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Weight thresholding on complex networks
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Weight thresholding is a simple technique that aims at reducing the number of edges in weighted networks
that are otherwise too dense for the application of standard graph-theoretical methods. We show that the group
structure of real weighted networks is very robust under weight thresholding, as it is maintained even when
most of the edges are removed. This appears to be related to the correlation between topology and weight that
characterizes real networks. On the other hand, the behavior of other properties is generally system dependent.
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I. INTRODUCTION

Many real networks have weighted edges [1], representing
the intensity of the interaction between pairs of vertices. Also,
some weighted networks, e.g., financial [2] and brain net-
works [3], have a high density of edges. Analyzing very dense
graphs with tools of network science is often impossible,
unless some preprocessing technique is applied to reduce the
number of connections. Different recipes of edge pruning,
or graph sparsification, have been proposed in recent years
[4–10].

In practical applications such as the preprocessing of data
about brain, financial, and biological networks [2,11,12],
weight thresholding is the most popular approach to sparsi-
fication. It consists in removing all edges with weight below a
given threshold. Ideally, one would like to eliminate as many
edges as possible without drastically altering key features
of the original system. A recent study of functional brain
networks investigates how the graph changes as a function
of the threshold value [13], finding that conventional network
properties are usually disrupted early on by the pruning
procedure. Further, many standard measures do not behave
smoothly under progressive edge removal, and hence are not
reliable measures to assess the effective change to the system
structure induced by the removal of edges.

By analyzing several synthetic and real weighted networks,
we show that, while local and global network features are of-
ten quickly lost under weight thresholding, the procedure does
not alter the mesoscopic organization of the network [14]:
groups (e.g., communities) survive even when most of the
edges are removed.

In addition, we introduce a measure, the minimum absolute
spectral similarity (MASS), that estimates the variation of
spectral properties of the graph when edges are removed.
Spectral properties are theoretically related to group struc-
tures in general [15–17]. The MASS is stable under weight
thresholding for many real networks, making it a potential
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alternative to expensive community detection algorithms for
testing the robustness of communities under thresholding.

II. METHODS

Let us consider a weighted and undirected graph G com-
posed of N vertices and M edges. Edges have positive
weights, and the graph topology is described by the symmetric
weight matrix W , where the generic element Wuv = Wvu > 0
if there is a weighted edge between nodes u and v, while
Wuv = Wvu = 0 otherwise. Weight thresholding removes all
edges with weight lower than a threshold value. This means
that the resulting graph G̃ has a thresholded weight matrix
W̃ , whose generic element W̃uv = W̃vu = Wuv if Wuv � θ ,
and W̃uv = W̃vu = 0 otherwise. The thresholded graph G̃ is
therefore a subgraph of G with the same number of nodes.

We first examined synthetic networks generated by the
Lancichinetti, Fortunato, and Radicchi (LFR) benchmark
[18]. We then extend the analysis to several real networks
from different domains: structural brain networks [19], the
world trade network [20], the airline network [21], and the
coauthorship network of faculty of Indiana University. We
treat all networks as undirected, weighted graphs with pos-
itive edge weights. We show the variation of several graph
properties as a function of the fraction of removed edges. The
properties we have chosen include all network-level measures
from Ref. [13] as well as mesoscopic structure measures:

(1) Characteristic path length (CPL), the average length of
all shortest paths connecting pairs of vertices of the network.
Once the network becomes disconnected, CPL is not defined,
and we set its value to 0.

(2) Global efficiency, the average inverse distance between
all pairs of vertices of the network [22]. Global efficiency
remains well defined after network disconnection, as discon-
nected vertex pairs simply have a inverse distance of 0.

(3) Transitivity, or global clustering coefficient, is the ratio
of triangles to triplets in the network, where a triplet is a motif
consisting of one vertex and two links incident to the vertex.

(4) Community structure, which we detect with two meth-
ods. The first is based on modularity maximization [23] via the
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Louvain algorithm [24,25]. The second method uses k-means
spectral clustering [15] with a constant k equal to the one
found with the Louvain algorithm.

(5) Core-periphery structure, the vertices of which we
detect using the method introduced for the weighted coreness
measure [26].

