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Structure and dynamics of a self-propelled semiflexible filament
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We investigate structural and dynamical properties of a self-propelled filament using coarse-grained Brownian
dynamics simulations. A self-propulsion force is applied along the bond vectors, i.e., tangent to the filament and
their locations are considered in two different manners. In case one, force is applied to all beads of the filament,
which is termed as homogeneous self-propulsion. Here we obtain a monotonic decrease in the stiffness of the
filament with Péclet number, hence, radius of gyration also displays the same trend. Moreover, the radius of
gyration of the filament shows universal dependence for various bending rigidities with flexure number. The
effective diffusivity of the filament shows enhancement with the active force, and it increases linearly with force,
and bending rigidity. In case two, self-propulsion force is applied only to a few bond vectors. The location of
active forces is chosen in a periodic manner starting from the tail of the filament and leaving the front end without
force. In this case, the filament acquires various structures such as the rodlike, helical, circular, and folded states.
The transition from several states is understood in terms of tangent-tangent correlation, bending energy, and
torsional order parameter. The helical state is identified through a crossover from exponential to oscillatory
behavior of the tangent-tangent correlation. A sudden increase in the bending energy separates a helical state to
a folded state of the filament.
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I. INTRODUCTION

Study of active matter systems such as a flock of birds
[1], a school of fishes [2], bacterial colonies [3], motility of
spermatozoa, etc., has drawn immense research interest in
recent years [4–6]. Their movement is fuelled by chemical en-
ergy, which is converted into mechanical energy. The presence
of local excess energy drives the system out of equilibrium.
Understanding behavior of driven systems is an intense area
of research from the fundamental aspect. One of the widely
studied systems is the active filament, which is regarded as
thin and long polymer chains [7–16]. Several types of active
filaments are found in the cell, and they play a decisive role
in providing shape, structure, and motility to cell membranes
[17]. Moreover, many microswimmers propel themselves by
long hairy polymeric structures, such as cilia and flagella
[5,18,19]. These active filaments exhibit fascinating struc-
tural, dynamical, and collective behaviors [20–26].

In the recent past, various studies have been done on
active filaments using theoretical [7–9] and simulation models
[7,13–15]. In these models, either self-propulsion force is im-
posed tangential to the filament [7,13–15,27] or monomers of
the filament are treated as active Brownian particles [8,9,11].
A freely moving active filament acquires numerous dynamical
conformations, such as rotational motion, snakelike motion
[13,14], straight translational motion [10,16], etc. The rigidity
of a filament plays a crucial role in its conformational behav-
ior, as a flexible polymer swells under strong active force [11],
while a semiflexible filament shrinks under activity. However,
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in an extreme propulsion limit, the polymer swells again [8,9].
A clamped filament shows beating and spontaneous rotational
motion under tangential compressive force [15,27]. Presence
of a load in front shows a stable circular, beating, and spiral
structures on the surfaces in the absence of hydrodynamics
[13,14]. However, hydrodynamic interactions induce instabil-
ity to a filament when actuated with an active colloid on its
terminus [15].

Internal relaxation of a filament is altered in the presence of
active force. The change in relaxation time is determined by
the strength of force and their correlations [28]. The longest
relaxation time shows a crossover from a bending dominated
limit to a flexible limit under strong active force [8,9]. Active
medium and the strength of the force influences the diffusive
behavior of the filament. Interestingly, an active filament
shows enhanced diffusion as well as superdiffusive behavior.
In a viscoelastic medium with active bath [29,30], mean-
square displacement of the center-of-mass of filament, as well
as monomers display superdiffusive behavior [7,29,30]. This
dynamical aspect of the filament has been reported in several
experimental investigations in cellular medium, cytoskele-
tons, and chromatins [31–35].

In this article, we investigate a freely moving self-
propelled filament in bulk (three dimensions) using over-
damped Langevin dynamics. The self-propulsion force is
imposed tangentially to the filament. Two different cases are
considered for the tangential self-propulsion. In the case one,
active force is applied homogeneously along the filament
on each bond [Fig. 1(a)]. In the second case, the role of
inhomogeneity is considered in an averaged manner. Thus the
self-propulsion force is applied only to a few bonds on the
filament, and their location is chosen in a periodic manner
as shown in Fig. 1(b). This can be understood as follows:
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FIG. 1. Figure displays arrangement of the active monomers on
the filament in red and passive monomers are in blue. Top filament
(a) corresponds for the homogeneous self-propulsion and the bottom
one (b) is for the periodic sequence of the active monomers. Distance
between two successive monomers is la = 5 (in simulation units).

