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Mapping vesicle dynamics onto that of a rigid sphere in five dimensions
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Vesicles are sacs made of a phospholipid bilayer, and they mimic the cytoplasmic membrane of real cells, for
which red blood cells constitute a canonical example. Vesicles deform under flow, such as a shear flow. Under
a linear shear flow, they are known to exhibit several motions that combine orientation and shape deformation
(such as tank treading, vacillating breathing, and so on). It is shown here that the equations of motion of a vesicle
under shear flow in the weak deformation regime can be mapped onto those of a loaded (or heavy bottom)
rigid sphere in five dimensions in fictitious gravitational and shear fields. Based on our previous exact analytical
solutions for vesicles (which we extend here to out-of-shear-plane motions), we provide hitherto unrevealed
exact explicit solution for the rigid sphere problem. We explain how deformation of a vesicle in real space can
be extracted from a rigid body dynamics in five dimensions upon appropriate projection onto a lower dimension.
This study offers a framework where rigid spheres and deformable vesicles are recast into the same universality
class in which both systems are described by the same formal equations differing only by the space dimension.
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I. INTRODUCTION

A vesicle (a simple model for red blood cell), which
is a closed membrane suspended in an aqueous medium,
has received increasing attention from various viewpoints of
nonequilibrium sciences due to its relevance to real biological
cells [1]. Vesicle dynamics under flow has revealed a large
variety of motions that combine orientation and shape defor-
mation, which impact on the suspension rheological behav-
ior [1–4]. In its full generality, this problem is complex due to
the free-boundary character of the vesicles. The shape, which
changes in time, results from an interplay between the local
flow and interfacial forces leading to nonlocal and nonlinear
equations. In a general flow and for arbitrary shape deforma-
tion, the full evolution equations are intractable analytically.
However, in certain asymptotic limits, to be discussed below,
the dynamics can be simplified.

When subject to a linear shear flow u0 = (γ̇ y, 0, 0), where
γ̇ is the shear rate, vesicles, which represent the simplest
model of an individual red blood cell (RBC), exhibit a
variety of different regimes of motion depending on three
physical parameters (see for example [5–24]): (i) the excess
area � = (A − 4πr2

0 )/r2
0 , where A is the vesicle area and

r0 = (3V/4π )1/3 is the effective vesicle radius defined via its
volume V , (ii) the viscosity contrast λ = ηint/ηext, where ηint

and ηext are the viscosities of the internal and the external
fluids, respectively, and (iii) the so-called capillary number
(in analogy with drops) measuring the flow strength over the
bending energy of the membrane; Cκ = ηextγ̇ r3

0 /κ, with κ

being the membrane bending rigidity modulus.

*Corresponding author: chaouqi.misbah@univ-grenoble-alpes.fr

Theoretical models and numerical simulations predict
three basic types of dynamical regimes in which the viscos-
ity contrast plays a crucial role (see for example [12,25]):
tank-treading (TT) mode for small enough λ, in which the
vesicle deforms into a prolate ellipsoid inclined at a stationary
angle ψ < π/4 with the flow direction, tumbling (TB) mode
for large λ, in which the membrane flips like a rigid body,
and vacillating-breathing (VB) mode in which the main axis
of the vesicle oscillates about the flow direction, but does
not perform full rotations (the inclination angle ψ oscillates
around 0 in the interval [−π/4, π/4]), whereas its shape
undergoes a breathing motion. Sometimes, the VB mode,
which occurs for intermediate values of λ, is called trembling
or swinging observed for RBC and is seen as an intermediate
regime between TT and TB [26–28]. There is also another
regime known as kayaking (K) (a denomination already used
before for rigid particles, polymers, liquid crystals). In this
regime, the main axis of the vesicle traces a cone outside
the shear plane [22]. For rigid ellipsoids, this motion was
described by Jeffery [29]; the main axis describes a cone
about the perpendicular to the plane of the shear flow. In [30],
it is indicated that the K regime describes a component of
tumbling motion (out of the shear plane) in which the vesicle’s
motion possesses a “spin” like the paddle of a kayak.

The TT and TB regimes and the transition between them
are well described by the Keller-Skalak (KS) theory [5] in
which the vesicle has a fixed shape. KS showed that more
viscous particles (i.e., large λ) tumble while less viscous (i.e.,
small λ) tank tread.

The dynamical regime of VB was discovered in 2006 [12]
(see also [15,18,25]). Although the determination of the vesi-
cle shapes is very complex, the physical origin of VB mode is
explained analytically by a simple argument [12]. The idea is
based on the small deformation approach in which the vesicle
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shape is close to a sphere. In that work it was shown that the
reductive perturbation method is possible and resulted into a
simple model which described successfully the VB mode in
addition to the classical TT and TB regimes. More precisely, it
is found that a quasispherical vesicle (i.e., � is small) exhibits
TT for small enough λ. Upon increasing λ the TT regime loses
its stability in favor of the VB or the TB regimes (depending
on initial conditions). Subsequent analytical extensions of this
work have been given [16,17,31] and systematic numerical
simulations have been performed [22,23]. The theory pre-
sented in [31] has provided a very good agreement with full
simulations (see also [22] for a direct comparison between
theory and simulations).

In the small deformation theory (or the lowest order of a
perturbation theory), the deviation of the shape from a sphere
is parametrized by (r0 = 1, or in other words lengths are
measured in unit of r0)

r = 1 +
∑
|m|�2

F2mY2m, (1)

where Y2m, |m| = 0, 1, 2, are the usual spherical harmonics
of order two. Note that for a quasispherical shape F1m can be
set to zero since it corresponds to a solid translation. F2m are
unknown time-dependent coefficients satisfying the constraint
of fixed total area

�

2
=

∑
|m|�2

|F2m|2. (2)

The evolution equations for F2m are given by [3]

dF2m

dt
= γ̇

{
−i

m

2
δ2|m|h+i

m

2
F2m−h

√
6

5π
C−1

κ (6 + σ0)F2m

}
,

(3)

where i2 = −1, |m| � 2, h = 60
√

2π/15/(32 + 23λ), and
σ0 is the isotropic part of the tension (or a Lagrange multi-
plier).

The constraint of fixed total area leads to

σ0 = −6 + iCκ�
−1

√
10π

3
(F22 − F2−2). (4)

Therefore, Eq. (3) reads as

dF2m

dt
= γ̇

{
−i

m

2
δ2|m|h + i

m

2
F2m + 4h

�
Im(F22)F2m

}
, (5)

which is independent of the bending number Cκ . This is the
main evolution equation for the quasispherical vesicle shape
to the leading order [12,32].