(6) DeltaCon. a metric indicating the similarity between
the original graph and the thresholded one based on graph
diffusion properties [27].

For all three partitioning algorithms, i.e., Louvain, k-
means, and coreness, we measure the similarity between the
partitions of the sparsified graph G̃ and those of G using
the adjusted mutual information (AMI) [28]. To overcome
the randomness of the partitioning algorithms, we sample
100 different partition outcomes from the original graph,
10 from the sparsified graph, and use the maximum AMI
between any pair. These numbers are picked so that the same
algorithm returns consistent results (AMI very close to 1) on
independent runs on the original graph.

For global efficiency we take the ratio between the value
of the measure on the sparsified graph and the corresponding
value on the initial graph. CPL grows with edge removal,
and we therefore normalize it by its largest value before
disconnection. Since DeltaCon scales directly with weights,
we normalize each matrix entry such that it reaches 0 on
empty graphs. This way all our measures are confined in the
interval [0,1], and their trends can be compared (transitivity
naturally varies in this range). We also plot the relative size
of the largest connected component to keep track of splits of
the network during edge removal. More details of how these
graph properties are calculated are given in Appendix A.

We also add another measure, capturing the variation of
spectral properties of the graph. To define this measure we re-
call that the Laplacian of G is defined as L = D − W , where
D is the diagonal matrix of the weighted degrees (strengths),
with entries Du = ∑

v Wuv . Similarly, for the sparsified graph
G̃, L̃ = D̃ − W̃ . The Laplacian has the spectral decomposi-
tion

L = D − W = V �V −1,

where the columns of the matrix V are the eigenvectors
v1, v2, . . . , vN of the Laplacian, and the entries in the diagonal
matrix � are the corresponding eigenvalues 0 = λ1 � λ2 �
· · · � λN .

The difference between the sparsified Laplacian L̃ and the
original L can be quantified by the minimum relative spectral
similarity (MRSS) [29],

σR
min = min

∀x

xT L̃x

xT Lx
, (1)

where xT L̃x is the Laplacian quadratic form and x any N -
dimensional real vector. The MRSS is a direct adaptation of
relative spectral bounds. Intuitively, the input vector x deter-
mines the “direction” along which we measure the change
of the graph, and by taking the minimum we consider the
worst case scenario. However, the value of MRSS drops to
zero as soon as G̃ becomes disconnected. Because of this
mathematical degeneracy, it is also numerically unstable for
many optimization algorithms.

To overcome this issue, we instead propose the absolute
spectral similarity with respect to the input vector x, defined
as

σ (x) = 1 − xT ΔLx

xT λNx
, (2)

where λN is the largest eigenvalue of the original graph
Laplacian, and ΔL = ΔD − ΔW is the graph Laplacian of
the difference graph ΔG, whose vertices are the same as in G,
while the edges are the ones removed by the chosen sparsifi-
cation procedure. Without loss of generality, we consider only
unit length input vectors, |x| = 1. In Appendix B, we prove
that weight thresholding optimizes the expected value of σ (x),
if we assume the entries of the vector x are independent
identically distributed random variables.

Since the input vector is variable, we again consider the
worst case scenario and use the minimum absolute spectral
similarity (MASS),

σmin = min
|x|=1

(
1 − xT ΔLx

λN

)
= λN − λΔ

N

λN

, (3)

where λΔ
N is the largest eigenvalue of the difference Laplacian

ΔL.
MASS is consistent with our intuition that disconnecting a

few peripheral vertices, while a bigger change than removing
redundant edges, should have a small impact on the organi-
zation of the system. Many local and global network features
become ill-defined as soon as the network disconnects, and
hence they are not reliable measures to assess the effect of
thresholding. Mesoscopic properties, like communities, on the
other hand, remain meaningful even after the network be-
comes disconnected, and a reliable measure should be robust
in such situations.

A major advantage of MASS is its numerical stability
and computational efficiency (see Appendix C). Defined as
the ratio of the largest eigenvalues of two graph Lapla-
cians, it can be computed using standard numerical li-
braries [30–32]. (Readers can find our Matlab implementation
at https://github.com/IU-AMBITION/MASS.) In spite of its
simplicity, MASS satisfies a series of theoretical properties
(see Appendix E).

