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Complex self-sustained oscillation patterns in modular excitable networks
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We study the relationship between the modularity of scale-free excitable networks and their ability to support
self-sustained oscillation patterns. We find that the probability for a network of given degree-distribution
exponent to be able to support self-sustained oscillations is strongly affected by its modularity. In addition,
both high- and low-modularity networks are more likely to exhibit long-period oscillation patterns than those
with intermediate modularity, but the degrees of complexity and correlation in these two cases are different.
The long-period oscillations cannot be explained by a minimum-length Winfree loop, but instead arise from the
interplay between two or more propagating waves. Finally, we introduce an improved method that can be used to
analyze the structure of the self-sustained oscillation sources at different levels of detail and show that the period
of the oscillation pattern is statistically correlated with the fraction of modules that are part of the oscillation
source.
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I. INTRODUCTION

The propagation of waves in continuous excitable media
[1–6] as well as in discrete lattice structures [7] has been an
important research topic for many years [8]. The propagation
of spiral and target waves in both of these situations is well
understood. More recently, a number of authors have studied
the sustained activity patterns in various complex network
models [9–14], including simple small-world [15–20] and
Erdős-Rényi networks [21–23].

The interest in these network models is driven primarily
by neuroscience [24–31]. In particular, it has been shown that
wave propagation in complex neuronal networks is involved
in many brain functions such as visual perception [29], cog-
nitive processes [24,30], and sleep-arousal patterns [31]. In
addition, the presence of high-degree neurons is crucial for
the ability of the cortex to perform its information-processing
functions [32]. The authors of Ref. [33] describe long-period
rhythmic synchronous firing in Barabási-Albert-like scale-
free networks and propose a Hebbian learning mechanism
leading to topologically similar neuronal networks as the
basis for the memorization of information encoded in long
temporal intervals. Within the framework of their model,
the self-sustained source of the oscillations on the network
is assumed to be a single, simple, loop (Winfree loop). A
similar situation arises in the case of Erdős-Rényi excitable
networks, where Ref. [23] finds that the self-sustained source
of the oscillations is a shortest-path loop of a certain minimum
length, which depends on the speed of propagation of the
excitations. An important question that arises is whether there
may be other, more complex, mechanisms for the generation
of long-period oscillations, which may not be conditioned
by the presence of a long simple loop and which could be
used for the memorization of complex temporal patterns. This
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question is even more justified when one considers the lim-
ited range of network topologies that have been investigated
until now.

Most studies of excitable networks published so far are
based on simple network models which do not allow for
independent control over various aspects of network topol-
ogy like clustering, node degree distribution, degree-degree
correlations, or modularity. For example, small-world net-
works are modeled in Refs. [15–20] by randomly rewiring
a small fraction of the connections of a two-dimensional
nearest-neighbor lattice, which produces neither a scale-free
distribution of the node degrees nor a modular structure. The
networks studied in Ref. [33] are scale-free but cannot exhibit
a modular structure either. In addition, no attempts have been
made so far to study the statistics of ensembles of networks
with excitable nodes beyond sampling the space of the initial
conditions. To address these limitations, we use the network
model described in Ref. [34], which produces ensembles of
modular networks with a large array of tunable parameters,
of which we focus on network size, average degree and
modularity.

Modularity is generally known to have a significant bearing
on a network’s ability to perform its functions as it has been
observed that subsets of a network whose nodes are more
densely connected than in a random “null model” are likely
to perform some function together [35–38]. In the case of
small-world networks of excitable nodes, the main obstacle
to the establishment of a self-sustained pattern of oscillations
is the rapid spreading of excitation, which places the bulk
of the network in a refractory state. Intuitively, it is to be
expected that a modular structure will be able to mitigate
this effect by limiting the propagation of the excitations, and
that it might even lead to situations where wave patterns that
are only weakly coupled propagate across separate sets of
communities.

It is important to note that small-scale studies have al-
ready suggested a correlation between network dynamics and
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modularity. In Ref. [14], the authors show that the community
structure can be inferred by measuring the degree of synchro-
nization between the nodes. However, they do this only for the
case of a network with 128 nodes and four equal communities
and for three small social networks. Reference [9] uses a
simple susceptible/infectious/recovered model for network
dynamics to study the relationship between node centrality or
network modularity and the patterns of oscillatory activity, but
their results are again confined to a small number of networks.

