to displace a particle, MA attempts to add a hard
sphere, and MR attempts to remove a hard sphere such that the
total number of moves M = MD + MA + MR , and MA/M =
MR/M = 0.15. Each iteration of either grand-canonical or
canonical simulations consists of N×106 moves for equilibra-
tion and N×106 moves for production and requires 1 CPU h
for the simulation of a 1500-particle system on a single core
of an Intel Xeon 3.5-GHz workstation.

In the following section, we explain the methods used to
include contributions from the various hydrodynamic interac-
tions in the thermodynamic work function.

III. INCLUSION OF HYDRODYNAMIC INTERACTIONS
IN THE THERMODYNAMIC WORK FUNCTION

In the absence of flow, the only interactions present in the
system are the excluded volume effects set up by the hard
spheres and the hard wall. This is a well-studied problem in
which the hard spheres prefer to adsorb on the wall due to
depletion interactions with the wall [34].

When the suspension is subjected to flow, the hard spheres
experience hydrodynamic interactions with each other as
well as with the wall. In our simulations, we include the
hydrodynamic interactions in two stages. A flow chart of
the algorithm is presented in Fig. 2. In the first stage, we
equilibrate the microstructure of the suspension by consider-
ing only the flow-induced hydrodynamic interaction between
the hard spheres and the wall; we label this interaction (O).
The implementation of this stage is similar to the method
detailed in Ref. [29]. The second stage is implemented in
the canonical ensemble, where we hold the number of hard
spheres inside the cylinder fixed. In this stage, we include
detailed hydrodynamic interactions between the hard spheres
in the form of work functions.

A summary of the essential features of our approach is
provided here. Detailed methodological aspects are discussed
separately in later sections. (A) The presence of hard spheres
in the fluid changes the viscosity of the suspension locally,
thereby affecting the velocity and density distribution of
the hard spheres. We estimate this collective effect using
an iterative calculation where the velocity distribution and
density distribution obtained are self-consistent. (B) In the
fluid medium, the trajectories of the hard spheres are driven
by solvent-mediated long-range interactions with other hard
spheres. These interactions result in an altered nonlocal mobil-
ity tensor for each hard sphere which couples the displacement
of a hard sphere with the positions of the rest of the hard
spheres. We include a first-order approximation of the inter-
particle hydrodynamic interactions by estimating the work
done in displacing a hard sphere in the presence of solvent-
mediated interactions with its nearest neighbors. (C) The
short-time diffusion coefficients of the hard spheres depend
on the density of hard spheres in the neighborhood, with the
diffusivity showing a decrease with increase in density. We
include density-dependent diffusivity in our calculations to
account for this effect.

In the following sections, we explain the method of includ-
ing interactions {(O),(A),(B),(C)} as well as discuss the impli-
cations of including these interactions for the microstructure
and rheology of the suspension.

A. Inclusion of wall-induced hydrodynamic interactions

In the first stage (Fig. 2), we assume that in the presence of
flow, the hydrodynamic interactions active in the suspensions
are limited to the wall-induced lift force FL(r ) acting on
the hard spheres, as detailed in our earlier paper [29]. We
adopt the approximation derived by Cox-Hsu for the inertial
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TABLE I. The volume fraction of the hard spheres φ inside the
cylinder obtained using grand-canonical MC simulations is given for
various radii of the cylinder R and for various RePe.

φ

R/σ RePe = 100 RePe = 200 RePe = 400 RePe = 1000

4 0.068 0.105 0.168 0.290
6 0.059 0.078 0.123 0.228
8 0.057 0.069 0.100 0.187
10 0.056 0.067 0.087 0.162

migration velocity vM (r ) for a hard sphere near a plane wall
flowing at a radial distance r from the axis of the cylinder in
parabolic flow [35]. The inertial lift force FL(r ) acting on the
particle can be determined from the migration velocity vM (r )
as

FL(r )

kBT
= vM (r )

D⊥
, (3)

which yields the following expression for the inertial lift force
FL(r ) directed along the radial direction r:

FL(r )

kBT
= −RePe

D0

D⊥

5

288

(
a

L2

)[
1 −

(
R − r

L

)]

×
[

22 − 73

(
R − r

L

)]
. (4)

Here, D⊥ is the altered normal diffusivity of a hard sphere in
the presence of a wall and has been derived by Bevan-Prieve
[36] as D⊥ = D0/β⊥, where β⊥ = 6(z−1)2+9(z−1)+2

6(z−1)2+2(z−1) with z =
(R − r )/a. The expression for the lift force given by Cox-Hsu
has a fixed point at rC/R = 51/73 = 0.698, which is close to
the Segré -Silberberg fixed point at r/R = 2/3 [32].

The change in energy when a hard sphere undergoes radial
displacement from radial position ro to rn under the influence
of the inertial lift force FL(r ) is given by �UL(ro → rn) =
− ∫ rn

ro
F L(r )dr . We can then define the total N -particle po-

tential energy of the system as UL(N ) = ∑N
i=1 UL(r ), where

the single-particle potential energy of the hard sphere is given
by UL(r ) = ∫ Lp

r
FL(r ′)dr ′, since the lift force vanishes at

r = Lp, where the shear rate is zero.
In this stage of the simulation, we can obtain the equili-

brated microstructure of the suspension in either the canonical
or grand-canonical ensemble. In the grand-canonical ensem-
ble, since the effective chemical potential μeff (r ) inside the
cylinder is determined by the excess chemical potential μex as
well as the N -particle potential energy U (N ) which depends
on the product RePe [see Eq. (2)], the volume fraction of
hard spheres φ inside the cylinder registers an increase with
increase in the product RePe (see Table I).

