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We study the robustness of flow networks against cascading failures under a partial load redistribution
model. In particular, we consider a flow network of N lines with initial loads L1, . . . , LN and free spaces (i.e.,
redundant space) S1, . . . , SN that are independent and identically distributed with joint distribution PLS (x, y ) =
P[L � x, S � y]. The capacity Ci is the maximum load allowed on line i and is given by Ci = Li + Si . When
a line fails due to overloading, it is removed from the system and (1 − ε) fraction of the load it was carrying is
redistributed equally among all remaining lines in the system. The rest (i.e., ε fraction) of the load is assumed to
be lost or absorbed, e.g., due to advanced circuitry disconnecting overloaded power lines or an interconnected
network or material absorbing a fraction of the flow from overloaded lines. We analyze the robustness of this flow
network against random attacks that remove a p fraction of the lines. Our contributions include (i) deriving the
final fraction of alive lines n∞(p, ε) for all p, ε ∈ (0, 1) and confirming the results via extensive simulations; (ii)
showing that partial redistribution might lead to (depending on the parameter 0 < ε � 1) the order of transition
at the critical attack size p� changing from first to second-order; and (iii) proving analytically that flow networks
achieve maximum robustness [quantified by the area

∫ 1
0 n∞(p, ε)dp] when all lines have the same free space

regardless of their initial load. The optimality of equal free-space allocation is also confirmed on real-world data
from the UK National Power Grid.
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I. INTRODUCTION

Flow network abstractions have been extensively used to
analyze complex phenomena occurring in power line net-
works, financial networks, transportation networks, and bi-
ological ecosystems. Current trends in technological devel-
opment such as online social media, cyber-physical systems,
and the internet of things have enabled a plethora of new
applications involving dynamical interactions over and within
flow networks. In this respect, current research on networks
covers phenomena such as information dissemination and in-
fluence propagation [1–5], percolation [6–11], and robustness
[12–17].

This paper focuses on the robustness of flow networks.
In particular, we are interested in understanding how the
random failure of a fraction lines might trigger failures of
other lines leading to what has been identified in the literature
as cascading failures. Real-life phenomena such as blackouts
in power networks [18] and crises in financial networks [19]
occur as a consequence of failures that follow one after
the other. Consequently, understanding the possible mecha-
nisms of such failures is of paramount importance; e.g., see
Ref. [20]. The robustness of flow network structures against
cascading failures is an active research topic and has received
recent interest from many researchers [12–14]. For example,
Refs. [21–25] consider power networks where the failure
mechanism is the equal redistribution of load upon the failure
of a power line. We consider a similar phenomenon in flow
networks. In particular, we build our analysis upon the well-
known fiber bundle model [26]. Fiber bundle models have

been used in a wide range of applications, including fatigue
[27], failure of composite materials [28], and landslides [29].

Flow networks typically include built-in systems to counter
cascade formations and alleviate the spread of the adverse
effect of failures over other lines in the network [17]. In
this paper, our objective is to obtain a unified understanding
of cascading failures for networks with a specific mecha-
nism to counter such failures. In particular, we study the
robustness under partial load redistribution in a democratic
fiber bundle like model. Our problem setting is as follows:
We consider N lines whose initial loads L1, . . . , LN and
free spaces S1, . . . , SN have joint distribution PLS (x, y) =
P[L � x, S � y] and are independent and identically dis-
tributed along lines. The maximum flow allowed on a line i

defines its capacity and is given by Ci = Li + Si . When a line
fails due to overloading, it is removed from the system and
(1 − ε) fraction of the load it was carrying (at the moment of
failing) gets redistributed equally among all remaining lines
in the system; hence, we refer to this as the partial load
redistribution model. The rest (i.e., ε fraction) of the load is
assumed to be lost or absorbed, e.g., due to advanced circuitry
disconnecting overloaded power lines or an interconnected
network or material absorbing a fraction of the flow from
overloaded lines. Throughout the paper, we refer to ε as the
loss or absorption, interchangeably.

We study the robustness of the flow network described
above against random attacks or failures. In particular, we
develop a complete analytic framework that unravels the
dynamics of cascading failures initiated by a random attack
removing a p fraction of the lines. This is done by computing
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recursively the fraction of surviving lines and the additional
load distributed to each surviving line at every step of the
cascade. We show how these recursive relations can be uti-
lized to derive the final fraction n∞(p, ε) of alive lines, under
any attack size 0 < p < 1 and any absorption factor ε ∈
(0, 1). These results are also confirmed through an extensive
numerical study.

An interesting observation from our results concerns the
order of phase transition that the system exhibits at the critical
attack size p�; this is the smallest attack size p that col-
lapses the entire system. It is widely known [23,26] that flow
networks exhibit only first-order phase transitions; this phe-
nomenon is referred to as the abrupt rupture in the context of
fiber bundles. However, we show in this paper that under the
partial redistribution model, the order of the phase transition
might be first or second order depending on the absorption
factor ε. In particular, we demonstrate that the order of the
phase transition changes from first to second-order after ε

exceeds a certain tricritical point. This is reminiscent of the
behavior observed in percolation studies of inter-connected
networks [6], where reducing the coupling strength between
two inter-connected networks might lead to a second-order
transition [30].

Utilizing the analytic framework we developed, we then
seek to answer a very fundamental question concerning flow
networks: Under given constraints on the total load and ca-
pacity available to N lines, how should these be allocated
so that the resulting flow network has the maximum possible
robustness against random attacks? This question is particu-
larly challenging under the partial flow redistribution model
owing to the fact that the system’s robustness may not be fully
characterized by the critical attack size p�. Simply put, it is
possible for an allocation to lead to a large p� but a very poor
performance [in terms of final system size n∞(p, ε)] for even
small attack sizes p. To meaningfully assess the robustness
of a flow network under attacks of all possible scale, we thus
consider the robustness metric proposed in Ref. [31] given as

R(ε) :=
∫ 1

0
n∞(p, ε)dp.

It can be seen that R(ε) measures the area that falls under
the curve n∞(p, ε) as p varies from zero to one. More
importantly, R(ε) gives the mean fraction of lines that will
survive an attack whose size p is random over (0,1).

Although it is often very difficult (if not impossible) to
analytically prove optimality results for any network property,
here we are able to give a complete mathematical proof
showing how the robustness metric R(ε) can be maximized.
In particular, we show that for a given total initial load and
capacity to be allocated to N lines, robustness R(ε) is maxi-
mized when all lines have the same free space, i.e., capacity
minus initial load, regardless of how the initial loads are
allocated. This result is shown to hold under any absorption
factor 0 � ε � 1.