Finally, the role played by the strength of the coupling
between the neurons has not yet been systematically studied,
even though it has been demonstrated that this parameter can
affect the behavior of the network [33]. In contrast, here we
present results for a wide range of values of the coupling
strength.

The paper is organized as follows: in Sec. II we give a
brief overview of the concept of network modularity and
we describe the dynamic model. This is followed by the
introduction of an improved method for identifying the self-
sustained source of the oscillations. In Sec. III we present
results detailing the workings of networks of both low and
high modularity, and Sec. IV is devoted to results for statistical
ensembles of networks.

II. METHOD

A. Network structure and dynamics models

The concept of community structure arises from the fact
that many networks can be naturally divided into subsets
of nodes such that the density of connections within these
subsets is higher than between them. Networks that exhibit
a clear structure of this kind are called modular. The simplest
and most straightforward way to quantify the modularity of
an undirected unipartite network is by means of the mod-
ularity function Q introduced by Newman and Girvan in
Refs. [37–39]. This function is defined as

Q =
K∑

k=1

∑
i,j∈Ck

(
Aij − didj

2m

)
, (1)

where A is the adjacency matrix of the network, {Ck} with
k = 1,K is the set of communities, di is the degree of node i,
and 2m = ∑N

i=1 di . If the community structure of a network
is unknown, the maximization of the modularity function
provides a way to identify it [38].

We considered ensembles of random scale-free networks
with tunable modularity generated using the algorithm de-
scribed in Ref. [34]. These undirected networks have a built-in
community structure that is provided on output. The proper-
ties of the ensemble are controlled by a number of param-
eters which include the network size N , the average degree
〈d〉, the maximum degree dmax, and the mixing parameter
μ, which represents the average fraction of links running
between different modules. The other parameters were kept at
their default values, including the exponent of the power-law
degree distribution γ = −2. It is important to note that the
networks that were not fully connected were rejected.
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FIG. 1. Amplitude u(t ) (black continuous) and the factor w(t )
(red dashed) for a node where DPAD fails. The horizontal gray line
above zero represents the threshold b/a.

Network dynamics was defined by a variant of the Bär-
Eiswirth model [4],

dui

dt
= 1

ε
ui (1 − ui )

(
ui − vi + b

a

)
+ c

∑
j∈Ni

(uj − ui ), (2)

dvi

dt
= f (ui ) − vi, (3)

where ui and vi are analogous to the concentrations of acti-
vator and inhibitor or to the membrane potential and recovery
current, c is the coupling strength between neighboring nodes,
Ni is the set of neighbors of node i, and the function f (u) is
defined by

f (u) =
⎧⎨
⎩

0 for u < 1
3

1 − 6.75u(1 − u)2 for 1
3 � u � 1

1 for u > 1
. (4)

The system of differential equations was integrated using
a fourth-order Runge-Kutta routine with integration step h =
1/128. Following previous work [2,4,16,18,21,33], we set ε =
0.04, a = 0.84, and b = 0.07, but we explored a wide range
of values for the coupling strength c between 0.1 and 0.7.

B. Identification of the oscillations source

A number of previous studies have used the dominant
phase-advanced driving (DPAD) method [18] to identify the
source of the sustained oscillations on the network. This
method attempts to find the source of the oscillations by
retaining only the links between each node i and the neighbor
which provides the strongest driving at the moment when
ui (t ) crosses the threshold value b/a while increasing. Fol-
lowing extensive testing, we identified many situations where
this is not the best choice, since it can lead to a false identi-
fication of the dominant driving node. Consider the example
in Fig. 1, which shows the behavior of a node from a network
generated with parameters N = 100, 〈d〉 = 4, dmax = 15, and
μ = 0.3 for which the coupling strength was set to c = 0.5.
This is a network with a relatively high modularity Q =
0.565. A few nodes exhibit two above-threshold maxima of
u in the course of a period (continuous line), but only one
of these maxima represents true firing. The lower maximum
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occurs while the node is strongly driven by a different set of
neighbors, towards the end of its refractory period, but the
concentration of inhibitor v is still too high and u drops as
soon as the driving subsides.