III. RESULTS

To illustrate the changes of the above graph properties
under weight thresholding, we first compare a synthetic
weighted network with its binary counterpart; see Fig. 1.
The binary network with 1000 vertices and eight planted
communities is generated using the LFR benchmark [18] (the
parameters of the LFR benchmarks used here are listed in
Appendix A), which produces realistic networks by capturing
power-law distributions of both degree and community size.
Since all edges have the same weight, the thresholding is
done by removing a fraction of randomly selected edges [in
Fig. 1(a), all curves are averaged over 10 random realizations].
While the network remains well connected even after we
remove 50% of edges, the AMI scores relative to the meso-
scopic group structures drop already when a small fraction
of edges is removed. The MASS curve decays even faster,
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FIG. 1. Variation of MASS and other variables under weight thresholding, for synthetic binary networks generated by the LFR benchmark
(a) and a weighted counterpart with noisy correlation between edge weight and the degrees of its endpoints (b). The “|maxComponent|” curve
represents the fraction of vertices remaining in the largest connected component.

following a diagonal line, which suggests that it captures
changes in spectral properties that are not directly related to
the mesoscopic structure of the network.

In many real weighted networks, there is a power law
relation between the degree of a vertex and its strength (i.e.,
the total weight carried by the edges adjacent to the vertex)
[1,33]. We first set the weight of an edge to be proportional
to the product of the degrees of its endpoints, changing
the binary network into a weighted one. To account for the
presence of noise we added a uniform error in the range of
[−w,w] on top of each weighted edge, with w being the
corresponding edge weight. The effect of thresholding on
these networks is shown in Fig. 1(b). As a result, the network’s
group structures are now robust under weight thresholding,
despite the fact that a substantial fraction of vertices become
disconnected at an early stage. In this realistic weighted
network, the MASS curve now has a quite similar trend as
the curves describing the variation of group structure. On
the other hand the CPL becomes ill-defined as soon as the
network is disconnected. DeltaCon also drops much earlier
compared with other measures, as diffusion is heavily affected
by network disconnection.

Let us now discuss the analysis of the real networks.
We list their basic properties in Table I. All four networks
have positive weight-degree correlation coefficient, as it often
happens in real weighted networks [1]. Another observation
is that they also have high values of the weighted coreness
measure [26] (except for structural brain networks), which
means weakly connected peripheral vertices will quickly be-
come disconnected.

The structural brain network is built from diffusion
weighted imaging MRI scans of 40 experiment participants
[19]. Each personal network has 234 vertices representing
brain regions. On average, they have 7862 weighted edges
representing the fiber density connecting couples of regions.
Here we threshold each network individually and considered
the population average of each graph property for our analysis.

Figure 2(a) shows that the network is robust when the
light edges are removed: it takes the removal of a substantial
fraction of edges to get appreciable changes in all measures.
In particular, the MASS is basically unaffected until more

than half of the edges are deleted, and it follows qualitatively
the trend of the similarity (AMI) of the mesoscopic group
partitions.

The airline network is constructed from public data on
flights between major airports around the world, with the
edge weight representing the number of flights as well as the
capacity of the plane operating each flight [21]. Small airports
have only weak connections to the rest of the system, due to
the limited traffic they handle. On the other hand, major hubs
have some of the strongest connections, leading to a strong
core-periphery structure with 0.5848 weight-degree correla-
tion. The system gets quickly disconnected under weight
thresholding, and we see big drops in other graph properties
early on, including CPL, DeltaCon, and global efficiency, as
shown in Fig. 2(b). Community and core-periphery structure,
on the other hand, remain fairly stable against edge removal,
and the MASS again follows a similar trend as the group
partition similarity (AMI) curves.

The world trade network is constructed from economic
trading data between 250 countries. We aggregate the directed
edges into 18 389 undirected edges representing bidirectional
trade volumes [20]. This network is an extreme example of
strong core-periphery structure with close to 1 weight-degree
correlation (0.9539) and coreness measure (0.8373). As a
result [see Fig. 2(c)], it can be sparsified very aggressively
without large variations in all measures except for CPL and
transitivity. All three mesoscopic group structures, k-means,
Louvain, and core periphery, have very stable AMI scores.
The MASS values also reflect the same trend.