A filament is divided into equal length of segments, and
active force is placed on the tail of each segment as shown
in Fig. 1(b) in red. In this case, front monomers are passive,
which acts as a load. So far the role of periodic sequence
of self-propulsion on a filament has not been investigated
in detail. In our simulations, hydrodynamic interactions are
ignored for the simplicity of the calculation.

A freely swimming self-propelled filament buckles under
the compressive force. We obtain that the structural change,
under homogeneous self-propulsion, shows a universal be-
havior for various bending rigidities with respect to a dimen-
sionless parameter called flexure number. In the periodic self-
propulsion, a filament undergoes transition from the extended
state to a circular, helical, and folded or strongly buckled
states. Our main emphasis in this article is to identify several
phases emerging under various self-propulsion arrangements.
To do so, we have calculated torsional order parameter [12],
bending energy, and tangent-tangent correlation of the fila-
ment [36]. In the extended state, the torsional parameter is
small and becomes very large in helical and folded states.
Furthermore, structural correlations along the filament exhibit
oscillatory behavior, and the curvature radius of the helical
phase shows a power-law variation with force.

The article is organized as follows. In Sec. II, we dis-
cuss a coarse-grained model for the self-propelled filament.
Structural and dynamical behavior of the homogeneously
self-propelled filament is presented in Sec. III. Results for
the periodically arranged self-propelled monomers on the
filament are discussed in Sec. IV. A summary of the results
is presented in Sec. V.

II. SIMULATION MODEL

We model filament as a semiflexible linear polymer com-
posed of a sequence of N monomeric units connected via
Harmonic spring. All the monomers in the polymer also
interact via excluded volume interactions. The total potential
energy of the filament can be written as U = Uh + Ub + ULJ,
where Uh is spring potential, Ub is bending potential, and ULJ

corresponds to excluded volume potential (Lennard-Jones).
Harmonic potential is given as

Uh = ks

2

N−1∑
i=1

(|r i+1 − r i | − l0)2, (1)

where l0 is the average equilibrium bond length, ri is position
vector of the ith monomer, and ks is the spring constant.
Bending potential energy Ub, which accounts for the stiffness

of the polymer, is written as

Ub = κ

2

N−2∑
i=1

(Ri+1 − Ri )
2, (2)

here Ri is length of the ith bond vector, defined as Ri =
ri+1 − ri , and κ is the bending rigidity of the polymer which
can be expressed in terms of persistence length of the polymer
lp as, lp = κl3

0/kBT , where kBT is thermal energy.
Excluded volume potential avoids overlap of beads in a

polymer, and its form is taken from the truncated repulsive
part of the Lennard-Jones potential, i.e., Rij < 21/6σ ,

ULJ =
N−1∑
i=1

N∑
j=i+1

4ε

[(
σ

Rij

)12

−
(

σ

Rij

)6

+ 1

4

]
, (3)

and for Rij � 21/6σ , it is considered as ULJ = 0. Here ε is
the LJ interaction energy and σ is the LJ diameter of the
monomer.

Newton’s equation of motion for a monomer in over-
damped limit is

γ
d r i

dt
= −∇iU + Fi

r + Fi
a, (4)

where γ is the friction coefficient, Fi
r is the thermal noise with

zero mean, and Fi
a is the self-propulsion force which is exerted

on the ith bond vector. Since hydrodynamics interactions are
ignored in the simulations thereby solvent-mediated indirect
coupling among the monomers is absent in the equation of
motion.

The viscous drag and the thermal noise are related through
the fluctuation-dissipation relation〈

Fi
r (t ) · Fj

r (t ′)
〉 = 6kBT γ δij δ(t − t ′). (5)

Total self-propulsion force on the polymer is given as

FT
a =

N∑
i=1

Fi
a =

N−1∑
i=1

fat(ri )�(ri ), (6)

where t(ri ) = (r i+1 − r i )/|r i+1 − r i | is unit tangent vector
on the ith monomer. Active force is shared equally be-
tween ith and (i + 1)th monomers as fa/2. If the step
function �(ri ) = 1, then the ith monomer is active. Simi-
larly, if �(ri ) = 0, then the monomer will be passive. We
consider here two different arrangements of self-propulsion
force on the filament described as follows. (i) Homogenous
self-propulsion: Active force is applied on each bond of the
polymer, therefore all monomers feel active force. We term
it homogenous self-propulsion. (ii) Periodic sequence of self-
propulsion: In this case, propulsion force is applied to a few
bonds arranged in a periodic sequence. Placement of active
monomers starts from the tail of filament in an equidistant
manner with leaving front end as passive. Figure 1(b) dis-
plays the clear picture of the periodic arrangement of active
monomers on the filament.