The evolution in time of the vesicle shape configuration
in the shear plane is given by the dynamics of F22. F2±1 and
F20 modes describe deformations out of the shear plane (see
also [15] for more details). More precisely, the out-of-plane
deformation along the vorticity direction is described by the
F20 mode. Usually, F2±1 modes are ignored for simplicity.
In this case, it is shown that the three classical regimes (TT,
TB, and VB) are qualitatively described by a two-dimensional
model [12] satisfied by R and ψ , which are defined by F22 =√

�/2Re−2iψ . The orientation angle ψ coincides with the
inclination angle of the long axis (with respect to the flow

direction) of the vesicle in the flow and R is the amplitude
of deformation of the vesicle. This quantity measures the
ellipticity of the vesicle contour in the shear plane.

The initial motivation of this work is to reexamine in
detail Eq. (5) by including F2±1 modes. In particular, we have
formulated the following questions: If initially the vesicle is
placed out of the shear plane, how does the vesicle behave
relative to the three classical regimes? Can we obtain explicit
analytical expressions of F2m modes, where |m| � 2, and in a
simple manner as in Ref. [24] (see below)?

It should be mentioned that Biben et al. [22] have reported
on simulation results of off-shear plane motions for vesicles
for different values of the viscosity contrast and the bending
number. It is found that K mode appears when the viscosity
contrast and the bending number are both high enough. More
importantly, it is shown that K mode seems to occur even if
the vesicle is initially forced to be in the shear plane.

This paper attempts to address the above questions at
low deformability. During our theoretical investigation, we
unexpectedly found that a deformable vesicle can be mapped
into a heavy bottom rigid sphere (or loaded sphere, in the
sense that the geometrical center of the sphere does not
coincide with the mass center) problem in five dimensions.
In other words, both (deformable) vesicles and rigid spherical
particles satisfy formally the same equations provided the
rigid sphere problem is defined in higher dimensions. This
will constitute the main focus of this paper. This is interesting
in as much as dynamics of rigid and deformable particles can
be both recast into the same formal equation. Furthermore,
taking into consideration the fact that the vesicle problem
(when F21 = 0) has been shown to have an exact analytical
solution [24], the mapping will allow to provide an explicit
exact solution for the loaded sphere problem. We will also
extend our original solution to the case where F21 �= 0. The
loaded rigid sphere problem has appeared in the literature
in different contexts. It has been analyzed in the context of
gyrotaxis or magnetotaxis [33,34] (see below), as well as
in the context of swimming of microorganisms [35]. It will
be seen here that our mapping and the availability of an
exact solution offers some interesting perspectives to study
swimming in external flow field. We will briefly comment on
the idea that in a Poiseuille flow a swimming loaded sphere
can move away from the flow centerline and exhibits run and
tumble dynamics even in the absence of noise.

The paper is structured as follows. In Sec. II, we recall
the main results for vesicles. In Sec. III, we show how the
equations for a deformable vesicle can be transformed into
the equations of a rigid particle in five dimensions. In Sec. IV,
we provide exact analytical solutions for vesicles with out-
of-plane motion, and thus for the rigid sphere problem. A
discussion and a conclusion are presented in Sec. IV.

II. GENERAL ORIENTATION EQUATIONS FOR VESICLES

Here, we recall the main dynamics of vesicles both in the
shear plane and out-of-shear plane. Since the vesicle area is
fixed, the deformation amplitudes are related [see Eq. (2)] by

�

2
= 2|F22|2 + |F20|2 + 2|F21|2. (6)
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FIG. 1. A schematic view of the vesicle system showing the
orientation angle ψ in the shear plane and the angle ϑ measuring
deviation out of the shear plane.

If dynamics is restricted to the shear plane, we have F2±1 = 0
(due to the mirror symmetry of the shape in the shear plane,
the shape does not contain spherical harmonics of order one),
and thus the dynamics is described by the three amplitudes
F2±2 and F20 only (instead of five), but only two are indepen-
dent due to the above constraint. We can introduce the two
functions ψ and R, defined by [12]

F22 =
√

�

2
Re−2iψ . (7)

With this definition, ψ (−π/2 � ψ � π/2) coincides with the
orientation angle of the vesicle main axis, and 0 � R � 1 is
the amplitude of the vesicle deformation. The system of ψ and
R follows from (5):

γ̇ −1 dR
dt

= χ−1(1 − R2) sin(2ψ ),

γ̇ −1 dψ

dt
= −1

2

(
1 − χ−1

R cos(2ψ )

)
,

(8)

which couples vesicle orientation and deformability, with
χ = √

�/2h. Not surprisingly, this is the system derived for
vesicles in [12]. A schematic representation of the meaning of
the angle can be found in Fig. 1.

In general, the vesicle is allowed to move outside the shear
plane [which is the (e1-e2) plane in Fig. 1] and in this case
F2±1 �= 0. As with F2±2, F2±1 contains information on the
deviation angle outside the shear plane (denoted as ϑ in Fig. 1)
and the amplitude of deformation stored in the harmonic Y21.
We did not feel it worthwhile to write the equations of motion
for ϑ and the amplitude of deformation outside the shear
plane, as they will not be used later. Figure 1 shows the angle
ϑ of the out-of-shear-plane orientation. The amplitudes F2±2

and F20 describe TT and TB modes while F2±1 represents the
K mode. ϑ is the kayaking angle.

An interesting property that can be obtained from Eq. (5)
is that F21 obeys

d

dt
(e−it γ̇ /2F21) = γ̇

{
4h

�
Im(F22)e−it γ̇ /2F21

}
. (9)

Since F20 satisfies

dF20

dt
= γ̇

4h

�
Im(F22)F20, (10)

one concludes that the new function e−it γ̇ /2F21 and F20 mode
satisfy the same equation. This implies, in particular, that

d

dt

(
e−it γ̇ /2F21F

−1
20

) = 0. (11)

Therefore, there exists a complex parameter, say D, such that

F21 = D

[
cos

γ̇ t

2
+ i sin

γ̇ t

2

]
F20, (12)

showing that the F2±1 modes can be determined by using the
information on F20 mode.