A simple way to avoid this problem is to define the
dominant phase-advanced node of i as its strongest driver at
the moment when the quantity wi = ui − vi+b

a
(dashed line in

Fig. 1) crosses zero while increasing. This provides essentially
the same timing as the original method in the case of true
firing but avoids the futile firing attempts during the refractory
period.

In addition, there are situations when two or more nodes
provide roughly equal driving to a common neighbor and,
moreover, that neighbor would not be able to fire at the right
time to continue the propagation of the wave without all
major contributions. Therefore, it is important to be able to
generate subnetworks exhibiting a lesser, variable, degree of
simplification. Such a subnetwork would include the links
between every node and all its major drivers. One way to
achieve this is to build a “driving matrix” whose elements Dij

are the averages of the differences δij = uj − ui recorded at
times when wi (t ) = 0 while increasing and then setting all
elements below a certain threshold equal to zero. In addition,
as a way to focus on the nodes that are essential to the prop-
agation of the self-sustained oscillations, one can remove all
the “dead-end” nodes which never contribute to the driving of
any neighbor. This must be done recursively, since removing a
set of nondriving nodes may put other nodes in this category.

The detailed procedure is as follows:
(1) For every node i and every j ∈ Ni , record the values of

δij = uj − ui at every moment when wi (t ) = 0 and dwi

dt
> 0.

If the network’s phase space trajectory settles on an attractor,
one may wish to consider only values recorded after this has
happened.

(2) At the end of the simulation, compute the driving
coefficients Dij = 〈δij 〉. If i and j are not connected, set
Dij = 0.

(3) For every node i, identify the largest driving coefficient
Di,max.

(4) Choose a threshold value 0 � Dth � min{Di,max} and
if Dij < Dth set Dij = 0. Alternatively, one can use separate
thresholds 0 � Dth,i � Di,max for every node.

(5) For every node i that does not contribute to the driving
of a neighbor set Dij = 0 for all j . Repeat this step until no
such nodes are found.

(6) Symmetrize the matrix D by setting Dij =
max(Dij ,Dji ) and, if desired, set all nonzero coefficients
equal to one.

(7) Treat the rows and columns of matrix D that contain
nonzero elements as the adjacency matrix of the oscillation
source subnetwork.

Two subnetworks representing different degrees of sim-
plification of the network from which the example in Fig. 1
was taken are shown in Figs. 2(a) and 2(b), corresponding
to setting individual Dth,i = Di,max and respectively a global
Dth = min{Di,max}. The arrows in these figures show the
direction of propagation of the wave, derived from the co-
efficients of the “driving matrix” Dij before symmetrization
(Step 6). In Refs. [18,21] the authors describe only situations
where the activity on the entire network can be traced to
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FIG. 2. Different degrees of simplification of the oscillations
source for a network with N = 100 nodes and 〈d〉 = 4: (a) with max-
imum individual thresholds Dth,i = Di,max and (b) with maximum
collective threshold Dth = min{Di,max}.

waves propagating along a single Winfree loop [18,40]. We
see from Fig. 2(a) that this description is incomplete, since
multiple loops may be present within a certain wave pattern.
Note that the loop on the right is longer than the one on the
left, which means that the network must include a mechanism
for their synchronization. Figure 2(b) shows a still simple
but much more complete picture of the network’s workings.
In addition to the two main loops, there is a third loop
{46, 44/88, 100, 95, 25, 87, 39}, of the same length as the
loop on the right but exhibiting weaker driving. The propa-
gation along the central loop is sped up by early activation of
node 25 by node 37. At the same time, these loops contribute
to the driving of loop {45, 97, 99, 91, 26, 67, 43} through the
links {46, 45} and {25, 26}. It is important to note that two
of the interloop links shown in Fig. 2(b) are critical for the
persistence of the self-sustained oscillation on the network. If
one of links {46, 45} or {37, 25} is removed, no self-sustained
pattern can be established. On the other hand, removing
only {25, 26} still allows a slightly different oscillation
pattern.
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FIG. 3. Discrete Fourier transforms (a), (c) and plots of utot vs t (b), (d) for long-period oscillation patterns of two networks with N = 100
and 〈d〉 = 4 but different modularities, Q = 0.404 (a), (b) and Q = 0.766 (c), (d).