The optimality of equal free-space allocation (in the sense
of maximizing robustness) in flow networks is interesting for
several reasons. In particular, it shows that the widely used
[32–35] assumption that line capacity is a fixed proportion
of its load (e.g., by setting Ci = (1 + α)Li with α defining

the tolerance factor used for all N lines) leads to subopti-
mal robustness. In fact, our result shows that to maximize
robustness, lines with higher initial load should be given a
smaller tolerance factor (i.e., free space divided by load).
Moreover, our results show that although a flow network’s
robustness might be improved by increasing its capability to
absorb failed load (which often will require a more expensive
or complicated design), the system can be made optimally
robust by allocating all lines the same free space irrespective
of the absorbing capability.

We test the above result under a new cascading failure
model for flow networks that combine local and global redis-
tribution approaches; e.g., a portion of the failed load is redis-
tributed in the local neighborhood according to network topol-
ogy while the rest is redistributed globally. For this model,
we provide simulation results that suggest that the mean-field
redistribution model analyzed here captures the qualitative
behavior of system robustness well. In particular, we observe
that uniformly allocating free spaces promises to be optimal
also in this more general setting where (part of the) failed load
gets redistributed locally according to a network topology.

Finally, we test our optimality result on real-world systems.
In particular, we run numerical experiments using the UK
National Grid data available in Ref. [36]. These experiments
confirm our optimality result and suggest that some real-world
systems do not exhibit optimal robustness against random
failures. In fact, their robustness can be improved significantly
by reallocating the total available capacity in such a way as
to ensure that every line has the same free space. We believe
that our results provide interesting insights into the dynamics
of cascading failures in flow networks and call for a careful
examination of the capacity allocations in existing real-world
systems.

The rest of the paper is organized as follows. In Sec. II,
we explain the system model in detail and present the prob-
lem definition. In Sec. III, we obtain an iterative dynamical
relation for the extra load per alive line at every stage of the
cascading failure process, under general load and free-space
distributions. Section IV is devoted to numerical results that
confirm the main findings of the paper for systems of finite
size. In Sec. V, we present a complete analytic framework to
establish the optimal distribution of load and free space (when
mean values of both are fixed) that leads to maximum robust-
ness. These findings are confirmed via extensive simulations
in Sec. V C using synthetic data (with various commonly used
distributions utilized to generate load and free-space values)
as well as real-world data from the UK National Power Grid.
The paper is concluded in Sec. VI.

II. MODEL AND PROBLEM DEFINITION

A. Partial load-redistribution model

We consider a network with N lines L1, . . . ,LN with
initial loads L1, . . . , LN . The capacity Ci of a line Li defines
the maximum power flow that can be carried by it and is
expressed as

Ci = Li + Si, i = 1, . . . , N, (1)

where Si denotes the free space that is assigned to line Li .
Alternatively, the capacity of a line Li can be defined as a
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factor of its initial load, i.e.,

Ci = (1 + αi )Li, (2)

with αi > 0 denoting its tolerance factor. Accordingly, the
free space Si is given in terms of the initial load Li as Si =
αiLi . Most existing works assume a fixed tolerance factor
for all lines in the system, i.e., αi = α for all i; e.g., see
Refs. [32–35].

The main assumption of our model is that when a line fails
due to overloading, i.e., due to its load exceeding its capacity,
it is removed from the system and (1 − ε) fraction of the load
it was carrying (at the moment of failing) gets redistributed
equally among all remaining lines in the system; hence we
refer to this as the partial load redistribution model. The rest
(i.e., ε fraction) of its load is assumed to be lost or absorbed.

The partial load redistribution model is motivated by sev-
eral real-world scenarios. For instance, most real-world power
systems are equipped with advanced protection circuits that
immediately disconnect the overloaded lines from the rest
of the grid [37,38]; the parameter ε would then represent
the fraction of lines protected by such advanced circuitry.
Alternatively, we can think of a flow network (respectively, a
bundle of fibers) that is inter-connected with another network
(respectively, material) that can absorb a fraction of the flow
from overloaded lines.

Throughout we assume that the pairs (Li, Si ) are indepen-
dently and identically distributed (i.i.d.) with the joint distri-
bution PLS (x, y) := P[L � x, S � y] for each i = 1, . . . , N .
The corresponding joint probability density function is given
by pLS (x, y) = ∂2

∂x∂y
PLS (x, y). We assume that the marginal

densities pL(x) and pS (y) are continuous on their support.
Lmin and Smin denote the minimum values for load L and free
space S, respectively, throughout the paper. We assume that
Lmin, Smin > 0.

Our load redistribution model is intimately related to the
democratic fiber bundle model [22,23] where N parallel fibers
with failure thresholds C1, . . . , CN share an applied total force
F equally. In this line of literature, it has been of interest to
study the dynamics of recursive failures in the bundle as the
applied force F increases; e.g., see Refs. [39–41]. This model
was used by Ref. [21] in the context of power line networks,
with F corresponding to the total load shared equally by N

power lines. See also Ref. [42] for the latest developments
on the democratic fiber bundle model relating to a power line
network. The relevance of the equal load-redistribution model
for power systems stems from its relation to Kirchhoff’s law
in the mean-field sense. Our current partial load redistribution
model builds upon that in Ref. [42]. Even though our model
involves a global redistribution of a fraction of the extra load
due to line failures, the capability to partially capture the
failures is, in effect, due to the ability to keep a portion of
the extra load due to failed lines in a local level, possibly in a
secondary network. While our current work does not consider
the interaction of local and global behavior, our framework
helps build a step towards this direction.

B. Problem definition

Our main goal is to study the robustness of the flow
network under the partial load redistribution rule described

above. We consider a random attack or a random failure
that leads to p fraction of the lines to be removed from the
system. We assume that the load of these initially failed lines
are redistributed in full to the nonattacked lines, with each
nonattacked line receiving an equal portion of the total load
failed. Our motivation in distinguishing these initial failures
(resulting from an attack) from failures due to overloading
of lines is twofold. First, in the case of a physical attack to
the system, we would expect any advanced circuitry or inter-
connection to other networks to be damaged along with the
failed lines, making it impossible for ε fraction of the failed
load to be absorbed. Second, this assumption ensures that a
random attack against p fraction of the lines is equivalent (in
the mean-field sense) to a disturbance caused by increasing
the initial load of every line (or, force applied to every
fiber) by pE[L]/(1 − p). This in turn enables our analysis
to provide insights on the robustness of the system against
both random attacks (as commonly considered in the context
of power systems) as well as the increase of total applied
load or force (as commonly considered in the context of fiber
bundles).