III. MAPPING VESICLE EQUATIONS ONTO THOSE OF A
RIGID SPHERE IN FIVE DIMENSIONS

This section will focus on the mapping of vesicle equations
onto those of a rigid sphere problem. For that purpose, we
rewrite Eq. (5) in a vectorial form. We first split the complex
amplitudes into real and imaginary parts

F22 = g22 − ig̃22, F21 = g21 + ig̃21, F20 = 1√
2
g20,

(13)

and define a vector p ∈ R5 (containing expansion coefficients
of the vesicle shape) by

p = 2√
�

(g22, g̃22, g20, g21, g̃21), (14)

and a vorticity tensor (dimensionalized by γ̇ ) � by

� =

⎛
⎜⎜⎜⎝

0 1 0 0 0
−1 0 0 0 0

0 0 0 0 0
0 0 0 0 −1/2
0 0 0 1/2 0

⎞
⎟⎟⎟⎠. (15)

From the above definitions it can easily be shown that Eq. (5)
takes the following form:

γ̇ −1 dp
dt

= � · p + χ−1(e2 − e2 · pp), (16)

where e2 = (0, 1, 0, 0, 0) and we recall that parameter χ is
given by χ = √

�/2h, which contains all physical parameters
describing the vesicle dynamics in the small deformation
theory.

This result shows that vesicle dynamics (at leading order)
are completely determined by that of the unit vector p in R5

(it can easily be seen that p is a unit vector). We shall see here
that the above vectorial equation is nothing but the equation
of a rigid loaded sphere in a gravitational field and subject to
a shear flow.

Note, however, that � is not the applied vorticity field
[which is given, apart from a factor 1

2 , by the first bloc in
Eq. (15)] but it corresponds to a fictitious vorticity satisfying
(as for the real applied vorticity) p · � · p = 0 for any vector
p ∈ R5 (recall that for any vector p, p · � · p = 0 if � is
antisymmetric). The norm of vector p is preserved since by
using (16), we have automatically p · dp/dt = 0. This agrees
with the constraint (6) (normalized vector)

p2
1 + p2

2 + p2
3 + p2

4 + p2
5 = 1, (17)

where p = (p1, p2, p3, p4, p5).
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FIG. 2. (a) A schematic view of the loaded particle case in a
gravitational field directed along e2. For a loaded sphere the center of
mass G does not coincide with the geometrical center O. The vector
d = OG represents the loaded direction. The dynamics is described
in terms of the unit vector p′ = d/d . (b) The projection of p′ onto the
plane (e1, e2) is denoted as p′

⊥ and it makes angle ϕ with the e1 axis.

Actually, the idea of drawing analogy between deformable
objects and rigid particles can be found in a work by Omori
et al. [36], in which a capsule is used as a model for de-
formable particle (see also a recent paper by Wang et al. [37]).
In Ref. [36], the authors defined the orientation vector as a
unit vector extending from the center of gravity of the capsule
to the material point of the membrane located initially at
the revolution axis of the unstressed spheroidal capsule. The
dynamics of the capsule is determined via the time evolution
of the orientation unit vector as a function of the shear rate by
using a direct numerical method that combines a finite element
method coupled to a boundary integral method as in Ref. [37].
However, the evolution equation of the unit p is not derived.

In the next section, we start by reviewing some results
for vesicles and spherical rigid particles in three dimensions
(3D) for reader convenience, before analyzing the mapped
equation (16) in five dimensions.

A. A summary of previous studies on loaded rigid sphere in 3D

Here, we briefly report on some well known results ob-
tained for the three-dimensional case. A loaded spherical par-
ticle means that the center of mass G does not coincide with
the geometrical center O (see Fig. 2). The vector d = OG
represents the loaded direction. The dynamics is described
in terms of the unit vector p′ = d/d. We will see below
how to derive the loaded particle dynamics from general and
straightforward considerations

First, let us note that the 3D vector p′ = (p′
1, p

′
2, p

′
3) satis-

fies an equation similar to Eq. (16) in three dimensions. More
precisely, the equation of p′, which is derived from Eq. (16)
(by setting the fourth and fifth components to zero), is given
by

γ̇ −1 dp′

dt
= �′ · p′ + χ−1(e2 − e2 · p′p′), (18)

where e2 = (0, 1, 0) and

�′ =
⎛
⎝ 0 1 0

−1 0 0
0 0 0

⎞
⎠. (19)

We have adopted a notation with a prime for both p′ and
the vorticity tensor �′ in order to make a distinction between

five dimensions (the mapped problem) and three-dimensional
(rigid sphere) equations. Note that in three dimensions �′ · p′
can be written as ω × p′ (this equivalence does not hold in five
dimensions), so that we can also write

γ̇ −1 dp′

dt
= ω × p′ + 1

χ
[I − p′p′]e2, (20)

where ω is the fluid vorticity vector. Note that in 3D Eqs. (20)
(for a rigid sphere) and (16) are identical since the vorticity
fields � and �′ are the same. We will see that the rigid sphere
equations in 5D have exactly the same form as in 3D [i.e.,
Eq. (20)], in which the vorticity tensor �′ has to be extended to
5D by taking zero for the new elements. The mapped problem
from vesicles still has the same formal equation, however, the
vorticity tensor, and is represented by � [see Eq. (15)].

Equation (20) accounts for a number of physical applica-
tions, as described below. In the next section we will give a
simple and general derivation of Eq. (20). Equation (20) was
derived for loaded particles in a gravitational field [33] and
for polar particles (with a magnetic dipole [34]). In these two
cases, p′ is the orientation of the particle. In Eq. (20) param-
eter χ reads as, respectively (with subscript g for gravity and
m for magnetic field),

χg = 6μγ̇

ρgd
, χm = 8πμr3

0 γ̇

qM , (21)

where ρ is the particle density, μ the fluid viscosity, d the
distance between the center of mass and geometrical center,
r0 is the radius of the spherical magnetized particle, M is the
magnitude of the particle’s permanent dipole moment, q is
the magnitude of the uniform external field vector, and e2 =
q/q for the magnetic problem with q the magnetic field or
e2 = g/g, where g is the gravity vector. Parameter χ measures
the competition between the shear flow that tends to rotate
the particle and the magnetic field (or gravitational field) that
tends to orient the particle along the field.

Equation of the type (20) was investigated, independently,
in the early papers by Hall and Busenberg [34] and Bren-
ner [33], to understand the effect of an external magnetic field
on the viscosity of a dilute suspension of magnetized particles.
It has been found that the orientation of an isolated particle
depends on χ as well as on the angle 0 � � � π between
ω and j. For any � �= π/2, Hall and Busenberg [34] have
shown by using the Poincaré-Bendixon stability analysis (in
two dimensions) and the Stokes’ theorem, that orientation
p′ tends to the unique stable stationary solution. The case
� = π/2 was also treated by Hall and Busenberg [34] as well
as by Brenner [33] independently. It is shown that for χ < 1,

orientation p′ tends in time to a certain fixed orientation irre-
spective of its initial orientation, while for χ > 1, orientation
p′ describes one of an infinity family of periodic closed orbits
(tumbling motion).

