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Random polymers and generalized urn processes
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We describe a microcanonical approach for polymer models that combines atmospheric methods with urn
theory. We show that large deviation properties of urn models can provide quite deep mathematical insight by
analyzing the random walk range problem in Zd . We also provide a new mean-field theory for the range problem
that is exactly solvable by analogy with the Bagchi-Pal urn model.
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I. INTRODUCTION

In this paper we present an alternative approach to deal
with microcanonical polymer models derived in analogy with
urn process theory. The main point in this method is that it is
possible to relate the density of states of an interacting chain
with the problem of computing the large deviation behavior of
an associated Markov urn process [1–3] once the urn function
of the problem is identified (see below). Here we deal with
models that can be related to a two-color urn, first introduced
by Hill, Lane and Sudderth (HLS) [4,5] for which a detailed
large deviations theory has been recently developed [6,7]. In
particular, we will provide an explicit example by studying the
classic random walk (RW) range problem {(RP), [8–12]}, that
is, computing the number of different lattice sites visited by a
random walk of given length (see Fig. 1).

The HLS urn is a Markov process first introduced in
Ref. [4]. Consider an infinite capacity urn with a finite number
of black and white balls, and let yt be the fraction of black
balls inside the urn at a certain time t of the evolution, then
in a HLS process of urn function π (y) at each step a black
ball is added with probability π (yt ), and a white one is added
otherwise. The process is then parametrized by the function
π (y) that represents the probability of adding a black ball at
the considered step on the condition that the urn has reached
a certain fraction of black balls.

The second ingredient is the end-point atmosphere, intro-
duced some years ago within the study of the self-avoiding
walk as the number of ways in which a chain of N steps
can be continued by adding one monomer to the end point
[13]. As we will see, it is possible to combine these two ideas
together and define HLS processes that converge to a given
polymer model in the thermodynamic limit by interpreting
the probability that adding a step to a given chain produces
an increase in an energy analog to adding a black ball in the
associated urn process, i.e., the number of black balls will
represent the total energy of our polymer.

Before starting let introduce some notation. Let L be some
regular lattice, and let L1 be the possible orientations on L.
Then we call a chain ωN ∈ LN

1 of N steps on L the ordered
sequence of steps δxt ∈ L1 for 1 � t � N with LN

1 as the
set of distinct random walks of N steps on L, thus ωN =
{δx1, . . . , δxN }. If we fix the starting point x0 we can also

represent ωN by the positions xt ∈ L, related to the steps δxt

by δxt = xt − xt−1. Hereafter we will assume that x0 ≡ 0 and

ωN = {x0, x1, . . . , xN }, (1)

with steps xt − xt−1 ∈ L1 for all times 1 � t � N .
Now consider the interaction energy H (ωN ), that is, the

energy associated with the chain configuration ωN . We as-
sume that the interaction energy H can be defined for arbitrary
size N of the walks. In general, we can define the free energy
density per monomer of the interaction H supported by LN

1 in
the thermodynamic limit,

f (β ) = − lim
N→∞

1

βN
ln

∑
ωN∈LN

1

e−βH (ωN ). (2)

After rescaling by the number of possible walks we can
write −βf (β = ln |L1| + ζ (β ) where ζ (β ) is the cumulant
generating function (CGF) of the variable H (ωN ),

ζ (β ) = lim
N→∞

1

N
ln〈e−βH (ωN )〉LN

1
, (3)

with the average over ωN taken uniform on LN
1 .

Then, let ωN be a random chain of N steps and define the
sequence ωt ⊂ ωN subwalks of ωN according to the monomer
ordering t , i.e., ωt = {x0, . . . , xt }. In this paper we will deal
with energy functions that satisfy

H (ωt+1) − H (ωt ) ∈ {0, 1} (4)

for all ωN ∈ LN
1 and all t . This condition ensures that the

energy can either increase by one unit or not increase at all
when a monomer is added to the end point of ωN and is an
important technical point to connect with the HLS urns as it
allows to directly identify an increase in energy followed by
one step that grows with adding a black ball to the associated
urn. It is possible to generalize to include more general
transition spectra (multicolor urns), but here we consider the
binary cases as the large deviation principle for such urns has
been already developed in detail [7].