After the initial load redistribution, the amount of load
on each alive line will be given by its initial load plus its
share of the total load of the failed lines. This, in turn, leads
to the failure of additional lines due to the updated flow
exceeding their capacity. In the ensuing stages of this process,
the network is assumed to have the capability of absorbing
(i.e., removing from the system) ε fraction of the load from
lines who fail due to overloading. Put differently, if a line Li

fails due to its load Li (t ) at time t exceeding its capacity, then
only (1 − ε)Li (t ) amount of load will be redistributed, in an
equal manner, to the remaining lines; as mentioned before, the
system is assumed to absorb the portion εLi (t ) either by help
of advanced circuitry or by means of shedding that portion of
load.

In the most general scenario for partial redistribution, we
could allow ε to depend on time t and the extra load incurred
per line at that time. However, our main goal for analysis
in this paper is to understand the case when ε is constant
throughout time. The load redistribution process continues re-
cursively until no further failures occur, potentially generating
a cascade of failures. Our goal is to understand the limits
associated with this process. We let n∞(p, ε) denote the final
(i.e., steady-state) fraction of alive lines when a p fraction of
lines is randomly attacked initially; as before, ε denotes the
fraction of flow from overloaded lines that will be lost (and
thus will not be redistributed to the remaining lines) at each
stage of the cascade process.

We derive expressions for n∞(p, ε) for all attack sizes
0 < p < 1 and any 0 � ε � 1 to understand the robustness
of the network under the partial load redistribution model.
We will be particularly interested in understanding the crit-
ical attack size p� at which n∞(p, ε) drops to zero, and in
developing design guidelines (in the sense of choosing the
distribution pLS) to optimize network robustness under given
constraints.

With regard to the notation in use: Probabilistic statements
are made with respect to probability measure P, and we denote
the corresponding expectation operator by E. The indicator
function of an event A is denoted by 1[A].
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III. ANALYTIC RESULTS

In this section, we provide a mean-field analysis for the
cascading failures of lines under the model described in Sec.
II. We start by deriving recursive relations concerning the
fraction ft of lines that are failed at time stage t = 0, 1, . . ..
The number of links that are still alive at time t is then
given by Nt = N (1 − ft ) for all t = 0, 1, . . .. The cascading
failures start with a random attack that targets a fraction p

of lines. Hence, we have f0 = p. Upon the failure of these
f0 lines, their load will be redistributed to the remaining
(1 − f0)N lines, with each remaining line receiving an equal
portion of the failed load. Since the pN lines that have been
attacked are selected uniformly at random, the mean total load
that will be redistributed to the remaining lines is given by
E[L]pN . The resulting extra load per alive line, Q0, is thus
given by

Q0 = E[L]pN

(1 − p)N
= E[L]

f0

1 − f0
. (3)

In the next stage, a line i that survives the initial attack fails
when its new load reaches its capacity. For convenience, we
assume that a line also fails when its load equals its capacity,
i.e., when

Li + Q0 � Li + Si,

or, equivalently Si � Q0. Therefore, at stage t = 1, an addi-
tional fraction P[S � Q0] of the lines that were alive at the
end of stage 0 fail. This yields

f1 = f0 + (1 − f0)P[S � Q0] = 1 − (1 − f0)P[S > Q0].

Now, to compute the extra load per alive line at stage 1,
which we denote by Q1, we need to sum the total load of
the lines failed precisely at stage 1, multiply it by (1 − ε)
to account for the load absorbed or lost as explained in Sec.
II, divide it by the new system size (1 − f1)N and add this
fraction on top of the existing extra load. With A denoting the
initial set of lines attacked, this gives

Q1 = Q0 + 1 − ε

(1 − f1)N
E

⎡
⎣ ∑

i �∈A:Si�Q0

(Li + Q0)

⎤
⎦

= Q0 + 1 − ε

(1 − f1)N

∑
i �∈A

E[(Li + Q0)1[Si � Q0]]

= Q0 + (1 − ε)(1 − f0)
E[(L + Q0) · 1[S � Q0]]

1 − f1
,

where the last step uses |A|/N = p = f0.
At the stage t = 2, the following two conditions are needed

for a line to still stay alive: (i) it should not have failed
until this stage, which happens with probability 1 − f1 and
necessitates its free space to satisfy S > Q0; and (ii) its free
space should also satisfy S > Q1 so that its capacity is still
larger than its current load. Thus, the fraction of failures f2 at
this stage is given by

f2 = 1 − (1 − f1)P[S > Q1 | S > Q0].

However, we can calculate the total load that is redistributed
to the remaining lines as before:

Q2 = Q1 + (1−ε)(1 − f0)
E[(L + Q1) · 1[Q0 < S � Q1]]

1 − f2
.

The form of the recursive equations for each t = 0, 1, . . .

can now be seen to be as follows:

ft+1 = 1 − (1 − ft )P[S > Qt | S > Qt−1],

Qt+1 = Qt + (1 − ε)(1 − f0)

× E[(L + Qt ) · 1[Qt−1 < S � Qt ]]

1 − ft+1
, (4)

Nt+1 = (1 − ft+1)N,

where f0 = p, N0 = N (1 − p), and Q0 = E[L] p

1−p
. For con-

venience, we also let Q−1 = 0. From Eq. (4) we see that
cascades stop and a steady state is reached, i.e., Nt+2 = Nt+1,
if

P[S > Qt+1 | S > Qt ] = 1. (5)

We now work toward simplifying the recursion on Qt to
obtain a better understanding of the condition Eq. (5) needed
for cascading failures to stop. To this end, we apply the first
relation in Eq. (4) repeatedly to see that

1 − ft+1 = (1 − ft )P[S > Qt | S > Qt−1],

1 − ft = (1 − ft−1)P[S > Qt−1 | S > Qt−2],

...

1 − f2 = (1 − f1)P[S > Q1 | S > Q0],

1 − f1 = (1 − f0)P[S > Q0].

Applying these recursively starting from the last equality, we
find that

1 − ft+1 = (1 − f0)
t∏

�=0

P[S > Q� | S > Q�−1],

where we set Q−1 = 0 as before. Since Qt is monotone
increasing in t , i.e., Qt+1 � Qt for all t , we further obtain

1 − ft+1

= (1 − f1)
P[S > Qt ]

P[S > Qt−1]
· P[S > Qt−1]

P[S > Qt−2]
· · · P[S > Q1]

P[S > Q0]

= (1 − p)P[S > Qt ]. (6)

This last expression confirms the intuitive result that the
fraction of alive lines at stage t + 1 is simply given by the
fraction of lines who survive the initial attack and have more
free space than the extra load Qt that is distributed on every
alive line at stage t .