We showed in Ref. [29] that the variations in the reduced
density of the hard spheres ρσ 3(r ) obtained in the radial
direction r is indicative of the inertial migration of the hard
spheres in the presence of flow. In the presence of flow, the
density near the wall as well as near the axis of the cylinder
decreases, whereas a peak develops in the density distribution
close to rC at high RePe. The reduced density ρσ 3 obtained
in the grand-canonical ensemble for a reservoir volume frac-

(a)

0.0 0.2 0.4 0.6 0.8 1.0
r/R

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

ρ
σ

3

(b)

0.0 0.2 0.4 0.6 0.8 1.0
r/R

0.0

0.2

0.4

0.6

0.8

1.0

v
(r

)/
v m

(c)

Poiseuille (O)

Self-consistent solution (A)

Fitted solution

FIG. 3. (a) Method to obtain the self-consistent velocity and
density distribution is shown by the flowchart. (b) Reduced den-
sity distributions at different scaled radial positions r/R obtained
for RePe = 400, φR = 0.05 when the incident velocity profile is
Poiseuille flow (dashed line) and when the incident velocity profile
is blunted (solid lines). In the latter case, in addition to the converged
density distribution, five intermediate iterations at equally spaced
intervals are also plotted. Vertical dotted line indicates the position
of the fixed point rC/R = 0.7. (c) Velocity profile in the radial
direction is plotted. Dashed line represents Poiseuille flow, solid lines
show the velocity profiles obtained from density-dependent Ho-Leal
calculation, and dash-dotted line represents the optimum fit to the
velocity profile. Here Lp/R = 0.075.

tion φR = 0.05 and RePe = 400 is shown by dashed line in
Fig. 3(b). The peak of the reduced density distribution is seen
at rp/R = 0.8 as compared to rp/R = 0.875 for RePe = 0.

In the case of dilute suspensions, the velocity profile of
the suspension is a Poiseuille. However, when the volume
fraction inside the cylinder is significant enough for hard
spheres to interact with each other, the Poiseuille profile may
be irrelevant. In the following section, we describe the second
stage of the simulation, in which calculations are carried out
in the canonical ensemble. We start with the discussion of
a self-consistent method that resolves the disparity between
the input velocity profile and the velocity profile that results
from the spatially dependent density of hard spheres in the
suspension.
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B. Self-consistent calculation of the velocity profile
and the density distribution

Experiments have shown that the presence of spheres in
suspension changes the velocity distribution from a pure
Poiseuille flow to a blunted flow profile [37,38]. These studies
demonstrated that the change in the velocity profile of the
suspension with increase in the density of hard spheres is
twofold: (a) The velocity at the center decreases with increase
in density, and (b) the flatness of the velocity profile increases.
Ho and Leal presented a method to estimate the velocity of a
dilute suspension exhibiting a nonuniform density distribution
at steady state [39]. Their formalism is based on the premise
that a nonuniform density distribution leads to a spatially
varying viscosity. Travis et al. also discussed the existence
of a spatially varying and potentially nonlocal viscosity due
to local variations in pressure tensors which are functions of
the local density [40]. We extend the Ho-Leal formalism to
semidilute suspensions such as obtained in our simulations
and implement an iterative scheme for the self-consistent
calculations of the velocity profile and density distribution
[Fig. 3(a)]. As depicted in Fig. 3(b) (dashed line), the reduced
density distribution in the presence of wall-induced inertial
forces shows regions of high and low density in the radial
direction. This gives rise to strong spatial variations in the
local viscosity in the radial direction. In the bulk, such a
variation in local viscosity can be approximated using the
Batchelor-Green expression [6], which relates the apparent
viscosity of a suspension of hard spheres to the bulk volume
fraction φ. Assuming that a similar relation can be employed
in the confined suspension, in which the local viscosity in
the radial direction is related to the local volume fraction, we
obtain η(r ) = η0[1 + 2.5φ(r ) + 7.6φ2(r )]; this amounts to a
local density approximation. Here, the local volume fraction
is related to the local reduced density as φ(r ) = π

6 ρσ 3(r ). The
Stokes equation can then be written as

1

r

∂

∂r

[
rη(r )

∂v(r )

∂r

]
= −�P

L
. (5)

Solving for the velocity of the suspension and employing the
boundary conditions dv/dr = 0 at r = 0, and v(r ) = 0 at
r = R, we obtain

v(r ) = �P

2Lη0

∫ R

r

r ′dr ′

1 + 2.5φ(r ′) + 7.6φ2(r ′)
. (6)

This expression for velocity v(r ) includes the collective
hydrodynamic contribution of the presence of hard spheres in
the suspension and reduces to the expression for Poiseuille
flow, in the absence of any hard spheres in the suspension
(i.e., when the local volume fraction φ(r ) = 0). In Fig. 3(c),
the reduced velocity profile v(r )/v0 obtained for the density
distribution shown by dashed line in Fig. 3(b), is plotted as
a function of radial position. Here, v0 = �PR2

4Lη0
. We see that

the velocity profile significantly deviates from the Poiseuille
flow profile shown by dashed line. Specifically, the ratio of
maximum velocity obtained at r = 0 to the applied centerline
velocity vm/v0 < 1. Near r = 0, the velocity profile appears
blunted, indicating nearly zero shear stress in this region.