II. HLS URNS

Before going further we need to introduce the HLS process
[4–7] and sketch some of its main properties we will use in the
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FIG. 1. Numerical estimate of πN (	Nm
) from Eq. (17) for
dimensions d = 3 and 0 � m � 0.4. The lengths of the chains were
N = 1000. The vertical dotted line and the upper horizontal dotted
line show the Pólya RW constant C3 [16] and crosses at the RW point.
The lower horizontal dotted line is the limit π∞(0) = η3 [17,18] ac-
cording to Ref. [19]. The dashed dotted line is the MF approximation
πMF(m) = (C3 + m)/2, computed according to Eqs. (28) and (29).

following. A HLS urn is a two-color urn process that is gov-
erned by a functional parameter π (y) called the urn function
[7]. Let us consider an infinite capacity urn containing two
kinds of elements, say black and white balls, and denote by

Y = {Yt0 , Yt0+1, . . . , YN }, (5)

the process describing the number of black balls inside the urn
during its evolution from t = t0 to N . The process Y evolves
as follows: let yt = Yt/t be the fraction of black balls at time
t , then at step t + 1, a new ball is added, whose color is black
with probability π (yt ) and white with probability 1 − π (yt ).

Then, let Y be an HLS urn process stopped at N with initial
condition Yt0 = M0, describing the number of black balls in
the evolution of a HLS urn of urn function π . By simple
arguments on conditional expectations it is not hard to prove
that the process satisfies the following master equation:

P (YN+1 = M + 1) = π

(
M

N

)
P (YN = M )

+
[

1 − π

(
M + 1

N

)]
P (YN = M + 1), (6)

that can be iterated backward to the initial condition,

P (Yt0 = M0) = I (Yt0 = M0), (7)

where π is the urn function and I (Yt0 = M0) is the indicator
function, valued as one if Yt0 = M0 and zero otherwise.

In Ref. [7] the cumulant generating function of the process,

ζ (β ) = lim
N→∞

1

N
ln

∑
k�N

e−βkP (YN = k) (8)

is studied in detail, and it is proven that it must satisfy the
following nonlinear differential equation:

∂βζ (β ) = π−1

(
eζ (β ) − 1

eβ − 1

)
, (9)

with π−1 as the inverse urn function. Of special interest for
our scope will be the case of linear urn functions,

π (y) = a + by, (10)

that in Ref. [7] are shown to be equivalent to the Baghi-Pal
model [3,6], a widely investigated model due to its relevance
in studying branching phenomena and random trees (see
Refs. [1–3] for some reviews). Linear urn functions satisfy
the differential equation,

∂βζ (β ) = −a

b
+ 1

b

(
eζ (β ) − 1

eβ − 1

)
. (11)

The above equation can be integrated exactly. Although the
solution depends on the considered parameter region, for our
analysis it will suffice to take a>0, a + b<1 and b>0,

β > 0. From Corollary 10 of Ref. [7] we have that

1−e−ζ (β ) = a

b
e−(a/b)β (1−e−β )1/bB

(
a

b
,
b − 1

b
; 1−e−β, 1

)
,

(12)

where B(q, p; u, v) is a generalized hypergeometric function
of the second kind,

B(q, p; u, v) =
∫ v

u

dt (1 − t )q−1tp−1. (13)

As we will see in short our mean-field (MF) theory will be
described by the linear urn theory above.

III. URN ANALOGY

Although the limitations are imposed by Eq. (4), simple
two-color HLS urns still allow for describing interesting mod-
els (that are not limited to polymer physics). The problem
we investigate here is the the random walk RP on the cubic
lattice Zd [9,10,12], a model showing [12] a full crossover
from self-avoiding walks (SAWs) [17] to a collapsed globular
configuration in the range density per monomer and is shown
to have an interesting geometric coil-to-globule (CG) transi-
tion (the chain collapses from an extended random coil to a
liquidlike cluster [14,15]) at a critical range density for any
d � 3.