The coauthor network captures the academic collabora-
tions between institutions revealed through papers authored
by Indiana University faculty. It is built from Thomson
Reuters Web of Science data (Web of Knowledge version
5 [34]) from 2008 to 2013. Like the airline network, it has
a strong core-periphery structure with 0.6247 weight-degree
correlation. However, its peripheral vertices get disconnected
at a much slower rate. Again, the mesoscopic group structure
remains robust under thresholding, captured by k-means, Lou-
vain, core-periphery, and the MASS curves [see Fig. 2(d)].
In contrast, CPL, DeltaCon, transitivity, and global efficiency
again demonstrate very different patterns.
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TABLE I. Networks studied in this paper and their properties.

Name No. of samples No. of vertices No. of edges No. of k (Louvain) No. of weight degree correlation No. of coreness

Structural brain networks 40 234 4046 (mean) 9.9 (mean) 0.2603 (mean) 0.3009 (mean)
World trade network 1 250 18 389 3 0.9539 0.8373
Airline network 1 3253 18 997 20 0.5848 0.6776
Coauthorship network 1 2855 75 058 7 0.6247 0.8223

We conclude that group structure, including community
and core-periphery structures, is a very robust feature that
survives even when most edges are removed. The MASS
is also quite consistent in capturing group structure across
these real-world networks. The variation of the measure is
rather smooth and barely affected by the disconnection of
small subgraphs, making it a stable and efficient measure
for evaluating thresholding effects. We remark that the em-
pirically observed robustness of the group structure does
not hold if the weight-degree correlation is destroyed (see
Appendix D).

While we currently lack a full theoretical understanding
of the relationship between MASS and community structure,
here we provide some mathematical justification. Matrix per-
turbation theory studies the change of graph spectrum of a
real symmetric matrix A by “perturbing” it. In our context,
if we treat the original Laplacian matrix L as A and the
difference Laplacian ΔL as the perturbation, the classical

Weyl’s theorem directly relates to MASS,

|λi − λ̃i |
λN

�
∣∣λΔ

N

∣∣
λN

= 1 − σmin, 1 � i � N.

We now consider a generalized version of the Davis-Kahan
theorem on subspaces,

|| sin∠(Vk, Ṽk )||F � 2
√

k|λΔ
N |

δk

, 1 � k � N,

where ||A||F represents the Frobenius norm of the matrix
A, Vk, Ṽk are the k-dimensional subspaces spanned by
the eigenbasis v1, v2, . . . , vk and ṽ1, ṽ2, . . . , ṽk , respectively,
δk = λk+1 − λk , and sin∠(Vk, Ṽk ) is a diagonal matrix whose
entries are the sines of the angles between the corresponding
eigenvectors in the two eigenbasis. If σmin approaches 1, or
equivalently λΔ

N approaches 0, we then have a tight upper
bound on the rotation of the eigenbasis v1, v2, . . . , vk . Accord-
ing to spectral graph theory, these smaller eigenvectors play a
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FIG. 2. Variation of MASS and other variables under weight thresholding, for structural brain networks (a), the global airline network (b),
the world trade network (c), and the coauthorship network (d). The “|maxComponent|” curve represents of the fraction of vertices remaining
in the largest connected component.
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fundamental role in defining community structures [15,16].
Preservation of MASS therefore guarantees a one-sided upper
bound on the change to community structure.

IV. CONCLUSIONS

We have carried out a detailed analysis of weight thresh-
olding on weighted networks. In general, it appears that group
structure is fairly robust under weight thresholding, in contrast
to other features. We found that this is due to the peculiar
correlation between weight and degree that is commonly
observed in real networks, according to which large weights
are more likely to be carried by links attached to high degree
vertices.

We have also introduced a measure, the minimum absolute
spectral similarity (MASS), to estimate the effect that sparsi-
fication procedures have on spectral features of the network.
In case studies above we have seen that MASS behaves
similarly to traditional group structure measures when there
is correlation between weight and degree.