Using Eq. (6) in Eq. (4), it is now understood that the dy-
namics of cascading failures is fully governed and understood
by the recursions on Qt given by

Qt+1 = Qt + (1 − ε)
E[(L + Qt ) · 1[Qt−1 < S � Qt ]]

P[S > Qt ]

(7)
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for each t = 0, 1, . . . [with Q0 given at Eq. (3)], with the
condition for reaching the steady-state still being Eq. (5). Let
t� be the stage at which steady-state is reached, i.e., the first t

for which Eq. (5) holds. Then, the final system sizes n∞(p, ε)
defined as the fraction of alive lines at the steady state can be
computed simply from [viz. Eq. (6)]

n∞(p, ε) = (1 − p)P[S > Qt� ]. (8)

Throughout, we will be particularly interested in the critical
attack size p� defined as the largest attack that the system can
sustain [in the sense of having a positive final size n∞(p, ε)];
i.e., for given ε we let

p�(ε) = sup{p > 0 : n∞(p, ε) > 0}.
To demonstrate the impact of the absorption factor ε to-

gether with the number of stages needed to reach a steady
state, we find it useful to further simplify Eq. (7). By simple
algebra, we get

Qt+1P[S > Qt ]

= QtP[S > Qt ] + (1 − ε)QtP[Qt−1 < S � Qt ]

+ (1 − ε)E[L · 1[Qt−1 < S � Qt ]]

= QtP[S > Qt−1] − εQtP[Qt−1 < S � Qt ]

+ (1 − ε)E[L · 1[Qt−1 < S � Qt ]],

which is equivalent to the following difference relation on the
sequence Qt+1P[S > Qt ] :

Qt+1P[S > Qt ] − QtP[S > Qt−1]

= (1 − ε)E[L1[Qt−1 < S � Qt ]]

− εQtP[Qt−1 < S � Qt ]. (9)

We see from Eq. (9) that higher values of ε have suppressing
effect on the growth of Qt , leading to steady-state being
reached faster (i.e., in small number of steps), and with a
larger final system size in view of Eq. (8).

It is desirable to obtain a closed-form solution for Qt� by
solving the difference Eq. (8); in view of Eq. (8) this would
lead to a closed-form expression for the final system size
n∞(p, ε). However, applying Eq. (9) recursively leads to a
telescoping sum given by

Qt+1P[S > Qt ] − Q0

= (1 − ε)
t∑

i=0

E[L · 1[Qi−1 < S � Qi]]

− ε

t∑
i=0

QiP[Qi−1 < S � Qi]. (10)

It is now clear that unless ε = 0 or ε = 1, a direct expression
for Qt (for arbitrary t) can not be obtained without going
through the recursion Eq. (9) and obtaining each one of
Q1,Q2, . . . ,Qt−1. Therefore, it is also not possible to derive
a closed-form expression for Qt� and n∞(p, ε).

IV. NUMERICAL RESULTS

In this section, we confirm our theoretical findings via
numerical simulations. We focus on three commonly known

distributions for the load and free-space variables: (i) Uni-
form, (ii) Pareto, and (iii) Weibull. The probability density
functions corresponding to these distributions are given below
for a generic random variable L.

(1) Pareto Distribution: L ∼ Pareto(Lmin, b). With
Lmin > 0 and b > 0, the support set is x � Lmin and the
density is given by

pL(x) = Lb
minbx−b−1.

We also enforce b > 1 to ensure that E[L] = bLmin/(b − 1)
is finite. The Pareto family distributions are also known as
power-law distributions and have been extensively used in
many fields.

(2) Uniform Distribution: L ∼ U (Lmin, Lmax). The sup-
port set is Lmin � x � Lmax and the density is given by

pL(x) = 1

Lmax − Lmin
.

(3) Weibull Distribution: L ∼ Weibull(Lmin, λ, k). With
λ, k, Lmin > 0, the support set is x � Lmin and the density is
given by

pL(x) = k

λ

(
x − Lmin

λ

)k−1

e−( x−Lmin
λ

)k .

The case k = 1 corresponds to the exponential distribution,
and k = 2 corresponds to Rayleigh distribution. The mean
load is given by E[L] = Lmin + λ�(1 + 1/k), where �(·) is
the γ function �(x) = ∫ ∞

0 tx−1e−t dt .
Next, we confirm our results presented in Sec. III con-

cerning the response of the system to attacks of varying
sizes; i.e., concerning the final system size n∞(p, ε). We are
particularly interested in the transition behavior around the
critical attack size p�. In all simulations, we fix the number
of lines at N = 106, and for each set of parameters being
considered (e.g., the distribution pLS (x, y) and attack size p)
we run 200 independent experiments. In all figures below, the
symbols represent the empirical value of the final system size
n∞(p, ε) (obtained from simulations by averaging over 200
independent runs for each data point), and solid lines represent
the analytic results computed from Eq. (8) with Qt� obtained
by iterating Eq. (7) while checking the condition Eq. (5) at
each iteration step.

We start our numerical results with Pareto distribution.
In Figs. 1 and 2, we let L1, . . . , LN be drawn from Pareto
distribution with b = 2, Lmin = 10 and S = 0.7L. In Fig. 1,
we plot the ratio of surviving lines n∞(p, ε) as a function
of the attack size p for various ε values. We already know
from the analysis in Ref. [3] that for ε = 0, Pareto distribution
always fosters an abrupt first-order transition behavior at p�.
We observe that this first order transition behavior continues to
hold as ε is increased from 0 to 0.8. In fact, up until that point,
the system’s ability to absorb ε fraction of the failed load
at each stage does not affect the final system size n∞(p, ε).
Only after ε = 0.8 the behavior of n∞(p, ε) starts to change
as shown in Fig. 1. For a complementary visualization, we
plot the behavior of the ratio of surviving node n∞(p, ε) as a
function of ε for different values of initial attack size p. We
see that the transition no longer fosters any sharp behavior and
continuously improves as it reaches ε = 1. We next provide
the mathematical justification for this observation.
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FIG. 1. The breakdown of the system is demonstrated, where
L1, . . . , LN are drawn from a Pareto distribution with b = 2, Lmin =
10. We also have S = 0.7L so that S1, . . . , SN are such that Si =
0.7Li . We plot the ratio of surviving lines n∞(p, ε) as a function of
the attack size p for various ε values.