Take a walk ωN ∈ LN
1 , and define the number of different

sites of L visited by ωN . We will approach the RP by studying
interaction energy,

H (ωN ) = N − R(ωN ) = N −
∑
x∈Zd

I (x ∈ ωN ), (14)

a Hamiltonian first introduced by Stanley et al. [11] (see also
Ref. [22]) and Ref. [23]. To show the urn process analogy we
first need to introduce some microcanonical estimators. Let

LN (M ) = {
ωN ∈ LN

1 : H (ωN ) = M
}

(15)

be the fraction of walks of length N with an energy of exactly
M , then call P [H (ωN ) = M] the probability that a chain
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ωN uniformly picked from LN has energy M . Note that the
constraint of binary energy increase guarantees that, for all
these functions, m is a real parameter between zero and one.
Then, let us consider a walk of N steps ωN ∈ LN

1 and define
the average of the energy after a random continuation ω∗

1 ∈ L1

from the end point of ωN ,

δH1(ωN ) = 〈H (ωN ∪ ω∗
1 ) − H (ωN )〉L1

= 1

|L1|
∑
x∈Zd

I (x ∈ ωN )I (x ∈ L1). (16)

Since energy can increase only by zero or one, then the
average increase δH1(ωN ) equals the probability that a ran-
dom continuation of the walk ωN from its end point xN

produces a self-interaction according to H . We then define
the atmosphere,

πN (M ) = 〈δH1(ωN )〉LN (M ), (17)

that is, the probability of self-intersection after a random
continuation of ωN , conditioned to the event that the range
is R(ωN ) = N − M .

It can be proven that P [H (ωN ) = M] satisfies the follow-
ing master equation:

P [H (ωN+1) = M] = πN (M )P [H (ωN ) = M]

+ [1 − πN (M + 1)]P [H (ωN ) = M + 1],

(18)

with initial condition,

P [H (ω1) = M] = I (M = 0). (19)

If we take H (ωN ) = YN it is clear that the master equation for
the measure of the event is the same as the event YN = M of a
HLS urn of nonhomogeneous urn function πN (M ). In Ref. [7]
it is shown that if

lim
N→∞

|πN (	Nm
) − π (m)| = 0, (20)

then the cumulant generating function of the process is the
same of a HLS urn of urn function π (m). The existence of
π (m) for the RP can be inferred by subadditivity, but we do
not give a proof here because the convergence of πN (	Nm
)
toward some smooth π (m) is already clear from our numerical
analysis (see Fig. 3).

IV. NUMERICAL RESULTS

In Figs. 1–3 we present our numerical results concerning
the urn function πN (M ) associated with the RP on Zd , 3 �
d � 6 for which some properties can be deduced also from
known results in random and self-avoiding walks theory
[9,17,18].

The numerical simulations were performed by a standard
implementation of the pruned-enriched Rosenbluth method
(PERM), see Refs. [24–27]. For 3 � d � 6 we restricted
our attention to the region M/N < mc where the typical
configuration of ωN is supposed to be in the universality class
of the self-avoiding walk.

In a previous paper [12] we numerically studied the event
H (ωN ) = 	mN
 and found a CG transition for some critical

FIG. 2. Numerical estimation of πN (	Nm
) from Eq. (17) for
d = 4–6 and 0 � m � 0.4. As for d = 3, the lengths of the chains
were N = 2000 for d = 4, N = 1000 for d = 5, and N = 500 for
d = 6. For each plot, the vertical and the upper horizontal dotted
lines are Pólya constants Cd [9,16], whereas the lower horizontal
dotted lines are π∞(0) = ηd from Refs. [17,18]. The dashed dotted
lines are πMF(m) = Cd (1 − Bd ) + Bdm of Eqs. (28) and (29) (not
linear fits).
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FIG. 3. Numerical estimation of πN (	Nm
) from Eq. (17) for
d = 5, 0 � m � 1 and from N = 10 to N = 1000. The conver-
gence to some limit urn function π (m) is observed in the SAW region
m < mc.

value of m = mc ∈ (0, 1). We studied the critical exponent
governing the mean square displacement,

νd (m) = lim
N→∞

ln
〈
x2

N

〉
CN (	Nm
)

2 ln N
, (21)

concluding the above limit exists and νd (m < mc ) =
νd, νd (m = mc ) = νc, νd (m > mc ) = 1/d, where νd is the
critical exponent governing the end-to-end distance of the
self-avoiding walk [17]. Also, for the νc = 1/2, mc = Cd

Pólya constants [16] for d = 3, 4 and that for d � 5, it is
expected that mc > Cd (see Ref. [12] for further details about
this topic).