We fit the following expression to the velocity profile, in
which the velocity in the blunted region is approximated by a

flat velocity vm, and the rest of the velocity profile is fitted to
a shifted Poiseuille flow [also see Fig. 1(c)]:

vp(r ) = vm, for 0 < r < Lp,
(7)

vm

[
1 −

(
r − Lp

R − Lp

)2]
, for Lp < r < R.

The length of the blunt region Lp in the fitted velocity
profile vp(r ) is estimated by minimizing the squared sum � =
[v(r ) − vp(r )]2. We then impose this fitted velocity profile on
the suspension as driving the flow in the canonical ensemble.
In the blunt region, the particles do not experience a lift force,
whereas the particles experience a lift force given by the Cox-
Hsu expression [Eq. (4)] in the parabolic region, the length
of the parabolic region being L = R − Lp. Let us denote
the calculated velocity profile, fitted velocity profile, and the
reduced density by the iteration index n, i.e., vn(r ), vn

p(r ),
and ρnσ 3(r ) respectively. We recalculate the velocity profile
vn+1(r ) using the density ρnσ 3(r ), estimate the fitted velocity
profile vn+1

p (r ) and impose this on the suspension to esti-
mate the density distribution ρn+1σ 3(r ) using simulations,
until a convergence in the velocity profile and the density is
obtained such that vn+1(r ) − vn(r ) < v0ε1 and ρn+1σ 3(r ) −
ρnσ 3(r ) < ε2; for numerical convergence, we choose ε1 =
ε2 = 0.001. We denote the converged reduced density ρσ 3(r )
and the velocity distribution v(r ) without indices; see Fig. 3(a)
for a flow-chart of the aforementioned method.

In Figs. 3(b) and 3(c), we plot five intermediate iterates as
well as the converged results of the reduced density ρnσ 3(r )
and the velocity distribution vn(r ). We note that convergence
is attained typically within the first ten iterations. The local
density of hard spheres changes under the influence of the
self-consistently obtained velocity profile. First, we see that
the density in the center of the cylinder ρσ 3(r ) shows an
increase when the self-consistent velocity profile is applied as
compared to the Poiseuille profile. The higher density in the
center can be attributed to the zero lift force felt by the hard
spheres in the blunted region of the velocity profile. Second,
the peak of the reduced density shown by solid line shows a
displacement to the right toward the wall in comparison to the
density shown by dashed line. The origin of this displacement
can be explained by the shifted parabolic form of the velocity
profile given by Eq. (7) which has a fixed point closer to the
wall.

Hence, using the iterative self-consistent calculation
demonstrated in this section, we show that the average veloc-
ity profile of the suspension is modified in the presence of hard
spheres in the suspension. The suspension flows with a slower
velocity than the incident velocity profile, incurring a loss in
energy due to viscous dissipation in the fluid. The nature of
the velocity profile in turn affects the microstructure of the
suspension, with more hard spheres flowing closer to the wall
for blunted velocity fields in comparison to a Poiseuille veloc-
ity field. Next, we demonstrate a method to include solvent-
mediated pair hydrodynamic interactions in our calculation.

C. Inclusion of solvent-mediated pair
hydrodynamic interactions

In semidilute colloidal suspensions, a significant interac-
tion that needs to be considered is the hydrodynamic inter-
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actions (HI) between the hard spheres mediated by the dis-
turbances in the surrounding solvent. This interaction arises
when a hard sphere moves due to the flow and disturbs the
fluid around it. These disturbances are long range, influence
the motion of the other hard spheres, and are represented in the
form of a mobility tensor M ij which couples the perturbations
in velocity of a given sphere i due to the displacement-
inducing forces Fj acting on the rest of the spheres j , such that
the change in the velocity of the ith hard sphere is given by

δvi =
∑

j

M ij .Fj . (8)

The mobility tensor M ij depends on the geometrical dimen-
sions of the spheres [41] and the confinement [42]. In addition
to far-field hydrodynamic interactions, lubrication effects
become increasingly significant when the hard spheres are
either close to the wall or when they flow in close proximity to
each other such as in dense suspensions. The collective effect
is captured in Stokesian dynamics [43], in which an inverse
mobility tensor can be estimated which captures both far-field
interactions as well as lubrication interactions. However,
because this method involves inverting a 3N×3N matrix at
every time step, there is a limitation on the number of hard
spheres which can be investigated. A simplification in the
case of semidilute suspensions in the bulk is to consider the
Rotne-Prager-Yamakawa tensor (RPY) [44,45], which gives
a positive-definite approximation for far-field hydrodynamic
interactions between two equal-sized spheres in bulk solution
in terms of the instantaneous interparticle distances rij

between the hard spheres. We adopt this form in the current
work. In the case of a suspension of nonoverlapping hard
spheres (rij � σ ), the mobility tensor can be written as

M ij = M0 I, i = j,

1

8πη0rij

[(
1+ 2a2

3r2
ij

)
I+

(
1−2a2

r2
ij

)
r ij r ij

r2
ij

]
, i �= j.

(9)

Here, r ij = r i − rj is the vector joining the positions
of the spheres i and j . Let us define xij = xi − xj ,
yij = yi − yj , zij = zi − zj such that the distance between
the two spheres is given by rij = |r ij |. For simplicity, we
introduce new notations for the following terms in Eq. (9):

α(rij ) = 6a

8rij

(
1 + 2a2

3r2
ij

)
, γ (rij ) = 6a

8rij

(
1 − 2a2

r2
ij

)
.