When ε = 1, an overloaded line will be removed from the
system without its load being redistributed to the remaining
lines. Put differently, the only time redistribution will take
place is stage 1, where Q0 gets redistributed to each of the
(1 − p)N lines that have not been attacked. Therefore, a line
that is not in the initial attack will be included in the final
system size as long as its free space is larger than Q0. This
leads to having

n∞(p, ε) = (1 − p)P[S > Q0], (11)

where Q0 = p

1−p
E[L]. Therefore, n∞(p, ε) is continuous in

p whenever the marginal distribution of S is continuous,
a condition satisfied in all distributions considered in the

FIG. 2. In the setting of Fig. 1, we plot the relative final size
n∞(p, ε) as a function of the loss or absorption factor parameter ε

for different attack sizes p.

FIG. 3. The breakdown of the system is demonstrated, where
L1, . . . , LN are drawn independently from a uniform distribution
with Lmin = 10 and E[L] = 20, and S1, . . . , SN are drawn indepen-
dently from a uniform distribution with Smin = 10 and E[S] = 35.
We plot the relative final size n∞(p, ε) as a function of the attack
size p for different ε.

numerical results. Therefore, in the case of perfect ε, n(p, ε)
hits zero and the system fully collapses in a continuous
fashion. We further note that the distribution of S under fixed
E[L] and E[S] can be selected so that the critical attack size
p� can be made arbitrarily close to 1. Selecting S as a binary
random variable at {s1, s2} with s1 < E[S] < s2 independent
from L such that p1s1 + p2s2 = E[S] is sufficient to see this
phenomenon. For fixed s1 < E[S], one can select s2 arbitrarily
large with p1, p2 �= 0 such that p1s1 + p2s2 = E[S] and this
proves that P[S > Q0] can be made nonzero irrespective of
the value of the initial attack size p, i.e., p� can be made
arbitrarily close to 1.

In Fig. 3, we plot the ratio of surviving lines n∞(p, ε) with
respect to p when L1, . . . , LN are drawn from the load L
and extra space S is independent and uniformly distributed
with Lmin = Smin = 10 and E[L] = 20 and E[S] = 35. We
observe that the transition behavior has a failure with pre-
ceding divergence and the critical threshold p� migrates from
p�(ε) = 0.375 at ε = 0 to p�(ε) = 0.75.

In Fig. 4, we plot the ratio of surviving lines n∞(p, ε)
with respect to p when L1, . . . , LN are drawn from Weibull
distribution with k = 0.4, λ = 100, Lmin = 10, S = 1.74L.
We see that the Weibull distribution gives rise to a richer set
of possibilities for the transition of n∞(p, ε). Namely, we see
that an abrupt rupture, a rupture with preceding divergence as
well as a first-order transition followed by a second-order tran-
sition that is followed by an ultimate first-order breakdown are
all possible in this case. As the parameter ε is increased, the
transition behavior gets smoother.

We finally examine the phase diagrams corresponding to
cases presented above and reveal the emergence of tricritical
points. In Fig. 5, we plot the loss factor ε and attack size p

pairs for which the phase transition occurs in either first or
second order. We denote a first-order transition by straight line
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FIG. 4. The breakdown of the system is demonstrated, where
L1, . . . , LN are drawn from a Weibull distribution with k = 0.4, λ =
100, Lmin = 10, and free space for each lines is given by S = 1.74L.
We plot the ratio of surviving lines n∞(p, ε) as a function of the
attack size p.

and a second-order transition by dashed line. In Fig. 5, we
refer to the case of L ∼ Pareto(2,10) and S = 0.7L as Case
1, the case of independent L, S with L ∼ Uniform([10,30])
and S ∼ Uniform([10,60]) as Case 2 and the case of L ∼
Weibull(10,100,0.4) and S = 1.74L as Case 3. We observe
that Case 1 fosters a very sharp phase diagram in that a first-
order phase transition occurs at the same attack size for all
loss factors smaller than a certain ε value, and a second-order
transition is seen after that ε is exceeded. In contrast, Case 3
has a smoother phase diagram as the phase transition switches
from first order to second order after a certain tricritical point

FIG. 5. The phase diagrams and the resulting tricritical behavior
is shown for Cases 1, 2 and 3. For each value of the loss or absorption
factor ε, we show the corresponding critical attack size p. Solid
curves represent cases where the transition at the corresponding
critical attack size is first order, while dashed curves stand for cases
where a second-order phase transition occurs.

FIG. 6. We plot the ratio of surviving lines n∞(p, ε) as a function
of the attack size p in the setting when L and S are independent and
distributed uniformly as U [0, 120] and U [10, 60], respectively, as
well as the setting when S is Dirac-δ distributed as δ(x − E[S]).

[6]. We also observe that the transition in Case 2 is always of
first order and the corresponding phase diagram is smooth.

V. OPTIMIZING ROBUSTNESS

A. Quantifying robustness

A typical metric to assess network robustness is the perco-
lation threshold p� at which the system fully collapses as a
result of the cascading failures [3,42]. In particular, we know
from earlier works [3,42] that for ε = 0, p�

optimal = E[S]
E[S]+E[L] ,

and it is achieved by a Dirac-δ distribution at E[S]. We
observed in the numerical results in Sec. IV that the presence
of the parameter ε changes p�. For example, we have seen
that if more load is absorbed from the overloaded lines by
increasing ε, p� may increase or decrease with respect to the
case ε = 0. In cases when p� increases n∞(p, ε) decreases. It
is, therefore, difficult to asses the robustness using only the p�

metric; e.g., see Fig. 6 where the distribution that leads to the
highest p� does not maximize the final system size n∞(p, ε)
uniformly across all attack sizes 0 � p � 1.

To quantify the overall robustness of the network under all
possible attack sizes, we consider a metric that measures the
area under n∞(p, ε) over 0 � p � 1. Namely, we let

R(ε) =
∫ 1

0
n∞(p, ε)dp. (12)

The metric R(ε) was introduced in Ref. [31], and can be
seen in Ref. [43] to represent the expected final system size
in response to an attack whose size p is selected uniformly
at random over [0,1]. It is in this spirit that the metric R(ε)
quantifies the overall system robustness under a range of
attack sizes for fixed ε. Alternative metrics can also be defined
where the attack size p is drawn from an arbitrary distribution
F (p), e.g., to account for the fact that attacks of certain size
might be more likely than others. In that case, we would again
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compute the mean of the final system size, i.e.,

Ep[n∞(p, ε)] =
∫ 1

0
n∞(p, ε)dF (p). (13)

Clearly, R(ε) defined in Eq. (12) is recovered when F (p) is
the uniform distribution over [0,1].