For deformable vesicles in three dimensions (this corre-
sponds to in-plane motion where F2±1 = 0), Eq. (5) [which
we know, now, that it is equivalent to Eq. (20) or Eq. (16)]
has been numerically [12] and analytically [24] examined.
Exact analytical results (see [24]) have determined the regions
of the three major types of motions: TT if

√
�/2 < h, or

equivalently χ < 1, and TB and VB for χ > 1. The TT to
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VB/TB transition occurs at χ = 1 which corresponds to � =
4h2, obtained for vesicles.

Equation (20) is also adopted for microswimmers [35] in
the presence of an external flow field. The microswimmer
orientation is described by a unit vector p′ and obeys exactly
Eq. (20) for appropriate χ as in (21). In addition, one has to
specify the motility of the swimmer. This is taken into account
by considering that its position x ∈ R3 is described by

dx
dt

= u0(x) + vs , (22)

where vs = vsp′ is the swimming velocity vector relative
to the fluid and its magnitude vs = |vs | is assumed to be
constant. Equation (22) indicates that the particle velocity is
the superposition of the fluid velocity at the particle location
u0 and the swimming velocity vsp′, where the swimming
direction p′ satisfies Eq. (20).

Since the equation of the swimming direction is similar
to that of the orientation of vesicles, the dynamics of motile
spherical microorganisms bears some resemblance to vesi-
cle dynamics. According to the well known results of vesicle
(see [24]), if parameter χ > 1, the particle projection in the
xyz space (or vector p′) performs tumbling motion which
corresponds to periodic solutions, while if χ < 1, p′ tends to
the stable fixed orientation; the swimmer becomes oriented
along this final orientation. In other words, Eqs. (20) and (22)
account for a run-and-tumble response of the swimming par-
ticle upon variation of the parameter χ .

Historically, run and tumbling motions were introduced to
describe the dynamics of a class of self-propelled particles
such as E. coli bacteria [38], which alternate randomly be-
tween linear straight runs and circular or reorientation events
called tumbles in which the bacterium does not move. Interest-
ingly, Eq. (20) already incorporates run and tumble dynamics
via the parameter χ . Thus, an alternative to perform this type
of motion would be to attribute to the parameter χ values
larger and smaller than unity in a random fashion.

Equations (20) and (22) were used in order to analyze
the accumulative behavior of gyrotactic microorganisms (like
algae) in a vertical Poiseuille flow [35]. In that study, the
authors analyzed only the case where the solution of Eq. (20)
is steady (i.e.. χ < 1). We will see below that this equation
has exact analytical solutions both steady and time dependent
for arbitrary χ . It would thus be interesting in the future to
revisit the study presented in [35] in the light of this work.
We will say few words on this issue in the section devoted to
discussion.

B. Preliminary description in five dimensions

First, Eq. (16) can be explained on the basis of a general
consideration. Consider a loaded sphere where p′ is a unit
vector joining the geometrical and mass centers (see Fig. 2),
in an external gravitational field e2 (unit vector) and subject to
a linear shear flow. Due to the superposition principle in the
Stokes regime, one expects the evolution equation to have the
form

γ̇ −1 dp′

dt
= � · p′ + χ−1e2. (23)

However, this equation does not conserve the norm of p′. To
see this, multiply scalarly the equation by p′, one easily sees
that d(p′2)/dt �= 0 (the first term on the right hand side gives
zero but not the second one). In order to enforce the norm of
p′, we must supplement Eq. (23) by an additional term

γ̇ −1 dp′

dt
= � · p′ + χ−1e2 + βp′, (24)

where β is a Lagrange multiplier enforcing the normalization
constraint. After a scalar product of the above equation with
p′ one sees that β = −χ−1e2 · p′. Reporting the value of β

into Eq. (24) gives Eq. (16) [which is formally identical to
Eq. (18); please remember that in 5D �′, the rigid sphere
in 5D, is different from �, the mapped problem]. We must
keep in mind that Eq. (18) is valid for a rigid sphere at any
dimension.

Note that, as in the 3D case, the 5D vector p′ is implicitly
introduced here as an orientation vector for the rigid sphere.
In fact, in five dimensions p′ can be expressed as

p′
1 = cos θ1,

p′
2 = sin θ1 cos θ2,

p′
3 = sin θ1 sin θ2 cos θ3,

p′
4 = sin θ1 sin θ2 sin θ3 cos θ4,

p′
5 = sin θ1 sin θ2 sin θ3 sin θ4. (25)

where θ1, θ2, θ3 ∈ [0, π ] and θ4 ∈ [0, 2π ]. In agreement with
our previous notations, we will use the notations p when
referring to the vesicle problem, whereas notation p′ continues
to be devoted to the rigid body problem. Let us return to
Eq. (16). In order to determine the expression of χ = χ (�, λ)
as a function of physical parameters, of course an explicit
solution of the Stokes equations is required.

In order to facilitate a qualitative discussion on the different
motions, it is more convenient to cast vectorial equation (16)
into the following two systems:

γ̇ −1 dp′
1

dt
= p′

2 − χ−1p′
2p

′
1,

γ̇ −1 dp′
2

dt
= χ−1 − p′

1 − χ−1p′2
2 ,

γ̇ −1 dp′
3

dt
= −χ−1p′

2p
′
3

(26)

and

γ̇ −1 dp′
4

dt
= −χ−1p′

2p
′
4 − 1

2
p′

5,

γ̇ −1 dp′
5

dt
= 1

2
p′

4 − χ−1p′
2p

′
5.

(27)

Systems (26) and (27) are decoupled. The first system cor-
responds, for vesicles, to dynamics in the shear plane (xy),
while the second system refers to the out-of-plane dynamics
encoded in the amplitudes F2±1.

According to (7), (13), and (14) we have

p′
1 = R cos(2ψ ), p′

2 = R sin(2ψ ). (28)

The vesicle equations have been solved exactly when dynam-
ics is restricted to be in the shear plane [24], and will be
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recalled below. Note that if the orientation p′ lies in the shear
plane, we have R = 1 and then system (8) resembles the KS
model for particles of fixed shape:

γ̇ −1 dϕ

dt
= −1 + χ−1 cos(ϕ), (29)

which predicts only TT and TB modes, with ϕ = 2ψ .
Let us return to Eq. (16). We note that this equation has

steady-state solutions depending on parameter χ :

p∞
±

′ = χe1 ±
√

1 − χ2e2 (30)

for χ < 1, and if χ > 1

po
±

′ = χ−1e1 ±
√

1 − χ−2e3. (31)

If χ < 1, the eigenvalues of the matrix associated to the linear
part at p∞

±
′, are given by

λ1 = ∓
√

χ−2 − 1, λ2 = ∓2
√

χ−2 − 1,

λ3 = ∓
√

χ−2 − 1 + 1

2
i, λ4 = ∓

√
χ−2 − 1 − 1

2
i,

showing that p∞
+

′ is (asymptotically) stable and p∞
−

′ is (com-
pletely) unstable. That is to say, for χ < 1, the vesicle orienta-
tion tends to p∞

+
′ (TT mode) for large t. The stability analysis

shows that at leading order there is no other motion than
TT. The TT motion remains stable against out-of-shear-plane
perturbation.