III. RESULTS FOR EXAMPLE NETWORKS

The analysis method described above was applied together
with discrete Fourier analysis of the oscillation pattern to
study the dynamics of networks with different modularities Q

and different coupling strength parameters c. We found that
many networks exhibit complex oscillation patterns whose
long periods cannot be accounted for by propagation along the
maximum shortest-path loop, let alone by propagation along
the minimum shortest-path loop with propagation time longer
than the refractory period (minimum Winfree loop). This
picture is very different from the one found by Refs. [23,33]
in the case of Erdős-Rényi and simple small-world networks.
Surprisingly, long-period oscillation patterns are more likely
in the case of networks with low or high modularity than
in the case of those with intermediate modularity. We also
found oscillation patterns that exhibit reversals of the direction
of propagation along some of the loops that are part of the
oscillation source. It is also important to note that a given
network may exhibit a number of stable oscillatory patterns
with different levels of complexity.

Qualitatively different types of long-period behavior have
been observed in the case of low- and high-modularity net-
works. Representative results are shown in Fig. 3. The Fourier
transform of utot = ∑N

i=1 ui and a plot of utot versus time
are shown in Figs. 3(a) and 3(b), respectively, for a scale-
free network of N = 100 nodes, average degree 〈d〉 = 4, and
relatively low modularity, Q = 0.404. The coupling strength
in this case is c = 0.50. The oscillatory pattern consists of a
series of nonidentical bursts of synchronous firing interrupted
by longer periods of low activity, with a period P = 64.8.

This pattern is qualitatively typical for the low-modularity
networks that exhibit long periodicity. Note that the same
network also supports an oscillatory pattern with a much
shorter period, PS = 7.42, slightly different from the 7.2
period of the prominent ninth harmonic of the long-period
variant. The picture is quite different in the case of high-
modularity networks. Results for one such network, also
with N = 100 and 〈d〉 = 4 but a much higher modularity
Q = 0.766, are shown in Figs. 3(c) and 3(d). A lower value
of the coupling strength c = 0.15 was used in this case.
The oscillatory pattern now consists of three distinct, less
synchronous, bursts, each confined to a different part of the
network. This shows that a modular structure may indeed pre-
vent global synchronous firing, instead causing the excitation
to cycle through the set of communities. The resulting period
in this case is P = 82.6. The same network also exhibits two
periodic oscillation patterns of periods 32.7 and 34.3, as well
as sustained nonperiodic oscillations.

Figure 4 shows a simplified picture of another network with
a particularly long period P = 256. This network has 〈d〉 = 4
and a modularity Q = 0.777, and the simulation was run with
c = 0.15. For this value of c, nodes with a degree of seven
or higher cannot be excited by a single neighbor, whereas in
the case of nodes of degree five or six successful excitation by
a single neighbor depends on the duration of that neighbor’s
pulse. The simplified network was obtained by setting Dth =
0 to provide the most inclusive definition possible for the
oscillation source. The network has nine communities, out of
which eight are represented in the oscillation source and are
labeled by different colors. The workings of the network over
slightly more than one period are shown in Ref. [41]. The first
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FIG. 4. Simplified picture of a network of size N = 100, aver-
age degree 〈d〉 = 4, and modularity Q = 0.777, which exhibits a
very long-period oscillation pattern. The different colors represent
different communities.

thing one notices while watching the simulation is that there
is not a single one-way loop. The only loop that ever closes
is the one containing nodes {51, 47, 54} and the communities
of nodes 37 and 100, when traveled counterclockwise. Clock-
wise propagation along this loop is blocked because node 99
has too high a degree to be excited by node 89. Nevertheless,
propagation in this direction is sometimes initiated from the
community of node 100, which has a different timing pattern
compared to the community of node 37.