B. Maximizing the robustness metric R(ε)

Our next result conclusively establishes that for any ε, the
Dirac-δ distribution [44] for free space S optimizes the ro-
bustness of the system with respect to the metric R(ε) among
all possible distributions PLS (x, y) with fixed E[S] and E[L].
First, we note that if pLS (x, y) = pL(x)δ(y − E[S]), then the
final system size is independent of ε. This is because after the
initial attack, either all lines will fail [if E[S] � pE[L]/(1 −
p)], or they will all survive and the cascades will not continue.
Thus, the final system size under the Dirac-δ distribution of
free space is given [42] by

nδ,∞(p) =
{

1 − p if p < p∗
δ

0 if p � p∗
δ

, (14)

where, the critical attack size p�
δ is given by

p�
δ = E[S]

E[S] + E[L]
.

We will show that the distribution pLS (x, y) =
pL(x)δ(y − E[S]) maximizes the robustness metric R(ε)
among all pLS with mean values for L and S fixed at E[L]
and E[S], respectively. In view of Eq. (14), this will follow if
we show that∫ 1

0
n∞(p, ε, pLS )dp �

∫ p�
δ

0
(1 − p)dp, (15)

where n∞[p, ε, pLS (x, y)] denotes the final system size under
attack size p, when load and free-space values of the lines are
generated independently from the distribution pLS (x, y) (with
fixed E[L], E[S]).

From Eq. (8) we note that

n∞[p, ε, pLS (x, y)] � (1 − p)P[S � Q0]

= (1 − p)P

[
S � p

1 − p
E[L]

]
, (16)

due to the fact that Q0 � Qt for all t = 1, 2, . . .. Therefore,
we will get the desired result Eq. (15) if we show that

∫ 1

0
(1 − p)P

[
S � p

1 − p
E[L]

]
dp �

∫ p�
δ

0
(1 − p)dp,

or equivalently, that
∫ 1

p�
δ

(1 − p)P

[
S � p

1 − p
E[L]

]
dp

�
∫ p�

δ

0
(1 − p)P

[
S <

p

1 − p
E[L]

]
dp. (17)

Since 1 − p is monotone decreasing over the range 0 �
p � 1, and both P[S � p

1−p
E[L]] and P[S <

p

1−p
E[L]] are

nonnegative, Eq. (17) will follow if we show that∫ 1

p�
δ

P

[
S � p

1 − p
E[L]

]
dp �

∫ p�
δ

0
P

[
S <

p

1 − p
E[L]

]
dp,

or equivalently, that∫ 1

0
P

[
S � p

1 − p
E[L]

]
dp �

∫ p�
δ

0
dp = E[S]

E[S] + E[L]
.

(18)

To establish Eq. (18), we make a change of variables x =
p

1−p
E[L] and write

∫ 1

0
P

[
S � p

1 − p
E[L]

]
dp

=
∫ ∞

0
P[S � x]d

(
x

x + E[L]

)
(19)

= P[S � x]
x

x + E[L]

∣∣∣∣
∞

x=0

−
∫ ∞

0

x

x + E[L]
d(P[S � x])

= E

[
S

S + E[L]

]

� E[S]

E[S] + E[L]
, (20)

where we use integration by parts in Eq. (19) and apply
Jensen’s inequality in Eq. (20) for the function x

x+E[L] that is
concave in x. This establishes Eq. (18) and the desired result
Eq. (15) follows in view of the preceding arguments.

This result shows that the system’s robustness with respect
to the metric R(ε) [defined at Eq. (12)] is maximized under
the constraints of fixed E[L] and fixed E[S] (and hence
fixed E[C]), by giving each line an equal free space E[S],
irrespective of how the initial loads are distributed and the
redistribution process in the later stages. In other words, the
robustness is maximized by choosing a line’s capacity Ci

through Ci = Li + E[S] no matter what its load Li is.
Note that in light of the results in Sec. IV, the critical attack

size p�(ε) may be greater or less than E[S]
E[S]+E[L] depending

on the specific distribution pLS used (with fixed E[L] and
E[S]). In particular, we have seen that it is always possible
to choose a marginal distribution with E[S] such that p� is
arbitrarily close to 1. Therefore, one might think that the area
under n∞(p, ε) while swiping all possible p will be maxi-
mized when ε is increased and the system has the capability
to absorb the extra load coming from the failing lines and
eradicate the potentially detrimental effect of their failure to
the overall system. Our result shows firmly that this intuition
is incorrect and the metric R(ε) is instead maximized when
the distribution of S is the Dirac-δ function centered at E[S]
(irrespective of ε and the distribution of L).

We note that our argument follows from the facts that the
extra load due to the initial attack Q0 = p

1−p
E[L] is monotone

increasing, continuous, and convex in the initial attack size
p. These properties are expected to hold in a large set of
instances of this problem. Therefore, the optimality of the
Dirac-δ distribution of S is likely to hold under more general
cases where these properties hold. For instance, if the prior
randomness F (p) on the attack size p in Eq. (13) has a
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monotone decreasing derivative, i.e., if higher attack sizes are
less likely, then the Dirac-δ distribution of free space S is
still optimal with respect to the resulting metric in Eq. (13).
Such cases occur in situations where the malicious attacker
is more likely to choose smaller attack sizes due to resource
or time constraints. We similarly observe that if the support
of the prior distribution of p is contained in the interval
[0, E[S]

E[S]+E[L] ], then the Dirac-δ function at E[S] is optimal
with respect to R(ε). Finally, the optimality of the Dirac-δ
distribution of S [in the sense of maximizing R(ε)] holds
irrespective of the value of ε. As such, this optimality prevails
under any time variation in ε or possible dependence of ε on
the instantaneous extra load per line Qt .