If χ > 1, the system is now linearized about po
±

′. The
eigenvalues are found to be

λ1 = 0, λ2 = ±i
√

1 − χ−2, λ3 = ±i
1

2
.

An eigenvector corresponding to λ1 = 0 is given by e3.

Therefore, the vorticity axis is a center for the linearized
system. However, nothing can be deduced for the nonlinear
system (26) and (27). Below, we investigate general motions
by deriving exact expressions of the orientation vector p.

IV. EXACT SOLUTIONS AND DYNAMICS FOR
SPHERICAL RIGID PARTICLES

In this section we present exact analytical solutions to
the system (26) and (27) aiming to quantify the effect of
parameter χ on different vesicle and particle regimes (at
leading order).

It is easily seen from system (26) and(27) that for large χ ,
vorticity becomes important inducing tumbling motion, while
for small values of χ the vorticity is neglected allowing the
particle to be oriented along e2.

A. TT-run mode

Exact solutions are first presented for system (26) which
constitutes the basic equations in the small deformation the-
ory [12,25]. This system, which is obtained in the case where
F2±1 = 0, is solved exactly. The details are explained in [24].
Here, we will extend the analytical solution to the case where
F2±1 �= 0 (p4

′ �= 0 and p5
′ �= 0).

For χ < 1, the expressions of pl
′, l = 1, 2, 3, are found to

be

p1
′ = χ

aχ−2 + cosh(�γ̇ t )

a + cosh(�γ̇ t )
, p2

′ =χ�
sinh(�γ̇ t )

a + cosh(�γ̇ t )
,

p3
′ = �

b

a + cosh(�γ̇ t )
, (32)

which on substituting this result into system (27) gives

γ̇ −1 dp′
4

dt
= −1

2
p5

′ − �
sinh(�γ̇ t )

a + cosh(�γ̇ t )
p′

4,

γ̇ −1 dp′
5

dt
= 1

2
p4

′ − �
sinh(�γ̇ t )

a + cosh(�γ̇ t )
p′

5.

(33)

The general solution of the above linear nonautonomous
system is then found to be

p4
′ = �

c cos(γ̇ t/2) − d sin(γ̇ t/2)

a + cosh(�γ̇ t )
,

p5
′ = �

c sin(γ̇ t/2) + d cos(γ̇ t/2)

a + cosh(�γ̇ t )
, (34)

by introducing the new function f̃ = p4
′ + ip5

′, which satis-
fies

d

dt
f̃ =

(
−χ−1p2

′ + i
1

2

)
f̃ . (35)

A simple integration of the above equation leads to (34). In
the expressions of p′ parameter � is given by

� =
√

|1 − χ−2|, (36)

and a, b, c, and d are real parameters satisfying

a2 + b2 + c2 + d2 = χ2. (37)

Note that p4
′ and p5

′ can also be written as

p4
′ = �

c0 cos(γ̇ t/2 + θ0)

a + cosh(�γ̇ t )
, p5

′ = �
c0 sin(γ̇ t/2 + θ0)

a + cosh(�γ̇ t )
,

for some real θ0 and c0 (a2 + b2 + c2
0 = χ2), so that we may

assume in (34) and (37) d = 0.

Equations (32) and (34) confirm that the orientation p′

tends to p∞
+

′ = χe1 +
√

1 − χ2e2, irrespective of the initial
orientation. This corresponds to the (classical) TT motion in
which the terminal vector lies (as mentioned before) in the
shear plane (in-plane TT). Note that p4

′ and p5
′ oscillate and

approach 0 as shown in Fig. 3, while the projection of the
dynamics into (e1, e2, e3) (the xyz space) tends monotonically
to p∞

+
′.

The orientation angle of the vector p′ (relative to x axis)

ϕ(t ) = tan−1

(
�−1 aχ−2 + cosh(�t )

sinh(�t )

)
(38)

tends (monotonically) to

ϕ(∞) = tan−1(�−1) = sin−1(χ ). (39)

Finally, we deduce that R =
√
p2′

1 + p2′
2 , the particle con-

tour in the shear plane (recall F22 = √
�/2Re−2iψ ) has the
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FIG. 3. The dynamics of the components of F21 (or equivalently
p′

4 and p′
5) as a function of nondimensional time s = γ̇ t. Parameters

are χ = 0.4
√

5, a = c = 0.2
√

5, and b = 2
√

0.1. Solid (red) line
corresponds to the time evolution of p′

4 and the time evolution of p′
5

is shown in dashed (black) line.

following exact expression:

R2 = 1 − (χ2 − a2)�2

[a + cosh(�γ̇ t )]2
. (40)

At long time, R tends monotonically to 1:

R ≈ 1 − 1

2
(χ2 − a2)�2e−2�γ̇ t . (41)

Note that if there is no out-of-the-shear-plane deformations
(i.e., F20 = 0 and F2±1 = 0), we have a = ±χ and in this
case, as is known,

R = 1. (42)

Thus, at long time, the orientation vector of the rigid particle
will lie in the shear plane and will make an angle ϕ(∞) =
sin−1(χ ) with e1 axis. This result shows that the equation of
p′ predicts a run motion analogous to TT mode for vesicles for
which the orientation angle of the vesicle remains constant.

Our results also show that TT or run mode is accompanied
by the oscillations of the F2±1 modes even if there is no
deformation along the vorticity axis. More precisely, F2±1

modes (or equivalently components p4
′ and p5

′) oscillate an
infinite number of times through 0 and reach 0 asymptotically
for t → ∞, as

F2±1 = C±e−
√

χ−2−1γ̇ t

[
cos

γ̇ t

2
± i sin

γ̇ t

2

]
. (43)

Figure 3 shows an example of the dynamics of components
p4

′ and p5
′ which represent cosine shapes with decreasing

amplitude.