In the periodic self-propulsion, the number of active
monomers are taken as a variable parameter which varies
from Na = 0 to Na = N . Here, Na = 0 corresponds to the
passive filament, while Na = N recovers the homogeneous
self-propulsion. The strength of the active force is defined in
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units of thermal energy called as Péclet number, which is a
dimensionless number. It is defined here as Pe = fal0

kBT
. In the

limit of Pe << 1, thermal fluctuations dominate. However,
in the limit of Pe >> 1, active force dominates. The ratio
of the Péclet number (Pe) and the scaled persistence length
(lp/ l0) is a dimensionless parameter given as χ = l0Pe/lp.
Here χ is called flexure number, which provides a measure of
active force over the bending rigidity. Flexure number is used
to understand the buckling instabilities [27,37], spontaneous
spiral formation, spiral stability, and rotational motion [13,14]
of active filaments.

All the physical parameters presented here are scaled in
units of the bond length l0, diffusion coefficient of a monomer
Dm, and thermal energy kBT . Simulations parameters are
chosen as ks = 1000kBT /l2

0 , σ = l0, ε/kBT = 1, time is in
units of τ = l2

0/Dm, and the stiffness parameter κ is in units of
kBT /l2

0 . The separation between two consecutive active sites
is considered in the range of la = 1 (Na = 101) to la = 25
(Na = 4) and the bending rigidity of the polymer is varied in
the range of κ = 0 to 200 for homogeneous self-propulsion,
whereas for the patterned case we take κ = 100 and κ = 40.
Unless explicitly mentioned, number of monomers in the
chain is taken to be N = 101. We use the Euler integration
technique to solve Eq. (4). The integration time step �t is
varied from the range of 10−2τ to 10−5τ to ensure stable
simulation results. All the simulations are performed in a
cubic periodic box.

A larger active force causes an increase in the average bond
length, and thus it requires a larger spring constant. In addition
to that, a smaller integration time step needs to be taken into
account for better numerical accuracy. Thus, all simulations
are restricted in the range of Péclet number 0 to 600. In order
to ensure better statistics, each data point is averaged over 50
independent runs in a small Péclet number limit, i.e., Pe <

1. However, the rest of the data points are averaged over 32
independent runs.

III. HOMOGENEOUS SELF-PROPULSION

In this section, we present results for homogeneous self-
propulsion where all monomers are active. In equilibrium,
structural and dynamical behaviors of the filament have been
very well understood [38–43]. The presence of propulsion on
the filament causes bending, and therefore its structural and
dynamical behavior deviates from the equilibrium.

A. Structural properties

The structural change is analyzed by estimating average
radius of gyration Rg and average end-to-end distance Re

of the filament. The radius of gyration and the end-to-end
distance is computed by the expression

R2
g = 1

N

〈
N∑

i=1

(r i − rcm )2

〉
; R2

e = 〈(r1 − rN )2〉, (7)

where rcm is the center-of-mass of the filament and angular
brackets indicate the ensemble average of the physical quanti-
ties. Figure 2 shows the dependence of the radius of gyration
and end-to-end distance on flexure number for various bend-
ing rigidities.
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FIG. 2. Figure shows the relative change in the mean radius of
gyration Rg/R

0
g (a) and the end-to-end distance Re/R

0
e (b) with

respect to its equilibrium values R0
g and R0

e , respectively, as a
function of flexure number χ . Inset of (a) and (b) shows the mean
radius of gyration and the mean end-to-end distance Re as a function
of Pe. Various curves in (a) and (b) correspond to κ as displayed in
the figures.

First, we discuss results of the flexible polymer, i.e., for
κ = 0. In the weak active force, i.e., χ << 1, the normalized
radius of gyration Rg/R

0
g decreases monotonically with in-

creasing χ . Further increase in χ results in a relatively large
change in Rg/R

0
g and, eventually, in the limit of large χ > 10,

Rg is almost independent of χ , which is consistent with other
simulations and theoretical results [8,9]. The saturation in Rg

and Re occurs due to excluded volume interactions which
prevent collapse of a polymer.