While it is hard to generalize the optimality of Dirac-
δ function for 0 < ε < 1 and any prior distribution on p,
we observe that if p is deterministic and ε = 1, then the
robustness metric in Eq. (13) is given by

Ep[n∞(p, ε)] = n∞(p, 1) = (1 − p)P[S > Q0]. (21)

Then, to maximize n∞(p, ε), it suffices to minimize
P[S > Q0] = P[S > pE[L]/(1 − p)] subject to E[S] being
fixed. If the known attack size satisfies p � E[S]

E[S]+E[L] , then
this is achieved when the distribution of S is given by the
Dirac-δ function centered at E[S]. If, however, we have p >

E[S]
E[S]+E[L] , then the optimal distribution of S consists of two
Dirac-δ functions centered at 0 and p

1−p
E[L], respectively,

with appropriate probabilities selected such that the mean
value is E[S]. In other words, if the attack size is larger than
what can be resisted by giving each line an equal amount E[S]
of free space, then it is optimal to give a fraction of lines
zero free space, while giving each of the other lines an equal
amount of p

1−p
E[L] free space; i.e., just enough so that they

can handle the additional load of Q0 that will be distributed to
them after the attack.

C. Simulations with synthetic and real-world data

In Fig. 6, we plot the fraction of surviving lines n∞(p, ε) as
a function of the attack size p for several ε values, in the set-
ting when L and S are independent and uniformly distributed
as U [0, 120] and U [10, 60], respectively. We compare the
corresponding final system size n∞(p, ε) when S is Dirac δ

distributed as δ(x − E[S]). We observe that the area under
n∞(p, ε) is larger under the Dirac-δ distribution compared
to other cases. In Fig. 7, we provide a comparison of the
metric R(ε) for a family of Weibull distributions with fixed
E[L] and E[S] while varying the scale parameter k of the
distribution. We observe that R(ε) is monotone increasing
in k and is maximized in the limiting case karrow∞. This
observation is in perfect agreement with our result given that
the Weibull distribution approaches to a Dirac-δ function as k

goes to infinity.
We now test our analytic results concerning the optimiza-

tion of robustness on real-world power system data from the
UK National Grid [36]. In particular, we pick N = 75 loads
L1, . . . , L75 from the Great Britain two degree power flow
diagram for 2017/18 shown explicitly in Fig. C.1 in Ref. [[36],
Appendix C]. These power flows represent the power units in

FIG. 7. L1, . . . , LN are drawn from Weibull distribution with
Lmin = 1 and k, λ such that E[L] = 2 and S = 1.74L. We plot the
metric R(ε) in Eq. (12) as a function of the parameter k.

MVA that flow through lines in the utility grid in the scale
shown in Ref. [[36], Appendix C].

Our goal is to compare the robustness of this power system,
as quantified through the area metric, under different allo-
cations of line capacities. In particular, we will compare the
performance of the equal free-space allocation with respect to
the schemes described below:

(I) Proportional free-space allocation: For each line i, we
set Si = αLi , where α is the tolerance factor, set to be the
same across all N lines.

(II) Equal capacity allocation: Si + Li = C for all i if
Li < C and Si = 0 otherwise.

In order for this comparison to be fair, the total free space
available to all 75 lines will be fixed; since loads are already
given from the UK Power-grid data set, this will amount to
having the total capacity of 75 lines fixed. The total load
of the 75 lines given in this data set is 60 221 power units.
We assume that a total free space of 168 620 power units is
available to these lines and will be allocated according to one
of three free-space allocation schemes to be considered. For
the proportional free-space allocation, this leads to using a
tolerance-factor of α = 2.8 for all lines, while for the equal
capacity allocation scheme, this leads to fixing the capacity
of all lines at C = 3 051 power units. In the case of equal
free-space allocation, this amounts to assigning the capacity
of every line at their load plus 168 620/75 � 2 248 units of
free space. These three schemes are compared with respect to
the resulting area robustness metric defined here as

R(ε) = 1

N

N∑
i=1

n∞(pi, ε), (22)

where pi = i
N

.
The results are presented in Fig. 8, where each data point

corresponds to the average over 5 000 independent experi-
ments. We observe that the equal free-space allocation per-
forms significantly better than the other two capacity allo-
cation schemes, in the sense leading to a larger value of the
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FIG. 8. Comparison of robustness performances of equal free-
space allocation, equal capacity allocation and proportional free-
space allocation for N = 75 lines with load data obtained from
the UK National Grid [[36], Appendix C]. We observe that the
robustness is better for equal free-space allocation with respect to
the other two benchmarks.

robustness metric Eq. (22). For instance, when a random
attack occurs whose scale p is selected uniformly at random
from (0,1), we see that close to 50% of the lines are expected
to survive under the optimal choice of equal free-space al-
location. We remind that under Eq. (22), the metric R(ε) is
always less than 0.5, meaning that the performance under
the equal free-space allocation is close to the theoretically
possible maximum robustness level. This statement holds
irrespective of the absorption factor ε and in particular even
if the system has no capability of absorbing the failed load.
However, if we use the widely assumed setting of free space
being proportional to load, i.e., Ci = (1 + α)Li , then we can
expect only about 35% of the nodes to survive the same
scenario if the system has no load absorption capability.
We see that even if the system is designed with full load
absorption capability (i.e., ε = 1), the expected number of
surviving nodes increases only to about 41%, still worse than
the optimal case. The equal-capacity allocation leads to a
higher robustness than the proportional free-space case, but
the achieved robustness is still inferior to the case of where all
lines have the same free space. It is only when the system
has almost perfect flow absorption capability (i.e., ε = 1)
that the performances of equal-capacity and equal free-space
allocations become similar; for small ε we see that equal free
space is significantly better. Although not reported here for
brevity, our extensive simulation results indicate that similar
conclusions apply for a wide range of α and C values.

D. Simulations under a topology-based redistribution model

The results presented in earlier sections of this paper were
based on a model with a mean field assumption in that
when a line fails, its load gets redistributed globally and
equally among all active lines in the network. This mean field
assumption may not hold for networks with possible local
redistribution behavior such as power networks. However, it is
well known that redistribution models with only local compo-
nents fail to capture the long-range nature of Kirchhoff’s Law.

Consequently, a model where the failed load is redistributed
both locally and globally would be a more suitable one. To
this end, we present in this section simulation results under
a topology based redistribution model. We do so with an eye
towards revealing whether the optimality of equal free-space
distribution prevails when failed load is redistributed (at least
in part) locally according to a network topology.

In the spirit of the redistribution models presented in
Refs. [32,34], we consider a topology-based redistribution
model that combines local and global redistribution behaviors.
This extended model gauges the locality of the redistribution
by the parameter γ ∈ [0, 1] and the network topology is
generated as an Erdős-Rényi graph G(n,N ). At each stage,
the portion of the load that is not absorbed from each failed
line is divided into two parts: γ fraction is redistributed locally
among neighboring lines (with each neighbor receiving an
equal portion), and (1 − γ ) fraction is redistributed equally
among all surviving lines (irrespective of topology). In this
model, setting γ = 0 recovers the mean-field model intro-
duced in Sec. II, while setting γ = 1 gives a merely topology
based redistribution model.