B. Oscillating modes

We now turn our attention to the time-dependent solutions
(which take place for χ > 1). As before, we have only to solve

FIG. 4. Evolution of the classical components pl
′, l = 1, 2, 3,

versus nondimensional time s = γ̇ t, for b = c = 1 and χ = 2/
√

3.
Parameters � = √

11/2 and a = 2
√

11/3 are deduced from (47).

the following linear nonautonomous system for (p4
′, p5

′):

γ̇ −1 dp′
4

dt
= −1

2
p5

′ − �
cos(γ̇�t )

a + sin(γ̇�t )
p′

4,

γ̇ −1 dp′
5

dt
= 1

2
p4

′ − �
cos(γ̇�t )

a + sin(γ̇�t )
p′

5, (44)

in which we have used system (27) and the exact expression
of p2

′ derived in [24]. More precisely, it is found that compo-
nents p1

′, p2
′, and p3

′ are given by

p1
′ = χ

� + sin(γ̇�t )

a + sin(γ̇�t )
, p2

′ = χ�
cos(γ̇�t )

a + sin(γ̇�t )
,

p3
′ = χ2�

b

a + sin(γ̇�t )
. (45)

From (44) one easily deduces that

p4
′ = cχ2�

cos(γ̇ t/2)

a + sin(γ̇�t )
, p5

′ = cχ2�
sin(γ̇ t/2)

a + sin(γ̇�t )
.

(46)

Here, a = �χ2 and �, b, and c are arbitrary constants satis-
fying

b2 + c2 + χ−2 = �2, (47)

which guarantees the conservation of the norm of p′. Pa-
rameter � is given by (36). Note that parameter � satisfies
|�| � χ−1.

Equations (45) and (46) indicate that p′ rotates periodically,
as it is shown in Figs. 4 and 5. In the limiting case |�| = χ−1,

one sees from (47) that b = c = 0 meaning that orientation p′
oscillates in the shear plane.

C. Where is dynamics of a deformable vesicle hidden
in a rigid sphere one?

1. Simplified discussion

A natural question may arise: If dynamics of a deformable
object (vesicle) is mapped onto a rigid sphere, where is
the deformation hidden? Here, we will discuss this issue. We
have recalled in the Introduction that the angle ψ describes the
three motions of vesicles (i) TT in which ψ tends to a constant
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FIG. 5. Components of p4
′ (solid red line) and p5

′ (dashed black
line) vs nondimensional time s = γ̇ t. Same parameters as in Fig. 4.

value at large time, (ii) TB where the vesicle performs full
rotation (the angle oscillates from −π/2 to π/2; a rotation
by an angle π is a full rotation, since the vesicle is invariant
upon a rotation by a such angle), (iii) VB where ψ oscillates
between two values (within the interval [−π/4, π/4]).

In order to explain how the rigid body dynamics translates
into a deformable particle dynamics, we will need to introduce
some preliminaries. For motions of spherical rigid particles,
we write (in two dimensions) the projection p′

⊥ of p′ into the
shear plane (see Fig. 2) as

p′
⊥ = R

(
cos ϕ

sin ϕ

)
, (48)

where ϕ ∈ (−π, π ] is the orientation angle (in the shear plane)
that the vector p′

⊥ makes with the e1 axis. Naturally, R and ϕ

satisfy a system similar to (8):

γ̇ −1 dR
dt

= χ−1(1 − R2) sin(ϕ),

γ̇ −1 dϕ

dt
= −1 + χ−1

R cos(ϕ). (49)

In what follows, we will use angle ϕ defined in (48). So,
the norm of the projected vector p′

⊥ is nothing but R (the
amplitude of deformation) whereas the angle ϕ is twice the
angle that the long axis of the vesicle makes with the flow
direction. In other words, following the projection p′

⊥ of the
rigid body polarization vector p′ will allow us to understand
the correspondence between the two problems. When the
projection p′

⊥ has constant orientation in the plane (e1, e2),
this means that the angle ϕ is constant and thus we have TT
motion for a vesicle. In addition, the norm of p′

⊥ is fixed which
means that the deformation amplitude R is constant. If both
R and the angle ϕ are constants, this means that the vector p′
has a fixed orientation in 3D. If that vector makes precession
around some axis, its projected norm will oscillate in time,
and this represents either a VB or a TB in the vesicle problem.

We first consider the case where F2±1(0) = 0, in which
case the dynamics reduces from five to three dimensions. Let
us see how dynamics of the vector p′ of the rigid particle
problem can be related to the above three modes (TT, VB, and
TB). For that purpose, we define ϕ = tan−1 (p′

2/p
′
1), which

has the exact expressions

ϕ(t ) = tan−1

(
�−1 aχ−2 + cosh(�t )

sinh(�t )

)
(50)

for χ < 1, and for χ > 1

ϕ(t ) = tan−1

(
�

cos(γ̇�t )

� + sin(γ̇�t )

)
. (51)

It corresponds to the angle that the projection of p′ (denoted
as p′

⊥) into the shear plane makes with the e1 axis (see Fig. 2).
For vesicles, the angle between the long axis and the shear
direction is given by

ψ = 1

2
tan−1

(
�−1 aχ−2 + cosh(�t )

sinh(�t )

)
(52)

and

ψ (t ) = 1

2
tan−1

(
�

cos(γ̇�t )

� + sin(γ̇�t )

)
(53)

for χ < 1 and χ > 1, respectively.
Apart from a factor 2, the angle ϕ for a rigid sphere

provides the same information as ψ for a deformable vesicle.
This allows us to understand the correspondence between
the rigid sphere and the vesicle dynamics. Figure 6 shows a
schematic view of the angle ϕ in the three regimes. Figure 6
shows both the evolution in time of the vector p′ and its
projection in the horizontal plane (p′

⊥). In the upper panel we
show the case where p′ tends (the red symbol shows the initial
condition), after transients, towards a final position whatever
the initial position (the solid and dashed lines are issued from
different initial conditions). In the heavy bottom spirit, this
situation corresponds to the case where the gravity (pointing
towards the e2 direction) is so strong (χ < 1) that the applied
shear flow is not capable of making a permanent rotation
of the sphere, so that the vector p′ points towards a fixed
final direction lying in the horizontal plane. Both the angle
ϕ and the norm of the projected vector p′

⊥ are constant. This
corresponds in the vesicle language to the TT mode. When the
shear amplitude increases such that χ reaches unity, the shear
flow becomes strong enough to overcome the gravity effect.
In this case, the shear flow will cause the orientation vector
of the heavy bottom sphere to align with the flow direction
(ϕ = 0). For χ > 1, the shear flow will cause rotation of
the vector p′ around some axis (to be specified below). Two
cases may happen depending on initial conditions [defined
by the constant �; see Eq. (47) and discussion below]. The
first case is when the vector p′ undergoes precessions without
encircling the axis e3 (red trajectory in Fig. 6). Its projection
in the plane (e1, e2) is elliptic and the norm of p′