Now we present results for the semiflexible filament. Here,
the radius of gyration decreases with activity as displayed
in Fig. 2. In the limit of weak active force, i.e., χ < 1,
the radius of gyration gradually decreases with χ similar to
the flexible polymer. Further increase in active force, i.e.,
χ � 1, the relative change in the radius of gyration increases
substantially. Interestingly, for κ > 10, all the curves display
nearly a universal behavior up to four orders of magnitude in
χ as shown in Fig. 2. The end-to-end distance also reflects the
same universal trend whose properties can be understood in
terms of a single master curve in the limit of χ < 10. In the
semiflexible regime, Rg and Re decreases monotonically with
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FIG. 3. The persistence length lp as a function of χ for various
κ = 10, 20, 40, 70, 100, and 200 for the polymer length N = 101.

χ . For χ � 1, Rg approaches to a plateau value for κ = 10
and 20 similar to the flexible polymer limit as reflected in
Figs. 2(a) and 2(b). The inset of Figs. 2(a) and 2(b) display
absolute values of Rg and Re as a function of Pe for various
κ . This reflects the monotonic decrease of Rg and Re in the
range of Pe � 102. For the κ � 20, Rg and Re are slowly
approaching to a saturation limit. Note that for κ > 20, the
saturation limit is not reached in displayed simulation range,
which will appear in the limit of Pe > 103.

A filament shrinks under homogenous self-propulsion due
to several competitive forces on it, which can be understood
in terms of fluctuations in bond orientations due to the ran-
dom motion of monomers. A bead always goes to random
motion, which causes fluctuations in bond orientations along
the contour. Hence tangential force pushes the filament along
the randomly fluctuating bond directions, which leads to
an increase in the average noise over the filament. Thus it
bends and buckles with Pe, which results in the shrinkage of
the filament. Considerably larger values of κ suppress bond
fluctuations, and thus shrinkage of the polymer is smaller,
even for the substantially large Péclet numbers.

The shrinkage in the radius of gyration with activity re-
flects a decrease in the rigidity of the polymer. To quantify
the change in the rigidity, we compute its persistence length
with active force. This can be computed from the tangent-
tangent autocorrelation of the filament, which is expressed
as C(s) = 〈t(r i ) · t(r1)〉, where s is the arc length and s =
|ri − r1| ≡ |i − 1|. We have estimated correlation from one
end of the polymer, i.e., from the tail for i = 1, 2, . . . , N − 1.
The correlation decays exponentially as C(s) ∼ exp(− s

lp
),

with the arc length of the polymer for all values of Pe and κ .
We calculate persistence length by fitting exponential function
in the correlation function. Figure 3 displays the persistence
length as a function of χ ; as expected, lp decreases monoton-
ically for all κ in the limit of χ � 1. In the limit of χ > 1,
active polymer becomes flexible, thereby persistence length
lp ≈ l0, and thus in the activity dominated regime χ > 1, lp
nearly saturates as displayed in Fig. 3 for smaller κ = 10 and
20. In the limit of χ � 1, all the curves display a universal
behavior with κ as illustrated in the plot. The analysis of
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FIG. 4. (a) The mean-square displacement of the center-of-mass
of the filament for κ = 40 for various Pe = 0.0, 0.5, 1, 4, and 8.
(b) The scaled effective diffusivity D/Dm of the filament as a func-
tion Pe for various κ = 0, 10, 20, 40, and 100. Inset shows scaled
diffusivity D/(Dmκ ) with Pe for κ = 10, 20, 40, and 100.

the persistence length suggests that a semiflexible polymer
behave as a flexible polymer in the limit of large χ > 10.

B. Diffusion of filament

In this section, we discuss dynamics of a filament under
homogeneous self-propulsion by estimating mean-square dis-
placement (MSD) of the center-of-mass. The MSD of a fila-
ment is computed as 〈R2

cm(t )〉 = 〈[rcm(t ) − rcm(0)]2〉, where
angular brackets denote ensemble average. In equilibrium,
qualitative behavior of the MSD of a filament can be separated
into mainly two time regimes. The short-time limit is called
the ballistic regime, where 〈R2

cm(t )〉 ∼ t2; however, the long-
time limit is called the diffusive regime, and here the MSD
varies linearly in time as 〈R2

cm(t )〉 = 6Dt , where D is the
diffusion coefficient of the filament. Figure 4 displays the
MSD of the filament with time for different Pe. The MSD of
the passive filament is shown by the solid line. As expected, it
reflects diffusive behavior in the long-time limit.