Another interesting feature exhibited by this network is
that propagation from node 84 to the community of node
23 sometimes “backfires,” depending on the inputs that this
community receives from nodes 11 or 36. The mechanism
is explained by reference to Fig. 5. Figure 5(a) shows the
concentrations of activator u23 and of inhibitor v23 as func-
tions of time for two consecutive pulses of node 23 driven
by node 84. The first pulse is quickly followed by a second
one, driven collectively by the community neighbors of node
23 [Fig. 5(b)], and the wave propagates back to node 84 and
its community. Note that the lowest degree neighbors 20 and
21 fire during the refractory period of node 23, but as the
wave propagates to nodes 24, 25, and finally 26 the prolonged
driving is just enough to cause the second pulse. On the other
hand, the next time node 23 is driven by 84, node 26 is driven
earlier by the firing of node 36 [Fig. 5(c)], which causes the
rest of the community to fire too early to drive node 23 a
second time. The pulses of node 11 arrive too late in these
two cases, but there are other cases when the backfiring is
inhibited by this node.

This example proves that the mechanisms involved in the
generation of self-sustained oscillations on complex networks
can be much more complicated than what was previously
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FIG. 5. The backfiring mechanism of the community of node 23
on the network in Fig. 4. (a) Concentration of activator u (black
continuous) and inhibitor v (red dash) for node 23. (b) Concentration
of activator for nodes 20 (black continuous), 21 (red dash), 24 (green
long dash), 25 (blue dash-dot), and 26 (brown dash-dot-dot). (c)
Concentration of activator for nodes 11 (black continuous) and 36
(red dash).

assumed and that long periods can arise from the interplay
between different propagation times over different parts of the
network.

IV. RESULTS FOR STATISTICAL ENSEMBLES

In this section we present results concerning the relation-
ship between modularity and the likelihood for a network to
exhibit self-sustained oscillation patterns as well as between
modularity and the period of the wave pattern. The statistical
ensemble for each set of parameters N , 〈d〉, dmax, and μ

consisted of 100 networks. Each network was started 1000
times with random initial conditions, the sets {ui} and {vi}
being independently and uniformly distributed between zero
and one.

Figure 6 shows the average probability to find a phase
space realization that exhibits self-sustained oscillation pat-
terns 〈ps〉 as a function of the mixing parameter μ. The
average is performed over the 100 realizations of the network
ensemble, with the error bars representing the standard error
of the mean. Note that a high value of μ means a low average
modularity of the network ensemble, with 〈Q〉 decreasing
from about 0.8 to about 0.4 from left to right. The results in
Figs. 6(a) and 6(b) are for N = 100 and different values of the
coupling strength c ranging from 0.11 to 0.7, and Figs. 6(c)
and 6(d) display results for c = 0.15 and different network
sizes N ranging from 100 to 800. The ratio dmax/〈d〉 is the
same for all curves, but the ratios N/〈d〉 vary significantly in
the figures on the right.

For N = 100 the probability for self-sustained oscillations
〈ps〉 exhibits a rapid overall increase with c between 0.1 and
0.15. Above c = 0.2, 〈ps〉 begins to decrease with increasing
c in the case of low-modularity networks due to the fact
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FIG. 6. The average probability to find a phase space realization that exhibits self-sustained oscillations 〈ps〉 as a function of the mixing
parameter μ. The results are for N = 100, 〈d〉 = 4, dmax = 16, and different values of the coupling strength (a), (b), for 〈d〉 = 4, dmax = 16,
c = 0.15, and different network sizes (c), and for 〈d〉 = 6, dmax = 24, c = 0.15, and different network sizes (d).

that the hubs can now be excited by the simultaneous firing
of a smaller number of neighbors, which is more likely to
lead to widespread simultaneous firing followed by extinction.
However, a highly modular structure is able to mitigate this
effect, and 〈ps〉 remains high for such networks until it finally
starts to decrease above c = 0.7. The probability 〈ps〉 in-
creases with network size for given 〈d〉 and dmax. Note that the
maximum value of 〈ps〉 increases faster with N for 〈d〉 = 6
than for 〈d〉 = 4, which suggests that the former might catch
up with the latter as the network size increases. On the other
hand, the modularity range corresponding to high 〈ps〉 values
seems to become narrower as the average degree increases.
These results prove that modularity plays a critical role in a
network’s ability to support self-sustained oscillation patterns.