It is evident from Eq. (9) that the leading-order con-
tribution of the solvent-mediated hydrodynamic interactions
decays as 1/r . In the vicinity of a wall, corrections arising
from contributions of the mirror images of the disturbances
need to be included as is done in the Rotne-Prager-Blake
mobility tensor [46], where the leading-order contribution to
the hydrodynamic interactions decays as 1/r2 and hence are
shorter ranged when compared with Eq. (9). In this study,
in order to account for the effects due to solvent-mediated
pair hydrodynamic interactions in addition to the immedi-
ate wall-induced lift force, we adopt the form of the RPY
tensor to include the pair HI among the nearest neighbors
while including the wall effects on the self mobility of the

hard sphere M0. We delineate our efforts in the following
paragraph.

In the case of a bulk suspension, the diagonal elements of
the mobility tensor M ij [Eq. (9)] constitute the self-mobility
of the hard spheres, which is given by the Stoke’s coef-
ficient M0 = M ii = (1/6πη0a) = D0/kBT . In the presence
of confinement, the symmetry in the self-mobility term is
broken, and the diagonal elements consist of terms M ii =
(Mx,i,My,i ,Mz,i ) which can further be resolved into compo-
nents parallel and perpendicular to the confinement, which
are called the drag mobility (M‖) and the normal mobility
(M⊥ = Mr ) respectively. Closed-form expressions for the
drag mobility and the normal mobility of a sphere at a distance
h from a plane surface have been given by Bevan and Prieve
[36]. Expanding Eqs. (8) and (9), we obtain

δvx,i = Mx,iFx,i + Dx,i

∑
j

{
[α(rij ) + γ (rij )xij xij ]

Fx,j

kBT

+ γ (rij )xij yij

Fy,j

kBT
+ γ (rij )xij zij

Fz,j

kBT

}
,

δvy,i = My,iFy,i + Dy,i

∑
j

{
[α(rij ) + γ (rij )yij yij ]

Fy,j

kBT

+ γ (rij )yij xij

Fx,j

kBT
+ γ (rij )yij zij

Fz,j

kBT

}
,

δvz,i = Mz,iFz,i + Dz,i

∑
j

{
[α(rij ) + γ (rij )zij zij ]

Fz,j

kBT

+ γ (rij )zij xij

Fx,j

kBT
+ γ (rij )zij yij

Fy,j

kBT

}
. (10)

In our system of interest, the force driving the displacement of
the hard sphere along the x direction consists of the drag force,
and the corresponding force along the radial direction consists
of the radial inertial lift force FL(r ). The driving forces along
the y and z axes then are the components of the radial lift force
FL(r ) along the y and z directions. Under quasiequilibrium
conditions, the velocity disturbances in the x direction do not
alter the radial distribution of particles in the mean-field limit.
Therefore, when constructing the work function for displacing
the particle, we only consider velocity disturbances due to
solvent-mediated hydrodynamic interactions in the y and z

directions. Since the velocity of the flow along the radial
direction is zero, the velocity disturbances of the hard spheres
can be reduced to the velocity of the hard spheres in the
y and z directions respectively, i.e., δvy,i = vy,i , δvz,i = vz,i .
The velocity of the hard spheres in the y and z directions are
then given by

vy,i = My,iFy,i + Dy,i

∑
j

{
[α(rij ) + γ (rij )yij yij ]

Fy,j

kBT

+ γ (rij )yij zij

Fz,j

kBT

}
,

vz,i = Mz,iFz,i + Dz,i

∑
j

{
[α(rij ) + γ (rij )zij zij ]

Fz,j

kBT

+ γ (rij )zij yij

Fy,j

kBT

}
. (11)
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We note that the first terms on the right-hand side of Eq. (11)
represent the components of the wall-induced lift forces along
the y and z directions, which are similar to the forces con-
sidered in Ref. [29]. Importantly, the second terms on the
right-hand side represent the corrections due to the solvent-
mediated pair hydrodynamic interactions. We can obtain the
velocities in the radial and azimuthal directions [vi (r ), vi (θ )]
by transforming the velocities (vy,i , vz,i ):(

vi (r )
vi (θ )

)
=

(
cos θ sin θ

− sin θ cos θ

)(
vy,i

vz,i

)
, (12)

where the angle tan θ = z/y. The total force Fi (r ) experi-
enced by the ith hard sphere at radial position r can then be
inferred from the relation

Fi (r ) = vi (r )

M⊥,i

, (13)

where the normal mobility of the hard sphere is related to
the radial diffusion coefficient D⊥,i by the relation M⊥,i =
D⊥,i/kBT . Here,

Fi (r ) = FL
i (r ) + F HI

i (r ), (14)

where the first term on the right-hand side FL
i (r ) represents

the contribution from the inertial lift force in the radial direc-
tion [Eq. (3)], while the second term F HI

i (r ) represents the
additional contribution to the radial forces acting on the hard
spheres due to solvent-mediated hydrodynamic interactions
between the hard spheres. To obtain a first-order contribution
to the radial forces acting on the hard spheres due to solvent-
mediated HI, we now limit the solvent-mediated HI to the
nearest neighbors. We estimate this region of nearest-neighbor
interaction by calculating the position of the first minimum
of the in-plane radial distribution function calculated for hard
spheres belonging to the same peak, which was found at
a distance 1.3σ . Hence, we limit the region of interaction
to a sphere of radius rHI

c = 1.3σ [see Fig. 1(b)] such that
solvent-mediated hydrodynamic interactions between hard
spheres with centers belonging to this sphere are alone
counted.