In the presence of tangential active force, the polymer is
compressed and drifted along the end-to-end vector. Drift
motion reflects the enhanced mean-square displacement of the
center-of-mass in the intermediate time regime. Increase in the
MSD is observed with Pe in all time regimes. It is evident from
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the plot that the MSD exhibits superdiffusive behavior, i.e.,
〈R2

cm〉 ∼ tα , with exponent α > 1, in the intermediate time
regime. Further in the long-time limit, the MSD recovers the
linear behavior. Another interesting observation is the shift in
timescale of a superdiffusive regime to smaller time with Pé-
clet number. This can be interpreted in terms of the flexibility
and memory of directed motion. A filament becomes flexible
with active force as shown in the structural analysis, which
results in a decrease in the persistence length of the directed
motion. Thereby, superdiffusive behavior persists relatively at
smaller times. In a more intuitive way, we can also derive
an approximate expression for the crossover time by equat-
ing the MSD expression in the ballistic regime, 〈R2

cm(tc )〉 ∼
(fatc/γ )2, and diffusive regime, 〈R2

cm(tc )〉 ∼ Dtc, which gives
tc ∼ Dγ 2/f 2

a .
The long-time diffusivity of the filament is obtained by fit-

ting a linear function to the MSD curves. Figure 4(b) displays
diffusivity of the polymer with Pe for several values of the
rigidities. The diffusivity enhances with the Péclet number.
Moreover, it increases linearly with Pe, as D ∼ g(κ )Pe, where
g(κ ) shows bending dependence of D for all κ as illustrated in
Fig. 4. The effective diffusivity of the filament increases due to
active fluctuations in the system. In an active medium, a mod-
ified form of the fluctuation-dissipation relation (FDR) is pro-
posed that relates the measured effective diffusivity of a tracer
particle with effective temperature as D = kBTeff/γ [44,45].
We use this relation to define the effective temperature Teff

in terms of long-time diffusivity of the filament. Thus the
effective temperature of the filament increases with active
force as also reported in Ref. [7].

The crossover time tc defined above can be reexpressed
in terms of Pe and effective diffusivity as tc ∼ D/Pe2, and
linear dependence of D on Pe gives tc ∼ g(κ )/Pe. The inset
of Fig. 4(b) shows that D/(κDm) ∼ Pe, i.e., g(κ ) ∼ κ . Hence,
we obtain, tc ∼ χ−1. Thus the crossover time decreases with
increasing χ , and our simulations also show decreases in tc
with χ−1.

The linear form of the diffusivity of a filament with
Pe near the surfaces is also reported in previous studies
[13,14]. At large bending parameters, persistence length of
the directional motion increases therefore the diffusivity also
increases, which shows linear increase as expected with κ

for a given Péclet number. Thus, a stiffer filament diffuses
relatively faster than the flexible polymer under homogeneous
self-propulsion.

IV. PERIODIC SEQUENCE OF ACTIVE FORCE

In this section, we explore various conformations of the
filament under equally spaced active monomers. Leaving
front monomers as passive, which acts as a load, leads to
bending of the filament under compression. The presence of
activity on the front monomers pulls the front beads, which
suppresses the buckling between the front active monomers.
In addition, it also drags the filament along the same direction
that leads to translation motion. Thereby, front monomers
are always left as passive. Importance of load is discussed
and analyzed in Sec. V for the case of inhomogeneous
self-propulsion.

FIG. 5. Few snapshots of the filament showing different struc-
tures under periodic arrangement of active monomers. Red corre-
sponds to the active monomer and blue represents the passive one.
Top row represents the extended state (a). In the bottom row, helical
(b), circular (c), and folded structures (d) are shown from left to right,
respectively. The conformations of the filament are also shown in the
attached movies [46].

The arrangement of the active force on the filament is
shown in Fig. 1 for the separation la = 5. Here la is the
distance between two successive active monomers. Interest-
ingly, under a periodic sequence of the active force, a filament
assumes interesting conformations during motion which is
not observed in homogenous self-propulsion in bulk. These
conformations depend on the spacing between active forces
la , the strength of the propulsion, and the rigidity of the
filament.