The next set of results concerns the relationship between
modularity and the average period 〈P 〉 of the wave pattern
on the network. The period was calculated from the low-
est frequency peak (not necessarily the highest) in the dis-
crete Fourier transform of utot = ∑N

i=1 ui using the last 8192
recorded sets of values. To better correlate the average period
with modularity, we considered the union of all network
ensembles with given N , 〈d〉, and dmax but different values
of μ, and the resulting range for Q was divided into 10 bins.
The period was averaged over all phase space realizations ex-
hibiting self-sustained activity of all networks with modularity
within a given bin. It is important to mention that, although the
average period varies as shown in Fig. 7, the individual values
of the periods in each modularity bin are distributed over wide
intervals, from less than 10 up to hundreds.

Results for networks of size N = 100 and different cou-
pling strengths c are shown in Fig. 7(a), and Fig. 7(b) shows
the results for various network sizes N at c = 0.15. The aver-

age degree was 〈d〉 = 4 and dmax was 15 and 16, respectively.
Note that the modularity range for N = 800 in Fig. 7(b) is
narrower than in the case of the other curves. This is because
the network generation algorithm breaks down if μ � 0.2.

While the dependence of the average period on modularity
changes in complex ways when the coupling strength is var-
ied, there is a clear trend of overall decrease with increasing
c, again as a result of the increased susceptibility of the
hubs. The curves for c > 0.4 are statistically indistinguishable
from the one for c = 0.4. The most important feature in Fig. 7
is the presence of a minimum of the average period at medium
modularity values, which suggests different mechanisms for
the generation of long-period oscillations at the two ends of
the modularity range. The minimum is around Q = 0.6 for
N = 100 but shifts towards higher modularity values as the
network size increases.

A first question that arises is whether there are any cor-
relations between period and other quantities characterizing
either the topology of the network or the oscillation pattern.
Tests failed to reveal any correlation between period and
the average degree of the network. Likewise, there is no
correlation between period and the size of the oscillation
source defined either using individual link thresholds Dth,i =
Di,max (which is equivalent to the DPAD method) or using
a global Dth = min{Di,max} (which produces a larger, more
detailed subnetwork). However, we found a positive corre-
lation between period and the fraction fmod of modules that
have at least one node in the larger oscillation source, as
shown in Fig. 8(a), where the average period is plotted for
10 different fmod bins for networks of size N = 100 and
average degree 〈d〉 = 4. Interestingly, there is no correlation
with the fraction of modules fmod,1 represented in the smaller,
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FIG. 7. Average period in different modularity ranges for (a) N = 100 and different values of the coupling strength c and (b) c = 0.15 and
different network sizes N . The horizontal bars show the extent of the modularity ranges, and the vertical bars represent the standard error of
the mean. All results are for 〈d〉 = 4, and dmax is 15 (a) and 16 (b).

DPAD-defined, source (see inset), which lends additional
credibility to the idea that a more detailed description of the
source is required. The correlation between period and fmod is
present regardless of network size, the value of the coupling
strength, or, more importantly, the value of modularity and
shows that long periods are associated with propagation pat-

terns where most of the modules are involved in the oscillation
source.

Inspired by the complexity of the long-period oscillation
patterns, which manifests itself among other things in the fact
that a given node i does not receive the same total driving
δi = ∑N

j=1 δij from its neighbors every time wi = 0 while
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FIG. 8. (a) The average period 〈P 〉 for different ranges of the fraction of modules represented in the oscillation source defined using
Dth = min{Di,max} or DPAD (inset). (b) 〈P 〉 for different ranges of the average entropy of the driving spectrum, Sa . (c) 〈P 〉 vs 〈exp(Sa )〉 for
different ranges of modularity. The inset shows the same results but with the high-modularity outliers removed. (d) 〈P 〉 vs 〈exp(Sa )/Ca〉 for
different ranges of modularity. The vertical bars represent the standard error of the mean, and the horizontal bars show the extent of the bins
(a), (b) or the standard error of the mean (c), (d). The results are for N = 100, 〈d〉 = 4, and different values of the coupling strength c.
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increasing, we studied the correlation between period and the
entropy of the δi spectrum averaged over all nodes on the
network, denoted by Sa . Figure 8(b) shows the average period
computed for 10 different bins of Sa and different values of
the coupling strength c. The correlation between period and
average entropy is even stronger than with fmod in the sense
that networks with a high average entropy are very likely to
exhibit oscillation patterns with a very long period.