We can then construct a work function by determining the
work done by the particle i in moving from the radial position
ro
i to rn

i . The contribution to the work function due to solvent-
mediated hydrodynamic interactions is then given as

WHI(ro
i → rn

i

)/
kBT =

∫ rn
i

ro
i

F HI
i (r )dr. (15)

The change in energy when the particle is displaced in
the presence of solvent-mediated hydrodynamic interactions
is given by �UHI(ro

i → rn
i ) = −WHI(ro

i → rn
i ) such that the

net change in energy when a particle is displaced is given by

�U
(
ro
i → rn

i

) = �UL
(
ro
i → rn

i

) + �UHI
(
ro
i → rn

i

)
. (16)

In our MC simulations, the energy change in Eq. (16) is
factored into the acceptance probability for particle displace-
ments [see Eq. (1)].

In Fig. 4(a), the reduced density obtained along the radial
direction with various hydrodynamic interactions included are
shown. The solid line represents the density obtained when
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FIG. 4. (a) Reduced density distribution ρσ 3 obtained for
RePe = 400 when the solvent-mediated pair-HI between particles
is included in the presence of average velocity profile obtained
using self-consistent calculation [solid line, (A)+(B)]. Also shown
are density distribution obtained when the incident flow is Poiseuille
[dash-dotted line, (O)] and when the incident flow is corrected
using self-consistent calculation [dashed line, (A)]. Pair-HI enhances
collective migration of the particles leading to depletion in the center,
and formation of an additional peak. Inset shows the forces due to
the lift F L(r ) and pair-HI F HI(r ), and their sum F L + F HI plotted
as a function of the scaled radial distance from the center r/R.
(b) Velocity distribution plotted for various hydrodynamic interac-
tions included. Legends for plots (a) and (b) are common.

the hard spheres experience solvent-mediated pair interac-
tions (B) in addition to the wall-induced lift forces in the
presence of the blunt-parabolic velocity distribution obtained
using self-consistent calculation (A). Dashed line represents
the reduced density obtained when only interactions (A) are
considered and dash-dotted line indicates the reduced density
obtained when wall-induced lift forces in the presence of
incoming Poiseuille flow are considered (O). In the reduced
density obtained when interactions (A)+(B) are included, the
primary peak observed near the wall is seen to shift away from
the wall and toward rC . In addition, an enhanced secondary
peak is observed next to the primary peak, indicating an
increased layering of the hard spheres in the suspension.
Formation of the two peaks in the density is accompanied by
a depletion in the the density in the center of the cylinder. We
note that the collective migration of the hard spheres due to
the solvent-mediated hydrodynamic interactions between the
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neighboring hard spheres drives the depletion of hard spheres
in the center as well as their accumulation in the two peaks.

Further evidence of the collective migration of hard spheres
can be gleaned from the inset to Fig. 4(b), in which the average
radial force due to hydrodynamic interactions F HI(r ) and due
to individual lift force FL(r ) acting on a hard sphere at radial
position r are plotted as a function of the radial distance from
the center. We reiterate here that the form of the lift force
FL(r ) is given by the Cox-Hsu velocity profile [Eq. (4)] and
is determined by the confinement as well as the details of the
velocity profile. The average force due to solvent-mediated
HI, F HI(r ), however, is decided by the local microstructure
of the suspension in addition to the effective lift forces acting
on the hard sphere. We observe that the region in which the
wall-induced lift force FL(r ) tends to displace the hard sphere
away from the wall [FL(r ) < 0] lies in the interval rC/R �
r/R < (R − a)/R. The force due to solvent-mediated HI
F HI(r ) for the same value of the product RePe, however, tends
to displace the hard spheres away from the wall and toward
the center in the region 0.52 � r/R < (R − a)/R. Hence, the
region in which the hard spheres experience a force directed
away from the wall is greater when the solvent-mediated HI is
included. This can be attributed to the collective migration of
the hard spheres due to the nearest neighbor solvent-mediated
HI between the hard spheres. The contributions of the hard
spheres lying in the region r > rC to the solvent-mediated
HI force F HI(r ) acting on the hard spheres within its radial
proximity is radially directed toward the center. These con-
tributions from the nearest neighbors dominate because of
the higher density of hard spheres in the primary peak and
result in a net force F HI(r ) which is negative and drives the
hard spheres collectively away from the wall and toward the
center. Such collective migration of colloids in the presence of
solvent-mediated HI has been observed in confined colloids
[24,47]. Next, we plot the effective radial force acting on the
hard spheres F(r ) = FL(r ) + F HI(r ) in the inset to Fig. 4(a),
which shows a fixed point widely different from rC , which is
much closer to the central axis of the cylinder in comparison
to rC . Meanwhile, the effective radial force F(r ) near the
central region is larger in comparison to the wall-induced lift
force. This implies that a larger number of particles migrate
away from the center toward the fixed point near r� ∼ 0.53,
resulting in the formation of a secondary but significant peak
in the density distribution of hard spheres.

Finally, we plot the velocity profile corresponding to this
reduced density in Fig. 4(b). We can observe slight oscilla-
tions in the velocity profile which develop due to the layering
of the hard spheres in the radial direction of the cylinder.
We note that the contributions to the work function due
to the pair interactions increase with increase in RePe, and
more substantial changes are seen in the velocity distribu-
tion at higher RePe. Next, we study the effect of including
density-dependent diffusivity on the microstructure of the
suspension.

D. Inclusion of density-dependent diffusion coefficients

In the previous sections, we observed that the density of
hard spheres along the radial direction of the cylinder is not
uniform with regions of high density of hard spheres seen at

the peaks and regions of low density in the center. The inho-
mogeneity in density is expected to lead to an inhomogeneity
in the instantaneous diffusion of the hard spheres.