Here we observe that πN (M ) approaches some continuous
π (M/N ) uniformly on the considered range. Quite surpris-
ingly, we also observe that for d � 4 the function π suddenly
approaches some linear function (see Figs. 2 and 3),

πMF(m) = aRP + bRPm, (22)

in the region 0 � m � mc. Assuming a linear urn function,
the coefficients can be computed exactly from RW theory by
relating them to the variance of the energy σ 2

d .
The constant σd can be computed from Jain-Pruitt theorem

on the variance of the RP ([9,28–31], see also Ref. [32] for an
explicit computation). For d = 3, Hughes [9], Jain and Pruitt
[28], and Jain and Orey [29] have shown that the leading order
of the variance of R(ωN ) for a random walk is σ 2

3 N ln(N )
with σ3 exactly computable, whereas for d � 4 the same
authors show that the variance is σ 2

d N with σd expressed by
the relation,

σ 2
d = Cd (1 − Cd ) + 2a. (23)

Accurate estimates for Cd are in Ref. [16]. To determine a,
we follow Refs. [9,18,28,29,32]. Let us first introduce the
propagator,

G(x) =
∫

[−π,π]d

dq

(2π )d
eiqx[1 − λ̃d (q )]−1, (24)

where λ̃d (q ), q ∈ [−π, π ]d is the structure factor of the
hypercubic lattice Zd ,

λ̃d (q ) = 1

d

d∑
i=1

cos(qi ), (25)

and where qi’s are the components of the dual vector q. The
quantity G(x) represents the expected number of visits to a
given site x ∈ Zd for an infinite length random walk. From
standard random walk theory follows [9]:

Cd

1 − Cd

=
∑

x∈Zd\{0}
G(x) (26)

for the Pólya constants. For d � 3, by the Jain-Pruitt theorem
it is also possible to write a in terms of the G(x) function as
well [32]

a =
∑

x∈Zd\{0}

(1 − Cd )4G(x)3

1 + (1 − Cd )G(x)
. (27)

Then, from the convergence condition of a generic HLS urn
Cd = π (Cd ) (see Ref. [7]), it follows that:

aRP = Cd (1 − bRP). (28)

By computing the variance of the linear urn from the CGF
of Eq. (11) and confronting with the expression of the RP
variance from the Jain-Pruitt theorem above we get

bRP = 1

2

(
1 − Cd (1 − Cd )

σ 2
d

)
. (29)

Linear urns with the above values are shown as dotted lines
in Figs. 1 and 2. A detailed computation will be presented
elsewhere.

V. TWO-COLOR MEAN-FIELD THEORY

Besides the computational advantages in numerically
studying the atmosphere instead of counting the number of
walks, that has been already exploited in Ref. [13], the urn
theory allows for different interesting analytic approaches.
For example, here we give a simple model that matches the
linear urn theory suggested by our numerical simulations. In
the spirit of the classic Pincus–De Gennes blob picture [14]
let us slice the chain ωN into a number n of subchains,

ωN = {
ω0

T , ω1
T , . . . , ωn

T

}
, (30)

each of size T = N/n. The subchains are indicated with

ωi
T = {

xi
0, x

i
1, . . . , x

i
T

} ⊂ ωN, (31)

and satisfy the chain constraint,

xi
T = xi+1

0 . (32)
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If we neglect the mutual self-intersections between different
blocks we can approximate the energy with

H (ωN ) 
n∑

i=1

H
(
ωi

T

)
, (33)

and the energy increment,

δH1(ωN )  δH1
(
ω1

T

)
. (34)

The probability measure conditioned to H (ωN ) = 	Nm
 is
then approximated by a product measure,

μm(ωN ) 
n∏

i=1

μmi

(
ωi

N

)
. (35)

Note that the approximation of Eqs. (33) and (34) is ex-
pected to hold at least if both N, T → ∞ and d � 4 because
above the critical dimension the interaction between different
subwalks is negligible in the thermodynamic limit [8–10,17].
If instead we take T to be finite, then the mutual intersections
between the segments are no longer negligible, nonetheless,
since the typical length between two self-intersection is on the
order of O(1/2d ), we expect that the above linear approxima-
tion will be asymptotically exact also for T < ∞ in the limit
d → ∞.