A second question is whether we can use this insight to
explain the observed dependence of the average period on
modularity. To test this, we plotted the average period 〈P 〉
versus the average of exp(Sa ), both calculated for a given
modularity bin and with the error bars denoting the standard
error of the mean of either quantity. The exponential of the
average entropy can be interpreted as an effective number
of distinct δi values. The results, shown in Fig. 8(c) for
different values of the coupling strength c, do not seem at
first to reveal a significant correlation. The Pearson correlation
coefficient in this case has a low value of r = 0.438. However,
note that for any value of c the distant outliers are the ones
corresponding to the highest modularity bins. By eliminating
the points corresponding to the highest four bins for c =
0.15, the highest three bins for c = 0.20, and the highest
two bins for the other c sets, we find that the correlation
improves significantly (see inset), with the Pearson coefficient
increasing to r = 0.866. This amounts to a conclusion that, at
least in the case of low- and medium-modularity networks, the
period of the oscillatory pattern is reasonably well accounted
for by the complexity of the interactions between the nodes
on the network. As modularity increases, the complexity of
the interactions decreases, which explains the shorter average
periods of medium-modularity networks, but fails to explain
the long periods of the high-modularity ones.

The explanation for the latter phenomenon seems to re-
side with the less correlated nature of the oscillations. As
modularity increases, the network-wide average Ca of the
correlation coefficients between the activities of the various
nodes, defined by

Ci,j = 〈uiuj 〉√〈
u2

i

〉〈
u2

j

〉 , (5)

decreases while the intramodule average increases. Intuitively,
a less correlated network will have a longer period because
the wave propagates through different parts of the network
at different times. A crude attempt to take this into account

is to plot 〈P 〉 versus the average of exp(Sa )
Ca

, which is shown
in Fig. 8(d). The data points for all modularity bins appear
in this figure, and, although a few outliers are still present,
they are not as far and the overall correlation is significantly
improved with r = 0.849. This result suggests that decreased
correlation is indeed responsible for the long average periods
of highly modular networks.

V. CONCLUSIONS

We introduced an improved method for identifying the
sources of self-sustained oscillations on complex excitable
networks, which can be used to analyze them at different
levels of detail. Our method is able to provide a complete
picture of the interactions resulting in complex oscillation
patterns.

We studied the relationship between modularity and the
probability of self-sustained oscillations and found that, re-
gardless of coupling strength, high-modularity networks are
more likely to be able to support self-sustained oscillations
compared to networks of low modularity of the same size and
average degree.

We found that both low- and high-modularity networks can
support long-period oscillations, but the oscillation patterns
in these two cases are qualitatively different, with series of
synchronized network-wide bursts exhibiting a multitude of
subtle differences in the case of low-modularity networks and
series of simpler but more localized bursts in the case of
networks with high modularity. The period of the oscillation
pattern is statistically correlated with the fraction of modules
that are part of the oscillation source, with the entropy of
the spectrum of driving values, and with the average of the
correlation coefficients between the activities of the nodes.

Regardless of modularity, the long-period oscillations can-
not be explained by the length of any simple loop on the
network, but by interactions between waves propagating along
different loops. This proves that the memorization of complex,
long-duration patterns does not necessarily require long min-
imum Winfree loops, as has been inferred based on Erdős-
Rényi networks and certain simple small-world network
models.

Additional research will be required to provide a more
precise characterization of the oscillation pattern and period
of the network in terms of the complexity of the set of prop-
agation times between its parts and the correlations between
the activities of the different nodes.
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