In small Péclet numbers, Pe < 1, a filament translates
along the direction of the end-to-end vector, and thus its
structure is weakly perturbed. In the intermediate regime of
compressive force, the external force becomes comparable
to the elastic energy. Therefore an active monomer pushes
against passive monomers, which causes bending of the
filament. Further increase in the force buckles the filament in
a correlated manner throughout the filament. This occurs for
the separation of the active monomers la � 5. In the case of
correlated buckling, it forms a circular or helical structure. A
circular phase appears in the range of la � 14 and in a narrow
range of Pe. In our analysis, a circular phase is treated as a
helical phase. This can be visualized as a helix of one turn
with a very small pitch length. Further increase in the force
pushes a filament strongly against the viscous drag, which
causes uncorrelated buckling and it leads to distortion in the
structure. Large forces result in sharp bending and twisting
of the filament nearby the active monomers, and such sharply
bent structures are called folded structures here.

Few snapshots of the filament in the extended, helical,
circular, and folded states are shown in Fig. 5. We also show
these structures in Supplementary Movies [46]. Our focus in
this section is to identify helical, circular, and folded states of
a self-propelled filament in the parameter space of Pe and la .
To do so, we compute two-point tangent-tangent correlation of
the bond vectors, the bending energy, and the torsional order
parameter of the filament.

A. Helical phase

A helical phase can be distinguished using tangent-tangent
correlation of the filament. The characteristic behavior of the
helical state is function of la and Pe. To quantify the helical
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FIG. 6. (a) Figure displays tangent-tangent correlation function
〈t(s ) · t(0)〉 of the self-propelled filament at la = 10 and bending
rigidity κ = 100. (b) Curvature radius Rβ of the helical phase
obtained from fitting Eq. (8) for various la = 5, 10, 20, and 25 for
κ = 100 (filled symbols). Open symbols correspond to la = 5 and
10 at κ = 40. The solid line shows power behavior (Pe)−.55 of the
curvature radius.

state in the above parameter space, we compute tangent-
tangent correlation functions of the filament as discussed
earlier. Figure 6 shows variation of the correlation for a few
Péclet numbers at la = 10. Here the correlation is computed
from the end monomers as a function of arc length. The
correlation function C(s) decays exponentially in the weak
force limit with s. For larger force, i.e., Pe = 20, the corre-
lation sharply reaches negative values and after approaching
a minimum it tends to zero from the negative side. Further
increase in Pe shows oscillations in the correlation. At larger
Pe, these oscillations show long-range correlation. Strong cor-
relation and sinusoidal behavior signify the underlying helical
phase of the filament [36]. Note that, under homogenous self-
propulsion, oscillatory behavior in the correlation is absent
throughout the parameter regime presented in this article.
Hence, we conclude that no helical structure occurs in this
case. Therefore, crossover from the exponential to sinusoidal
correlation is the signature of a helical phase. Sinusoidal
behavior of correlation occurs in both circular and helical
phases.
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FIG. 7. Average torsional order parameter Ut as a function of Pe
for various la as shown in the figure for a given κ = 100.

A characteristic length scale and wave number associated
with the correlation can be estimated from the following
expression:

C(s) = aβ exp(−s/ lp )[cos(2πs/Rβ )], (8)

where aβ is some constant and Rβ is the length scale asso-
ciated with the curvature radius of the filament. This func-
tion exhibits the property that it decays exponentially and
captures oscillatory behavior as well. Fitting Eq. (8) in the
tangent-tangent correlation gives the curvature of the filament,
which is plotted in Fig. 6 as a function of Pe. As expected,
curvature radius decreases with increasing compressive force.
Interestingly, Rβ for all the la’s shows a similar trend and
it follows a master curve without any scaling parameter as
shown in the graph. Moreover, the master curve exhibits a
power-law behavior with Péclet number, as Rβ ∼ Pe−β , with
the exponent β ∼ 0.55. The solid line in Fig. 6 is shown
for visualisation of the power-law behavior with the same
exponent. The curvature radius of the filament obtained here
has slightly larger exponent compared to a buckled filament
near the surfaces [12], which we believe is due to larger
contour fluctuations in the bulk relative to the surfaces.