In bulk suspensions, the dependence of the short-time and
long-time diffusion coefficients on the volume fraction φ of
the suspension has been studied both theoretically [48–50]
and experimentally [51], in which it was observed that the
diffusion coefficient decreases with an increase in the volume
fraction of the suspension. This was determined to be mainly
a hydrodynamic effect in which correlations arising from both
short-range and long-range hydrodynamic interactions con-
tribute to the short-time diffusion coefficients and overshadow
the contributions due to direct interactions between the hard
spheres [49]. However, in confined fluids, the diffusion coef-
ficient is further modified by the local microstructure and the
effects of confinement [52,53] to result in a density-dependent
diffusion coefficient in the radial direction. In this study, in
order to capture such effects due to the cylindrical wall and the
local microstructure, we define a radial diffusion coefficient
which depends on the local volume fraction φ(r ) as

D⊥(φ(r )) = D0(φ(r ))/β⊥(r ). (17)

Here, β⊥(r ) is the correction due to confinement proposed by
Bevan and Prieve [36]. The density dependence of the diffu-
sion coefficient D0(φ(r )) is determined using the expression
derived in Ref. [49], given by

D0(φ(r )) = D0/[1 + L(φ(r ))], (18)

where

L(φ(r ))

= 2b2

1 − b
− c

1 + 2c
+

{
2bc

1 − b + c

×
[

1 − 6bc

1 − b + c + 4bc
+ 2bc

1 − b + c + 2bc

]

+ bc2

(1 + c)(1 − b + c)

[
1 + 3bc2

(1 + c)(1 − b + c) − 2bc2

− bc2

(1 + c)(1 − b + c) − bc2

]}
. (19)

Here, b(φ(r )) = (9φ(r )/8)1/2 and c(φ(r )) = 11φ(r )/16.
To illustrate the implementation of density-dependent dif-
fusion coefficient in our framework, we plot the diffusion-
coefficient D0(φ(r )) (solid line) obtained for the correspond-
ing density distribution ρσ 3(r ) (dashed line) obtained using
wall-induced lift forces (O) in Fig. 5(a). We note that in
our framework, the diffusion coefficient is lower in regions
of high density of hard spheres, which is consistent with
the observation that diffusion of a hard sphere in regions of
high density can be restricted by caging effects in dense re-
gions [50]. A reduced diffusion coefficient of the hard spheres
in dense regions has implications for the inertial lift forces
FL

D (r ) experienced by the hard spheres, which is determined
from the inertial migration velocity vM (r ) [see Eq. (3)]. Since
the hard spheres now diffuse in the radial direction with the
density-dependent diffusion coefficient D⊥(φ(r )) defined in
Eq. (17), the hard spheres experience a density-dependent lift
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FIG. 5. (a) Density-dependent diffusion-coefficient D0(φ(r ))
and the reduced density ρσ 3(r ) plotted along the radial direction.
(b) Reduced density distribution obtained when the different types of
hydrodynamic interactions are included. The density obtained when
density-dependent diffusivity is included is indicated by solid line.
The legends for plots (b) and (c) are common. The inset shows
the snapshot of positions of the centers of the hard spheres in
the radial plane. (c) The velocity distribution obtained for various
hydrodynamic interactions.

force FL
D (r ), which is given as

FL
D (r )/kBT = vM (r )/D⊥(φ(r )). (20)

Hence, a hard sphere in a dense region experiences slow
diffusion and consequently an enhanced lift force FL

D (r ), in
comparison to a hard sphere at the same radial position r

diffusing with a radial diffusion coefficient D⊥ in a dilute sus-
pension (φ = 0) and experiencing a lift force FL(r ) given by
Eq. (3). We note that since the inclusion of density-dependent
diffusion coefficient modifies the local inertial lift forces
FL

D (r ), the solvent-mediated pair HI interactions (B) between
the hard spheres are also modified since the disturbances
caused in the solvent by the hard spheres are now driven by
the density-dependent inertial lift forces FL

D (r ).

The reduced density obtained after inclusion of the density-
dependent diffusion coefficient D⊥(φ) in the simulations is
shown by a solid line in Fig. 5(b). The dashed lines represent
the density distributions obtained when various HI effects
[(O), (O)+(A),(O)+(A)+(B)] are considered as described in
earlier sections. Because of the additional density-dependent
heterogeneity introduced in the inertial lift forces, we observe
increased accumulation of hard spheres at the positions of the
peak of the density distribution, which results in the formation
of two significant peaks in the reduced density. In addition, we
observe an increased depletion of hard spheres in the central
region of the cylinder (near r = 0) as well as close to the
cylindrical wall [near (R − a)/R]. This is also evident in the
inset to Fig. 5(b), in which the positions of the centers of
hard spheres in the radial plane have been plotted for two
snapshots. We can discern a region of low density in the
center accompanied by the formation of two concentric rings
in which most of the hard spheres are seen to equilibrate. We
note that the migration of hard spheres inside the cylinder
is driven by the enhanced inertial lift forces FL

D (r ) as well
as the collective movement of the hard spheres due to the
solvent-mediated hydrodynamic interactions.