⊥ (which
represents the deformation amplitude in the vesicle problem)
will oscillate in time, whereas the angle ϕ varies (see more
details below) in the interval [−π/2, π/2] (recall that ψ which
the angle between the main axis and the flow direction is
half ϕ). This is the VB mode initially discussed in [12]. The
second case corresponds to the situation where p′ undergoes
precessions by encircling the axis e3 (blue trajectory in Fig. 6).
The angle ϕ in this case varies in the interval [−π, π ] (with
some oscillations of the norm of p′

⊥), and this corresponds to
TB motion.
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FIG. 6. A schematic view of the evolution of the vector p′ in
the course of time, and its projection in the shear plane. Top: the
vector tends towards a final orientation (in the shear plane) for χ < 1.
The red asterisk represents the initial position. Each initial condition
tends towards the same final point. This corresponds to the TT regime
for vesicles. Bottom: the vector p′ describes a cone around an axis.
The circular inclined trajectory represented by red line (solid line)
never goes beyond the vertical axis on the left. Thus, the angle ϕ

oscillates around values which lie in the interval [−π/2, π/2], corre-
sponding to VB regime. The circular inclined trajectory represented
by blue dashed line wraps around the vertical axis on the left. Thus,
the angle ϕ oscillates around values which lie in the interval [−π, π ],
corresponding to TB regime; here χ > 1. Whether VB or TB prevails
depends on initial conditions. The horizontal red (solid line) and blue
(dashed line) trajectories are projections in the e1-e2 plane.

2. Systematic analysis

In this section, we discuss general solutions of the mapped
problem of vesicles. We will then use the notation p instead
of p′ (anyway since the two problems are formally equiv-
alent this should not present any confusion) and refer to
system (16). In what follows, we will also use the angle (51)
to explore general in-plane motions. As for vesicles, Eq. (51)
shows that the time evolution of angle ϕ is controlled by
parameter �. We will investigate below the influence of �

(|�| � χ−1), by fixing the parameter χ (and �). Recall that
� satisfies � = ±

√
b2 + c2 + χ−2. Without loss of generality

we may assume that � is positive.
In Fig. 7, we have plotted the time evolution of the orien-

tation angle ϕ for χ = 2/
√

3 and three different values of �.

For � < 1, the particle is in the (classical) tumbling regime.
The projection of the orientation axis (into the shear plane) in

FIG. 7. Dynamics of the orientation angle ϕ for χ := 2/
√

3 with
� = 0.9 (solid red line) for TB (or KTB), � = 1 (dotted black line),
and � = 1.2 (dotted-dashed blue line) for VB (or KBV).

which ϕ varies from −π to π indicates that the particle per-
forms full rotation. For � > 1, we have VB regime. Figure 8
shows the variation of the inclination angle ϕ as a function of
(p1, p2) during TB and VB regimes. In the TB regime, the
angle undergoes sudden discontinuous jumps in the course of
time, whereas in the VB regime the evolution is continuous.

Let us note that from (46), if initially F2±1(0) �= 0, then
F2±1(t ) �= 0 for all times. This implies that if initially the main
axis of the vesicle is placed off the shear plane, the main axis
does not go back to the shear plane. This case which occurs
for � < 1, will be called KTB (kayaking-TB).

Note that, as for the classical TB (the TB motion in the
shear plane), KTB regime is accompanied with the oscillation
of the particle contour in the (xy) plane if � �= χ−1, as
evidenced by the explicit expression of R:

R2 = 1 − χ4�2(�2 − χ−2)
1

[�χ2 + sin(�γ̇ t )]2
. (54)

The above expression is still valid for all χ−1 � � < ∞.

For � > 1, Fig. 7 shows that ϕ oscillates between ±ϕc

(with ϕc < π/2). From (51), it is easily deduced that ϕc is

FIG. 8. Evolution of the orientation angle ϕ as a function of
(p1, p2) during a VB (red) and TB (blue) regime. Parameters are
� = 0.9 (TB) and � = 1.1 (VB) and χ = 1.25.
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FIG. 9. The behavior of the particle contour in the x-y plane for
� = 1 (solid black line) and � = 0.9 (dotted red line).

given by

ϕc = tan−1

(
�

1√
�2 − 1

)
. (55)

This regime is also accompanied with the oscillation of R
[see (54)]. The behavior of R as a function of time is given
in Fig. 9 for two different values of �. This indicates that
the projection of dynamics of a loaded rigid sphere (repre-
sented by the unit vector p) into the shear plane exhibits a
periodic regime which resembles the classical VB regime for
deformable particles. The angle ϕ evolves continuously in the
interval [−ϕc, ϕc] (see Fig. 8). If initially F2±1(0) �= 0 the dy-
namics corresponds to a KVB (kayaking-VB). That is to say,
for � > 1, the KTB mode is transformed into the KVB mode.

In Fig. 10, it is shown that orientation vector exhibits differ-
ent behaviors. Vector p does not tend to any fixed orientation,
but describes one of an infinite family of closed periodic or-
bits. In the TT regime (see Fig. 6), the vector p tends towards
a fixed orientation [given by Eq. (39)] as time elapses. In the
VB regime, the vector describes circular trajectories (given by
the red circles in Fig. 10). In that case, the projection of the
vector in the e1-e2 plane oscillates between ±ϕc [Eq. (55)].

FIG. 10. Different orbits (for 3D) of p for different values of
parameter �. Any selected orbit by a particle is determined by its
initial orientation and the given χ. Here, parameter χ = 1/0.8 (and
|�| � 0.8.). Dotted red lines (VB) are obtained for |�| > 1, black
lines for χ−1 < |�| = 1 (VB-TB transition), dashed blue line for
0.8 < |�| < 1 (TB), and dashed-dotted magenta line for the limiting
case |�| = 0.8 = χ−1.

When � = 1 the VB circular trajectory hits the vertical axis e3

(black circle). For � < 1 (TB regime), the circular trajectory
wraps around the vertical axis (blue circles). The projection
of the vector in the e1-e2 plane now makes full rotation in that
plane.

Finally, it can be checked from the full solution that, during
KVB mode, p1 is always positive and at the KVB-KTB
transition p1 is non-negative and vanishes at finite times.
That is to say the KTB-KVB transition is smooth and occurs
when the minimum value of the first component of p becomes
zero over one period. In fact, we may deduce from the exact
expressions of p that in the KTB-KVB transition, both p1 and
p2 vanish at the same times (see Fig. 10).

D. Some geometrical properties of the trajectories

In this section we would like to provide some general
geometrical properties of the trajectories. In particular, we
shall determine the axis of rotation of the trajectories shown
in Fig. 10.