This work deals with weight thresholding, but the analysis
can be easily repeated with more sophisticated graph sparsi-
fication methods. In the future, we plan to investigate more
closely the relationship between MASS and group structure,
as well as the role played by the weight-degree correlation.
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APPENDIX A: ALGORITHMIC DETAILS
OF GRAPH PROPERTIES

Here we provide more details of how the graph properties
are defined and calculated. All experiments are conducted
under Matlab version R2017a.

Characteristic path length (CPL) is the average length of
all shortest paths connecting pairs of vertices of the network.
Once the network becomes disconnected, CPL is not defined,
and we set its value to 0.

Transitivity, or global clustering coefficient, is the ratio of
triangles to triplets in the network, where a triplet is a motif
consisting of one vertex and two links incident to the vertex.

Global efficiency is defined as 2
N (N−1)

∑
u,v

1
duv

, where
duv represents the shortest path between the vertices u and
v [22]. Notice here if we define duv = ∞ for unreachable
vertex pairs, global efficiency remains robust under network
disconnections. The Matlab code for CPL, transitivity, and
global efficiency are provided by the Brain Connectivity
Toolbox [35].

Community structure: The specific Louvain implementa-
tion we used is Ref. [36] with all default parameter settings,
whereas the k-means spectral clustering algorithm follows the
pseudocode in Ref. [15] with a normalized graph Laplacian.
The constant k that is set to be the planted ground truth in
synthetic experiments. For real-world networks, we set it to
be the same stable k value found by the Louvain algorithm
(for all four networks Louvain was able to find stable k).

Core-periphery structure: The partition of core and periph-
ery vertices uses the Matlab code provide by the authors of
Ref. [26]. The algorithm is based on the following definition
of the weighted coreness measure:

QC = 1

Z

⎡
⎣ ∑

u,v∈Cc

(Wuv − W̄ ) −
∑

u,v∈Cp

(Wuv − W̄ )

⎤
⎦. (A1)

In Eq. (A1), Cc and Cp represents the bisection of the
network into the core and periphery subsets, W̄ is the average
edge weight, and Z = ∑

u,v |Wuv − W̄ | is the normalizing
constant, so that 0 � QC � 1. The idea is that if there is a
core-periphery structure, there are many heavy edges joining
pairs of vertices of the core Cc and many light edges joining
pairs of vertices of the periphery, yielding a value of QC

appreciably larger than 0. Therefore, by maximizing Qmax
C

over all possible bisections of the network, we also get the
Cc and Cp for our experiments.

We measure the similarity between the partitions of the
sparsified graph G̃ and those of G using the adjusted mutual
information (AMI) [28], for all three partitioning algorithms:
Louvain, k-means, and coreness. Notice here that the AMI is
taken after removal of single isolated vertices, because they
do not constitute meaningful communities. To overcome the
randomness of the partitioning algorithms, we sample 100 dif-
ferent partition outcomes from the original graph, 10 from the
sparsified graph, and use the maximum AMI between any pair.
These numbers are picked so that the same algorithm returns
consistent results (AMI very close to 1) on independent runs
on the original graph. The resulting curve is thus an upper
bound of any individual pairs.

DeltaCon [27] is a general graph similarity metric based
on diffusion results on graphs. It aggregates the affinities
between all pairs of vertices using a rooted Euclidean distance
(RootED),

RootED(SG, SG̃) =
√∑

u,v

(√
Suv

G −
√

Suv

G̃

)
,

where the vertex affinity matrices SG and SG̃ are calculated by
distributed diffusion processes around each vertex. The affin-
ity matrix involves the calculation of personalized PageRank
[37], which is intuitively captured by the following matrix
power series:

SG ≈ [I − εW ]−1 = I + εW + ε2W 2 + ε3W 3 + · · · .

Here 0 � ε � 1 represents the decay factor of diffusion over
longer distances. Under the default settings, with ε = 1

maxu Du
,

longer range diffusion decays quickly, and DeltaCon thus puts
a stronger emphasis on local structure. We use the Matlab
code provided by the authors of Ref. [27], which uses a fast
Belief Propagation approximation of personalized PageRank.
Since DeltaCon scales directly with weights, we normalize the
matrix by multiplying a constant so that DeltaCon reaches 0
on empty graphs.

For the LFR benchmark [18], we used the binary version
[38]. We generated multiple synthetic networks until we get
one with eight planted communities. The parameters of the
LFR benchmark are listed in Table II.
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TABLE II. Parameters of the LFR benchmark.