Now, we approximate by assuming that the subchain dis-
tributions can be of two kinds only, say A and B,

μi

(
ωi

N

) = ϕiμA

(
ωi

N

) + (1 − ϕi )μB

(
ωi

N

)
. (36)

This recalls again the two-color approximation and seems
a crucial technical point to obtain linear urns. We can give
a simple physical understanding of this by taking A to be,
for example, a self-avoiding walk mA = 0, T equal to the
average number of steps a SRW can perform without self-
intersecting and B to contain a self-intersection such that the
local range density is 1 − mB with mB = Cd > 0. Forcing a
self-intersection in one block will certainly bring a decrease
in the total range density; on the other side this will affect the
atmosphere only if the self-intersection happens near the end
point where we are supposed to grow the chains.

In the previous formula Eq. (36) we introduced a binary
sequence,

ϕ = {ϕ1, . . . , ϕn}, (37)

with ϕi ∈ {0, 1}, that kept a record of whether a subchain is
either of one kind or the other, and can be interpreted as the
color of the ball we add. For a walk in a given state we assume
that the range density is peaked around some value,

H
(
ωi

T

)  mAT ϕi + mBT (1 − ϕi ), (38)

concerning the energy and

δH1(ωN )  πB + (πA − πB )ϕ1 (39)

for the energy increment. Given this we find

H (ωN )/N  mB + (mA − mB )
1

n

n∑
i=1

ϕi, (40)

TABLE I. In this table is shown η
(u)
d = Cd (1 − bRP ) from MF

theory and numerically determined ηd from literature [17,19–21]:
Although d = 3, there is a heavy underestimation (more that 20%),
yet, for d = 4, there is an error of 2%, and d � 5 under the percent-
age. An exhaustive analysis of our results about the range problem
will be published in a dedicated paper.

d bRP η
(u)
d ηd η(u)

p /ηd − 1

3 1/2 0.17026(9) 0.2193(5) −22.38%
4 0.22080(9) 0.15054(1) 0.1532445(6) −1.76%
5 0.13767(2) 0.11656(8) 0.1161456(3) 0.36%
6 0.10266(0) 0.09396(5) 0.0934921(3) 0.51%
7 0.08291(2) 0.078727(3) 0.07837021(4) 0.46%
8 0.07030(6) 0.067786(5) 0.0675464(2) 0.36%

then, taking the average over CN (M ) with

〈ϕ1〉CN (M ) = 1

n

n∑
i=1

〈ϕi〉CN (M ), (41)

we arrive at a linear expression for the urn function,

πN (M )  aRP + bRPM/N, (42)

with coefficients aRP = πB − mBbRP and

bRP = πA − πB

mA − mB

. (43)

There are various ways to obtain these coefficients from
random walks theory. If we take A to be the RW and B to
be the SAW, we arrive to the linear urn described before,
where aRP equals the SAW normalized connective constant ηd

[17,18] and bRP = 1 − ηd/Cd . By comparing to a mean-field
value we obtain an expression for the rescaled connective
constant of the self-avoiding walk [17,18],

ηd  Cd

2

(
1 + Cd (1 − Cd )

σ 2
d

)
= η

(u)
d . (44)

A computation of η
(u)
d via numerical integration (see Table I)

suggests excluding that this is the correct value for ηd , at least,
for d � 8, although our numerical analysis shows narrow
discrepancies as d increases.

We conclude by remarking that in the above mean-field
theory a critical ingredient is to assume that we can obtain the
urn function via interpolation between any two fixed energy
states, for example, subchains that are either self-avoiding
or critically collapsed or between self-avoiding chains and
random chains as well. The reason for this to hold so well
in high dimensions is not clear.

The numerical estimates η
(u)
d in Table I, based on the

linear urn analogy and the Jain-Puitt theorem, seem to in-
dicate that Eq. (38) is slightly deviating from the accurate
numerical values available in literature, at least, for d � 8.
Unfortunately, we expect this simple linear urn analogy to
be only asymptotic for d → ∞, but we also expect that a
more refined estimate of the urn function can be obtained
by a proper accounting of mutual self-intersections between
the blocks. Further investigations on this aspect would be of
certain interest, also, it would be interesting to understand the
meaning of higher order polynomial urn functions. We expect
that some light on this may be obtained, at least, in d = 4 by
confronting with a recently developed exact renormalization
scheme based on lace expansion [33].
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