To show out-of-plane motion and twist of the filament
in the helical phase, we compute average torsional order
parameter of the filament. This is computed in a manner
similar to that discussed in Ref. [12],

Ut =
N−1∑
i=2

1

N − 3
cos θi, (9)

cos θi = ( 	Ri−1 × 	Ri ) · ( 	Ri × 	Ri+1)

| 	Ri−1 × 	Ri || 	Ri × 	Ri+1|
,

where Ut is average of the sum of cosines of the torsion angle
over the filament and θi is the angle given by three consecutive
bond vectors 	Ri−1, 	Ri , and 	Ri+1. Figure 7 displays Ut with
Péclet number for various la . The torsional order parameter
smoothly increases with Pe. Figure 7 displays Ut that is very
small in the limit of Pe << 1, further increase in Pe leads
to a monotonic increase in the torsional order parameter. In
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the limit of large Pe, Ut has increased nearly two orders of
magnitude. Large values of Ut signifies that filament can be
strongly twisted or folded, but it is not sufficient enough to
delineate the helical structure. The combination of torsional
order parameter and tangent-tangent correlation can precisely
define the helical state. It would be important to mention here
that torsional angle does not reflect any sharp transition from
extended to helical and latter state to folded state. Rather,
it varies smoothly from one phase to another phase with
force [47].

Another interesting observation worth mentioning here is
the increase in the torsional parameter with la for a given
Pe. Fewer active monomers produce large amount of twist or
out-of-plane motion to the filament. In the limit of small sep-
arations, translation motion is dominant and thus the change
in torsional parameter is small. Increasing separations cause a
larger drag force on the active monomers and thus it reduces
the translation motion, which leads to buckling of the filament
between active locations. This is reflected in the increase in
torsion order parameter, and from this we infer that in order to
have a correlated buckling large separation among the active
monomers is essential.

B. Folded state

In this section, we quantify uncorrelated buckling of the
filament. In the limit of large force, helical or circular states
are followed by the folded state. In this structure, a filament
is strongly folded near the active monomers due to large
buckling. To distinguish the helical state from the folded state,
we compute the bending energy of the filament. Figure 8(a)
displays variation of bending energy of the filament with Pe.
Bending energy increases linearly with Pe in the range of la <

14. For the la > 14, bending energy increases monotonically
up to a certain Péclet number, after which an abrupt change in
the bending energy appears specifically for la = 14, 20, and
25 as shown the Fig. 8(a). The transition point from the helical
to the folded state is recognized from the sharp increase in the
bending energy.

A sudden increase in the bending energy arises from the
sharp buckling of the filament, which is uncorrelated over
length scale larger than la . Therefore, a sharp buckled filament
exhibits very high bending energy. Once again, it is important
to mention here that elastic or bending energy does not
show any sharp transition between the extended state to the
helical or circular state. However, a folded state does show
a sharp increase in the elastic energy. Furthermore, bending
energies of the circular and the helical states exhibit similar
behavior.

From the analysis of the torsional order parameter, the
bending energy, and the tangent-tangent correlation, differ-
ent structures of the filament in the parameter space of Pe
and spacing between active forces are recognized. A phase
diagram is displayed in Fig. 8(b) as a function of Pe and
la . The color map shows the variation in bending energy
per monomer in different phases, and, similarly, the colors
of the symbols are also changed in the plot. In the graph,
extended state and uncorrelated folded state are separated by
the green shaded area which reflects the helical and circular
states.
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FIG. 8. (a) Average bending energy of the filament as a function
of Pe for various spacing between active monomers. (b) Phase
diagram for the equispaced activity on the polymer for a given κ =
100. The light blue circle on the graph shows extended structure, and
the green shaded area represents the helical and circular structures.
Above the green shaded area the folded state is represented. In order
to accommodate equal spacing between the active monomers we
have taken filament length N = 99 for the la = 7 and 14.

In the green shaded area, a circular phase appears for
la = 14, 20, and 25 and a helical is for la = 5, 7, and 10. We
are analyzing various structures in terms of bond correlation,
torsional energy, and bending energy. These physical quanti-
ties do not show any significant change from circular to helical
states as displayed in Figs. 6, 7, and 8(a). Thus in the phase
diagram, a circular state is displayed together with the helical
state. The region below the green shaded area represents the
extended state, and above the shaded area corresponds to the
folded state. Below the green area an extended phase appears,
which exists in a smaller separation limit la � 4 for all Pe. In
addition, for large separations, the extended state appears in
the limit of small Péclet number.