Formation of two peaks in the reduced density have been
observed in experiments [54,55] in which the outermost peak
corresponds to the position of the Segré-Silberberg annulus.
The discussion on the appearance of inner annulus which
occurs at high channel Re (Re ∼ 300–1400) in experiments
is not conclusive. One experimental study credited the ob-
servation of the inner annulus to entrance-length effects [54]
and postulated the equilibration of the particles in a single
annulus corresponding to the Segré-Silberberg annulus. In a
theoretical study, the appearance of the inner annulus has been
attributed to a shift in the fixed point of the inertial lift force
in a cylindrical pipe to a position closer to the center [56]. In
our study, we predict the formation of two peaks at low RePe
due to the hydrodynamic interactions inherent in the problem.
As RePe is increased for very low volume fractions, the
two peaks collapse to a single peak. However, for semidilute
suspensions, we predict the existence of multiple peaks even
at high RePe (Fig. 7).

The change in the local microstructure is reflected in the
velocity distribution [see Fig. 5(c)] with a marginal increase
in the centerline velocity at r = 0 attributed to the enhanced
depletion of hard spheres near the wall, accompanied by a
marginal decrease in the length of the blunt region. Second,
we notice the development of oscillations in the velocity
distribution similar to those seen in Fig. 4(b), which arise
due to the formation of multiple peaks in the reduced density.
These effects are expected to be amplified for suspensions
flowing with a higher RePe and with a higher density of
hard spheres where the hydrodynamic interactions become
increasingly significant.

It must be noted that as the inhomogeneity in the radial
density increases for semidilute suspensions (φ > 0.25) with
an increase in RePe, the inhomogeneity in the radial diffusion
coefficients and the corresponding inertial lift forces increase.
In our simulations, the reduced density and the correspond-
ing velocity distribution at this level of inhomogeneity fail
to converge. We can overcome this limitation by adopting
a smoothed density approximation of the reduced density
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ρ̄σ 3(r ) = ∫
dr ′ρσ 3(r ′)w(r − r ′) [30], which includes nonlo-

cal effects of the variation of the density ρσ 3(r ) modulated by
a weight function w(r − r ′) to estimate the density-dependent
diffusion coefficient at a given radial position r .

Before concluding this section, we would like to summa-
rize the assumptions made in this section. First, we assumed
an empirical form of the radial diffusion coefficient D⊥(φ(r ))
which captured effects of the local density based on studies in
bulk suspension. Second, in this empirical relation, although
we considered the effect of confinement on the diffusion
coefficient, the effect of the curvature of the cylinder on the
diffusion coefficient has not been considered, which gains
more importance with increase in confinement. Moreover,
given the Cox and Hsu expression for the lift force determined
from a single particle moving near a planar wall, the influence
of many-body interactions on the lift force felt by a given
particle is captured through the modified velocity profile. The
variation of the form of FL(r ) itself due to the presence of
neighbors is neglected and attributed as an higher order effect.

In the next section, we determine the apparent viscosity of
the suspension using the local microstructure and the resulting
velocity distribution and discuss the dependence of apparent
viscosity of the suspension on the volume fraction, flow
velocity, and confinement.

IV. RHEOLOGY OF THE SUSPENSION

As discussed earlier in the introduction, the apparent (ef-
fective) viscosity of a colloidal suspension ηapp is greater
than the pure solvent due to the presence of colloids and
is defined as the ratio of the viscosity of the suspension η

to the viscosity η0 of the pure solvent ηapp = η/η0. For our
suspension of interest, since we can estimate the velocity
v(r ) of the suspension at radial position r using Eq. (6), we
can determine the apparent viscosity of the suspension by
calculating the flow rate Q of the suspension as

Q = 2π

∫ R

0
rv(r )dr, ηapp = Q0/Q, (21)

where Q0 is the flow rate of the pure solvent. In this section,
we investigate the dependence of the apparent viscosity ηapp

on the volume fraction of hard spheres inside the cylinder, the
incoming flow velocity as well as on the confinement effects.
We begin with a discussion of the dependence of the apparent
viscosity ηapp on the volume fraction of hard spheres φ.

A. Apparent viscosity as a function of φ

As discussed in Sec. III, we can equilibrate our suspensions
at different volume fractions φ using either grand-canonical
or canonical simulations in stage I of our simulations. In
Table I, we listed the volume fractions φ obtained inside the
cylinder using grand-canonical simulations for various RePe.
These suspensions are then equilibrated with the inclusion
of various hydrodynamic interactions (Secs. III B–D) using
canonical simulations. After equilibration, we can estimate
the apparent viscosity ηapp of the suspension using Eq. (21).
We plot the apparent viscosity as a function of the volume
fraction in Fig. 6. The dashed line represents Einstein’s predic-
tion for dilute suspension ηE = 1 + 2.5φ, and the dash-dotted
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FIG. 6. Apparent viscosity ηapp plotted as a function of the
volume fraction φ of the hard spheres in the cylinder. The dashed
line indicates the Einstein’s prediction of apparent viscosity ηapp =
1 + 2.5φ for dilute suspensions and the dash-dotted line indicates the
Batchelor-Green approximation for semidilute suspensions ηapp =
1 + 2.5φ + 7.6φ2. The inset shows the variation of the centerline
velocity vm/v0 with the volume fraction φ. The dashed line repre-
sents a fit to 1.0/(1 + 2.5φ) and the dash-dotted line indicates a fit to
1.0/(1 + 2.5φ + 7.6φ2).

line represents the Batchelor-Green prediction for semidilute
suspensions ηBG = 1 + 2.5φ + 7.6φ2. We note here that these
predictions hold for bulk suspensions. We find that the ap-
parent viscosities obtained in our suspensions lie within the
bounds of the Einstein’s and Batchelor-Green’s predictions.