By defining Q = p2
3 + p2

4 + p2
5 and by using system (26)

and (27), it is easily shown that p1, p3, and Q satisfy the
following system of equations:

dp1

p1 − χ
= dp3

p3
= 1

2

dQ
Q (= γ̇ χ−1p2dt ). (56)

According to the first and third members of the above system,
we get the following first integral:

H = (χ − p1)2

p2
3 + p2

4 + p2
5

, (57)

which the explicit solutions do not necessarily reveal.
The above first integral is still valid even for χ < 1. In fact,

from (57) and the conservation of the norm of p, one readily
sees that, for some real parameter C,

p2
1 + p2

2 + C(χ − p1)2 = 1 (58)

or, equivalently,

p2 = ±
√

1 − p2
1 + C(χ − p1)2, (59)

from which we may identify TT, KTB, and KVB depending
on parameter C. In particular, for periodic motions, it is more
convenient to use parameter L(= ±H1/2) given by

L = ± χ − p1(0)√
1 − p2

1 (0) − p2
2 (0)

. (60)

The above quantity (which is conserved) indicates that if p
is initially in the shear plane, it remains permanently on that
plane (|H| = ∞ for all times).

To extract a relation with the parameter �, we use Eqs. (45)
at t = 0 and (60) to deduce

L =
√

χ2 − 1
χ�√

χ2�2 − 1
. (61)

Here, it is assumed (without loss of generality) that L > 0.

Note that L takes only values in the interval (
√

χ2 − 1,∞)
(recall that � < 1 corresponds to TB, and � > 1 to VB) and
that the particle performs a TB (or KTB) regime if L > χ, and
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a VB (or KVB) regime if L < χ. The KTB-KVB transition
occurs if L = χ .

As a corollary of the above result, we find that (at leading
order) if

χ − p1(0) > χ

√
p2

3 (0) + p2
4 (0) + p2

5 (0), (62)

such that p2
4 (0) + p2

5 (0) > 0, we have a KTB regime (which
is an out-of-plane TB) in which the angle of the projection
of p into the shear plane (the mean inclination with respect
to the flow direction) oscillates in the interval [−π, π ], and
components p4 and p5 oscillate. If

χ − p1(0) < χ

√
p2

3 (0) + p2
4 (0) + p2

5 (0), (63)

KVB motion takes place, if p2
4 (0) + p2

5 (0) > 0, in which the
mean inclination angle oscillates in the interval [−π/2, π/2]
accompanied by the oscillations of p4 and p5. That is to say,
both TB and VB modes exist only if the orientation vector is
initially in the shear plane.

According to the above discussion, there exists a (second)
critical value χc > 1, where KVB ceases to exist and KTB
starts. By this we mean that if 1 < χ < χc the loaded rigid
sphere exhibits a KTB regime, while if χ > χc we have a
KVB mode, where the critical value χc is given by

χc = p1(0)

1 −
√

p2
3 (0) + p2

4 (0) + p2
5 (0)

. (64)

To continue our description of motions and their dependence
on the initial orientation, we may observe from (45) and (46)
that the unit vector p satisfies

p · (χ−1e1 + L̃e3) = 1, (65)

where the (orbit) parameter L̃ (which is a constant of motion)
is defined by the initial orientation of the particle:

L̃ = ��

b
= χ−1�

b

L√
L2 − (χ2 − 1)

. (66)

The orientation vector p then describes a circular cone with
the stationary rotation axis with norm 1:

k = (χ−2 + L̃2)−1/2(χ−1e1 + L̃e3). (67)

Note that Eq. (67) is still valid in three dimensions and where
the rotation axis lies in the (xz) plane, similar to the one shown
in Fig. 11.

Similar to parameter L, L̃ takes only values in a given
interval, namely, (�,∞). Two special cases are of interest.
For large L̃ we have k = e3. In this limiting case, p3 = p4 =
p5 = 0. The orbit is exactly the unit circle in the shear plane
about the e3 axis. The second case is obtained if L̃ = �,

which leads to

k = χ−1e1 +
√

1 − χ−2e3. (68)

That is to say, rotation axis k varies between the vorticity
axis e3 and the equilibrium point po

+ [see (31)]. This limiting
case (68), which occurs for � = ∞, corresponds to a KVB
regime with a very small amplitude, according to (55). In fact,
as the axis of rotation approaches po

+, the KVB amplitude
decreases to 0. In addition, by using the exact expression of

FIG. 11. Typical precession cone of the unit vector p during a
VB mode for the 3D case. The dotted blue line is the fixed central
axis of rotation (χ−1e1 + L̃e3).

orientation p one readily sees that, for large values of �, p
approaches po

+ and that

p4 ≈ c�

�
cos(γ̇ t/2), p5 ≈ c�

�
sin(γ̇ t/2), (69)

in which c/� → 0. This regime resembles the flow alignment
state (as in the swinging regime for capsules [39]). It is an
intermediate regime between KVB and TT [22].

V. DISCUSSION AND CONCLUSION

We have shown that the vesicle dynamics in the regime
of weak deviation from a sphere (as presented originally
in [12]) can be mapped onto dynamics of a loaded rigid sphere
(or polar sphere) in a gravitational field in five dimensions.
We have then provided exact analytical solutions and have
discussed a visual correspondence between the two problems.
We have also seen that the evolution equation is used in the
context of swimming of microorganisms under gravity and
external flow field. In that case, the orientation equation has to
be associated with the swimming equation, and the dynamics
is described by the system (20) and (22). Depending on χ ,
the swimmer can perform run (χ < 1) or tumble dynamics
(χ > 1). Suppose that the swimmer is placed in a Poiseuille
flow and initially located close to the center of the flow. In
that vicinity, the shear rate is small enough that χ [given by
Eq. (21)] can be made smaller than 1. Then, the swimmer
will follow a straight trajectory with a certain angle. When the
swimmer is far away from the center, the shear rate tends to
be large enough that χ can become larger than one, in which
case the swimmer performs TB or VB motions. By preparing
different initial random positions and orientations in the flow
field, it would be interesting to study the statistics of the
spatiotemporal pattern of the swimmers. Since we dispose of
an explicit analytical solution of Eq. (20), this task is straight-
forward. It is hoped to report along this line in the near future.

Here, we have discussed the issue of mapping dynamics of
vesicles onto rigid objects in the leading order theory [12]. It
would be interesting to investigate if this type of mapping is
still valid for other situations. Using the same spirit, a theory
of vesicle including cytoskeleton (to mimic RBCs) has been
presented [26,40]. How could the mapping work (if any) for
this problem is an interesting task for future investigations.

042407-11
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Regarding vesicles, extension of the original theory [12] has
been made in order to include higher order deviations from
the sphere [16,31,32]. This has resulted in more or less more
complicated equations. It is not yet clear whether or not these
equations would lend themselves to a simple mapping of the
type presented here.
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