V. SUMMARY AND CONCLUSIONS

In this article, we have performed a detailed study of
the structural and dynamical behaviors of a freely moving
self-propelled filament in three dimensions. The location and
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FIG. 9. The distribution of active sites on the filament for the
rodlike structure. Here n = 100 corresponds to the head (front
monomer) of the filament and n = 1 is the tail.

the number of self-propelled monomers are considered as
a variable, and they are mimicked in two different ways:
homogeneously, i.e., on all monomers, and periodic sequence
of the self-propulsion on the filament.

In homogeneous self-propulsion, the radius of gyration and
the end-to-end distance decrease with increasing active force
for all bending parameters. We have shown that the change
in structural properties for various rigidities can be described
by flexure number with a single master curve in the limit of
χ � 1. Similarly, our analysis also reveals that the persistence
length of the polymer decreases with active force, and a
universal behavior for all bending parameters is also shown
in the limit of χ � 1. The translation motion is dominant for
χ << 1, and thus it assumes the extended state. In the limit
of χ ≈ 1, the polymer gradually enters from semiflexible to
flexible limit where it attains a coil-like structure. The latter
state is more favorable in the presence of large fluctuations
due to higher entropy.

The sequential arrangement of active monomers shows the
large-scale conformational transition even at fewer number of
active monomers and small force limit. In this case, a filament
acquires extended, circular, helical, and folded structures. A
helical or circular phase appears for larger separation of active
monomers la � 5, and under strong compressive force Pe >

1. For the larger separations, smaller active force is sufficient
for the formation of helical structure. This state occurs due
to the competition among drag, active, and bending forces.
A larger load applies more drag on the active monomers
that requires a larger force to push the filament. If active
force is weaker to drag the passive monomers, then active
energy is converted into buckling of the filament. The transi-
tion point is recognized from the tangent-tangent correlation,
which shows crossover from exponential decay to oscilla-
tory behavior [36]. A large torsional order parameter also
confirms twisting and long-range ordering of bonds on the
filament [12].

The load in a patterned case is very crucial at intermediate
separations. Several interesting structures appear for large
separations, i.e., la � 5. Here the polymer buckles under the
load in front of an active monomer that translates to the entire

polymer due to large separation among the active monomers.
This leads to the rotation of the filament. Thus the presence of
load and regular arrangement of the activity causes correlated
buckling, which translates into circular, helical, or folded
structures. On the other hand, if the first monomer is also
considered as active for la � 5 (without load), then it pulls
the filament from the front end, which suppresses buckling
between the first two active monomers and causes translation
of the filament.

Furthermore, to display the importance of the load on
the active filaments, we perform simulations with randomly
placed active monomers (termed here inhomogeneous self-
propulsion). In this case, few monomers are randomly cho-
sen to be active whose locations are also shuffled at new
uncorrelated locations with time. The shuffling is done in
the fixed time interval chosen in such a way that it is larger
than the longest relaxation time of the filament. A filament
acquires structures similar to the periodic arrangement, and
these structures display a strong correlation with the location
of the active monomers and their numbers.

We chose to analyze here only rodlike states under inhomo-
geneous self-propulsion. If Re � 0.9Nl0, then it is assumed to
be in the rodlike state. We identify the probability distribution
of active monomers for a rodlike structure under inhomoge-
neous self-propulsion. The distribution of active sites (Fig. 9)
reflects that the probability of the front few monomers to be
active is nearly 3 times higher relative to others. This can
be interpreted as follows: The presence of a large number
of active sites in the front drags the filament easily through
the medium, and therefore it may always stay in the extended
state. This is similar to pulling a filament by a constant force.
Therefore, the presence of a load is very crucial for the
transition from the extended to the helical, circular, and folded
states.

A filament under inhomogeneous viscous drag often buck-
les in a helical or U -shaped structure [12,48]. Such structures
are very common in biological systems, for example, the
beating motion of sperm and Caenorhabditis elegans, and
the helical structure of bacterial flagella [4–6]. In summary,
we have identified that a freely swimming filament assumes
the helical phase in the presence of load at the front end,
which, to our knowledge, has not been investigated in any
previous study. The curvature radius of the helical state shows
a power-law behavior as Rβ ∼ Pe−β , β ∼ 0.55. The strong
buckling of the filament under the periodic arrangement of
the active force may provide insight into the understanding
of mechanical responses of actin filaments in the presence of
molecular motors [49,50]. It would be interesting to explore
the conformations of the filament under inhomogeneous self-
propulsion in detail. This case may be able to provide a better
comparison for experimental systems where the medium is
more complex and heterogeneous.
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