For this new redistribution model, we have run simulations
where we set the number of nodes as n = 250 and number of
edges as N = 8 400, and created a random network according
to the Erdős-Rényi G(n,N ) model. This leads to each line
having on average 132 neighbors. The loads {L1, . . . , LN }
are drawn from i.i.d. Weibull distribution (with Lmin = 1
and k, λ such that E[L] = 2) and the free spaces are set as
Si = 1.74Li . We run 100 independent experiments for each
parameter set, and report the average value of the robustness
metric defined in Eq. (22).

The results are presented in Figs. 9(a), 9(b), and 9(c) for
γ = 0.25, γ = 0.6, and γ = 1, respectively; we remark that
the setting in Fig. 7 corresponds to the case with γ = 0. The
most important observation is that Figs. 9(a)–9(c) obtained
under (partially) local load redistribution are qualitatively the
same with the results given in Fig. 7 obtained under mean-
field analysis (i.e., global redistribution). For instance, we
observe in all figures that as the parameter k is increased,
the robustness of the network increases monotonically with
Dirac-δ distribution of free space S leading the maximum
robustness. Thus, we conclude that the optimality of equal
free-space allocation prevails even when the redistribution of
the loads on failing lines are performed based on the topology
of the network. Another observation we make from Figs. 9(a),
9(b), and 9(c) with comparison to Fig. 7 is that increasing
the locality parameter γ decreases robustness. This is in line
with our understanding that introducing heterogeneity in the
redistribution model causes further loss in robustness.

We finally test the effect of node degree on the robustness
of the network. We consider the Erdős-Rényi G(n,N ) model
with the same number of nodes n = 250 and a significantly
smaller number of edges N = 625. In this case, each line
has 8 neighbors on average. The results are presented in
Figs. 10(a), 10(b), and 10(c) for γ = 0.25, γ = 0.6, and γ =
1, respectively. We observe the same qualitative behavior with
Fig. 9 in that as the shape parameter of the Weibull distribution
gets larger, the robustness of the network improves irrespec-
tive of locality parameter γ and the absorption parameter ε.
Additionally, we observe that robustness is affected by the
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FIG. 9. We let L1, . . . , LN be obtained from Weibull distribution
with Lmin = 1 and k, λ such that E[L] = 2 and S = 1.74L. For (a)
γ = 0.25, (b) γ = 0.6, and (c) γ = 1.0, the plots show the variation
of the metric R(ε) in Eq. (22) with the parameter k for various ε

values.

FIG. 10. We repeat the experiments in Fig. 9 for (a) γ = 0.25,
(b) γ = 0.6, and (c) γ = 1.0, under a different Erdős-Rényi graph
with significantly smaller average number of neighbors.
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connectivity of the network in different ways for different
γ and ε. In particular, robustness significantly drops as the
average number of neighbors decreases when ε is smaller
while the effect of the number of neighbors on robustness
is limited for higher ε. This numerical observation points
to an intricate relation among load absorption, the average
number of neighbors and locality in the load redistribution
process for their effects on survival and robustness against
cascading failures. Overall, the numerical results in Figs. 9
and 10 confirm the promise of uniformly allocating the free
spaces to each node and gives reason to extend our results to
more general network and redistribution models [45].

VI. CONCLUSION

We studied the robustness of flow networks consisting of N

lines against random attacks under a partial load redistribution
model. In particular, when a line fails due to overloading,
it is removed from the system and (1 − ε) fraction of the
load it was carrying gets redistributed equally among all
remaining lines while the remaining ε fraction is assumed to
be lost or absorbed. We derive recursive relations describing
the dynamics of cascading failures for any attack size p,
and identify the final fraction of surviving lines when the
cascades stop. These findings are confirmed via extensive
simulations. Among other things, we show that unlike the full
redistribution case (i.e., ε = 0), partial redistribution might
lead to the order of transition at the critical attack size p�

changing from first to second order, and a tricritical point
emerges with respect to attack size p and absorption/loss
factor ε.

One of the most interesting findings of this paper is
concerned with how system robustness can be maximized
by properly choosing the distribution pLS that generates the
initial load and free-space values of each line. We consider this
problem when the mean load E[L] and mean free space E[S]
are fixed. First, we show that unlike the full redistribution case
(i.e., when ε = 0), the critical attack size p� is not necessarily
maximized by assigning every line the same free space E[S];
depending on the fraction ε of the load that is absorbed at each
stage, we see that distributions other than Dirac-δ for S may
lead to higher critical points p�. Next, we consider the robust-
ness metric proposed in [31] that computes the area under
the final system size n∞(p, ε) over all possible attack sizes

0 � p � 1; this amounts to computing the average response
of the network to initial attacks of different size. We show that
the system is most robust in the sense that the area metric is
maximized, when the variation among the free space of lines
is minimized. In other words, the Dirac-δ distribution of free
space leads to the optimum robustness, irrespective of ε and
how load L is distributed. Additionally, we test the robustness
performance with respect to this area metric in finite flow
networks with load data obtained from a real power network.
We observe that allocating the free space equally among the
lines yields significantly higher performance when compared
to well-known benchmarks despite the small size chosen for
the network. Finally, we tested this robustness result in an
extended topology-based redistribution model over an Erdős-
Rényi graph and we observed that uniformly allocating free
spaces promises to be optimal in this more general setting as
well.

There are many open problems one can consider for future
work. For instance, the analysis can be extended to the case
where the redistribution parameter ε is not the same for all
lines, but follows a given probability distribution. Similarly,
ε could be a time-varying parameter or it could depend on
the extra load per line in the current stage. Such possibilities
would allow us to obtain further understanding on the dynam-
ical properties of the cascading failures and the mechanisms
that could lead to a smooth failure. Additionally, it would be
interesting to see if the robustness is still maximized with a
Dirac-δ-type distribution on the free space under various com-
binations of possibilities on ε. Variability in the redistribution
as in [46] and stochastic behaviour in the loads as in Ref. [47]
also constitute interesting avenues for future research. In light
of these directions, we will investigate relations among ε, the
average number of neighbors and locality in redistribution for
their effects on robustness against cascading failures. Finally,
it would be interesting to study the partial redistribution model
under targeted attacks rather than random failures.
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[4] Y. Zhuang and O. Yağan, IEEE Trans. Netw. Sci. Eng. 3, 211
(2016).
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