No. of vertices 1000
Average degree 20
Maximum degree 100
Minus exponent for the degree sequence 2
Minus exponent for the community size distribution 1
Minimum community size 10
Maximum community size 800

APPENDIX B: OPTIMALITY OF LINEAR THRESHOLD
UNDER EXPECTED SPECTRAL SIMILARITY

In (2), we defined the absolute spectral similarity as a
function of the input vector x. Besides the worst case σmin,
we can also define an average case similarity measure,

σexp = Ex∼P (x)

[
1 − xT ΔLx

λN

]
= 1 − Ex∼P (x)[xT ΔLx]

λN

,

where the input vectors are drawn from a distribution P (x).
If we assume the entries of the vector x are independent
identically distributed random variables, we have

σexp = 1 −
∑

u∈V,v∈V ΔWuvExu,xv∼P (x)[(xu − xv )2]

λN

,

∝1 − C

λN

∑
u∈V,v∈V

(Wuv − W̃uv ), (B1)

where we have used linearity of expectation and the fact
that C = Exu,xv∼P (x)[(xu − xv )2] is independent of u and v

because the entries of x are assumed to be independent and
identically distributed. Hence, the expected spectral similarity
σexp simply becomes the maximum when total edge weights
are kept as much as possible. This completes the proof that
weight thresholding optimizes the expected value of σ (x)
with independent identically distributed x entries.

APPENDIX C: COMPUTATIONAL EFFICIENCY OF MASS

Recall that the MASS measure is defined as

σmin = min
∀x,|x|=1

(
1 − xT ΔLx

λN

)
= 1 − λΔ

N

λN

, (C1)

where λΔ
N is the largest eigenvalue of the difference Laplacian

ΔL.
As a general spectral measure, MASS automatically cap-

tures important mesoscopic structures in the data. We suggest
users of MASS take all types of group structure into account.
However, if the application really concerns the community
structures, additional validation can be done relatively easily.
The Davis-Kahan theorem (see the main text) provides a
theoretical connection between the largest eigenvalue of the
difference Laplacian and the smallest eigenvectors associated
with community structures. Empirically, we can also consider
the average rotational angle (ARA) of the corresponding
eigenvectors,

η = E2�i�k[cos∠(vi, ṽi )], (C2)

where cos∠(vi, ṽi ) represents the cosine of the angle between
the respective eigenvectors of G and G̃ corresponding to
their ith smallest eigenvalue. The integer k is the number of
relevant communities and can be selected based on spectral
graph theory, the Louvain method, or domain knowledge if it
is available.

A major advantage of the formulation in Eq. (C1) is its
numerical stability and computational efficiency. Designing
efficient and stable algorithms for finding the eigenvalues of
a matrix is one of the most important problems in numerical
analysis. The state-of-the-art iterative solvers in popular nu-
merical packages today are inherently more stable for larger
eigenvalues, including the current implementation of Matlab
which we use for this work [30–32].

With only computing the largest eigenvalues of two graph
Laplacians, the MASS measure is therefore among the most
efficient and stable spectral properties. To demonstrate its
computational efficiency, we compare the running time of
computing MASS [Eqs. (3)] with those of traditional commu-
nity detection algorithms, as well as DeltaCon and efficiency
measures in Table III.

APPENDIX D: RESULTS ON NETWORKS WITH
RANDOMIZED EDGE WEIGHT

To demonstrate the effect of weight thresholding on net-
works with no weight-degree correlation, we rerun the ex-
periment on the synthetic and world trade network with ran-
domized edge weight. In both cases, MASS and mesoscopic
structures fall quickly as the edges are removed (Fig. 3).

APPENDIX E: THEORETICAL PROPERTIES OF MASS

In Ref. [27] the authors proposed several theoretical ax-
ioms for graph similarity measures. Here we adapt them to
the specialized task of comparing G with its thresholded
subgraph G̃. We interpret the axioms as desired properties that
good subgraph similarity metrics (SSM) must satisfy. We first
introduce the full list of axioms with interpretations:

(1) Zero identity: The SSM returns 0 if G̃ is an empty
graph, 1 if G̃ is identical to the original graph.