The inset to the figure shows the ratio of the centerline
velocity vm of the suspension to the incident velocity v0 in
the case of a pure solvent for the same pressure difference
plotted as a function of volume fraction φ of the hard spheres
in the confined suspension. The lines represent 1/ηE,BG,
where the dashed line is fit to the Einstein’s prediction of
viscosity ηE and the dash-dotted line represents fit to the
Batchelor-Green viscosity ηBG. Although experimental results
exist for the density distribution of colloids in confined col-
loidal suspensions undergoing flow which are similar with
our predictions [54,55,57], there are not sufficient results yet
for the centerline velocities of confined suspensions subject to
flow in experiments. One experimental attempt for centerline
velocities as a function of volume fraction was pursued by
Lyon and Leal [38] in rectangular channels in which they
predict that the density distribution is peaked at the center.
Hence, their predictions of centerline velocities are much
higher than is predicted by our model. In the next section, we
explore the dependence of apparent viscosity ηapp on RePe
and on confinement effects.

B. Apparent viscosity as a function of RePe
and ratio of diameters D/σ

In this article, we showed that when a hard-sphere
suspension is subjected to a pressure-driven flow with an
incident velocity v0, the suspension under quasiequilibrium
reorganizes into concentric rings as shown by the peaks
in the density distribution (Figs. 3–5). In this section, we
explore the change in microstructure with increase in flow
velocity or equivalently RePe and study the dependence of
apparent viscosity on the local microstructure. In addition, we
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FIG. 7. Reduced density obtained in the canonical ensemble for
RePe = 400, 1000, 2000, 4000 (RePe increases along the direction
of the arrow). Volume fraction of hardspheres in the cylinder is
φ = 0.15. The diameter of the cylinder is D/σ = 8 and 16 for (a)
and (b) respectively. The inset to the figures show the variation of the
position rP /R of the primary peak (left axis, solid line) and vm/v0

(right axis, dashed line) as a function of RePe. (c) The apparent
viscosity ηapp of the suspension with volume fraction φ = 0.15
plotted as a function of RePe for two diameters of the cylinder
D/σ = 8, 16.

investigate the dependence of apparent viscosities ηapp on the
confinement of the cylinder, i.e., on the ratio of the diameters
of the cylinder and the hard spheres D/σ .

We initiate the stage I of our simulation in the canonical
ensemble to equilibrate a suspension of hard spheres with vol-
ume fraction φ = 0.15 in cylinders of two different diameters
such that D/σ = 8, 16. We vary the flow velocity applied to
the suspension such that RePe is varied from 100 to 4000.
The reduced density obtained for the cylinder of diameter
D/σ = 8 at various RePe’s is plotted in Fig. 7(a), while the
reduced density ρσ 3 obtained for suspension in the cylinder
of diameter D/σ = 16 is shown in Fig. 7(b). We observe
that the local microstructure of the suspension changes with
increasing RePe. As RePe is increased, we first observe that
the density of the suspension at the center of the cylinder
at r = 0 as well as near the cylindrical wall (at r = R − σ )

decreases. Second, the hard spheres accumulate close to rC .
This is also evident in the insets to Figs. 7(a) and 7(b), in
which the position of the primary peak rP in the reduced
density is plotted as a function of RePe. We see that rP

approaches rC as RePe is increased.
This change in the local microstructure has implications

for the velocity of the suspension as well as for the apparent
viscosity of the suspension. We plot the normalized centerline
velocity of the suspension vm/v0 obtained for various RePe’s
in the inset to Figs. 7(a) and 7(b). We observe that the normal-
ized centerline velocity vm/v0 increases as RePe increases.
This is a direct effect of the change in the microstructure of
the suspension. Since the density of particles near the wall de-
creases and shifts to the central regions as RePe is increased,
an increasing number of hard spheres are moving with a faster
velocity, thereby increasing the flow rate Q of the suspension.
As a result, as is shown in Fig. 7(c), the apparent viscosity
of the suspension for the two diameters decreases as RePe is
increased. This is indicative of a shear-thinning behavior and
has been observed in bulk hard-sphere suspensions [58]. How-
ever, there have been limited experiments that have measured
apparent viscosities in confined geometries. Furthermore, the
apparent viscosity is higher for the suspension in the cylinder
with the larger diameter. In the case of complex fluids such as
suspension of red blood cells [59], it has been observed that
the viscosities increase with increase in diameter of the chan-
nel or pipe. Hence, our simulations capture the salient changes
in the viscosity of confined suspensions with variation in flow
rate, tube diameter, and volume fraction.

V. CONCLUSIONS

To conclude, we studied the microstructure and rheology
of a hard-sphere suspension confined in a cylindrical channel
and driven by a pressure-driven flow using MC simulations.
To include the various hydrodynamic interactions active in the
system, we developed particle-based MC simulations which
includes interactions due to wall-induced inertial forces acting
on the hard spheres, solvent-mediated HI between the hard
spheres, and density-dependent diffusivity, from which we
have estimated the velocity and density of the suspension
in the radial direction using a self-consistent calculation.
We showed that the hydrodynamic interactions give rise to
enhanced peaks in the confined suspension in flow and lead to
enhanced depletion of hard spheres near the wall. As a result,
the apparent viscosity increases with increasing hard-sphere
volume fraction, decreases with increasing flow velocity, and
increases for cylindrical channels with larger diameters. In
future outlook, this study can be extended for particles with
more complicated geometries such as anisotropic particles
[4], soft particles which can interact with each other using
Lennard-Jones potential, and complicated geometries of the
confinement.
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