(2) Monotonicity: The SSM (nonstrictly) monotonically
decreases or increases as we threshold out more edges.

(3) Robustness: The SSM will not drop to zero from
relative large values by removing a single edge, even if the
graph becomes disconnected (unless it becomes an empty
graph).

(4) Submodularity: Removing the same set of edges has a
greater impact on the subgraph similarity measure for smaller
graphs.

(5) Weight awareness: When thresholding out a single
edge, the greater the edge weight, the greater the impact on
the subgraph similarity measure.

(6) Structure awareness: The SSM suffers from a greater
impact if thresholding creates disconnected components.

Next, we demonstrate that the proposed MASS measure
satisfies these axioms. Recall that we define MASS as

σmin(G̃,G) = 1 − λΔ
N

λN

,
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TABLE III. Computational time (in seconds) of graph properties.a

Measures MASS DeltaCon Global efficiency k-means Louvain

World trade network 0.181 0.457 154.5 1.619 1.355
Airline network 13.60 767.2 157.0 37.63 112.9

aAll measures are taken 21 times, in correspondence to the thresholds [0, 0.05, 0.1, 0.15, . . . , 0.95, 1]. The experiment is conducted under
Matlab version R2017a. Code packages are provided by the authors of Refs. [27,35,36].

where λΔ
N is the largest eigenvalue of the Laplacian of the

difference graph ΔG = {V,ΔE = E − Ẽ,ΔW = W − W̃ }.
The first axiom requires that the subgraph similarity mea-

sure returns 0 for a completely thresholded graph and 1 for the
original graph.

Property 1 (Zero Identity): σmin(∅,G) = 0 and σmin

(G,G) = 1, where ∅ represents an empty graph
∅ = {V, ∅, 0N,N }.

Proof. The Zero property is trivially satisfied as ΔG = G

for G̃ = ∅ and thus λΔ
N = λN . The Identity property holds

because ΔG = ∅ for G̃ = G. According to spectral graph
theory, all eigenvalues of the Laplacian matrix are 0 for an
empty graph with N connected components, and we have
λΔ

N = 0. �
The second axiom requires the subgraph similarity mea-

sure to be monotonically decreasing as we threshold out more
and more edges.

Property 2 (Monotonicity): σmin(A,G) � σmin(B,G) if A

is a subgraph of B, where A,B are both subgraphs of the
original graph G.

Proof. By complement, we know that ΔB is a subgraph of
ΔA. Assume that λΔB

N = vT ΔLBv, where v is the correspond-
ing unit length eigenvector. Because of the monotonicity of
the Laplacian quadratic form, we have vT ΔLAv � λΔB

N . We
also have λΔA

N � vT ΔLAv � λΔB
N . Therefore σmin(A,G) �

σmin(B,G). �
Monotonicity alone does not prevent degeneracy when the

subgraph becomes disconnected. The third axiom thus states
that the subgraph similarity measure will not drop to zero from
relative large values by removing an arbitrary edge. A general

proof for weighted graphs is difficult to formulate. Here we
focus on simple graphs.

Property 3 (Robustness): Let A be a subgraph of B by
removing an arbitrary edge, where A,B are both subgraphs
of the original graph G, and all graphs are unweighted. If
σmin(B,G) > 0.5, we have σmin(A,G) > 0.

Proof. Since σmin(B,G) = 1 − λΔB
N

λN

> 0.5, we have

2λΔB
N < λN . The largest eigenvalue of the Laplacian of ΔB is

bounded on both sides by

max
i

dΔB
i + 1 � λΔB

N � max
i,j∈ΔB

(
dΔB

i + dΔB
j

)
,

where dΔB
i denotes the degree of vertex i in ΔB. Without loss

of generality, we assume that ΔA is ΔB plus the edge (u, v).
If (u, v) becomes the new maximizer for the upper bound of
the Laplacian of ΔA, we have

λΔA
N � dΔA

u + dΔA
v = dΔB

u + dΔB
v + 2 � 2λΔB

N < λN.

If the maximizer is (u′, v′) 
= (u, v), we instead get

λΔA
N � dΔA

u′ + dΔA
v′ � dΔB

u′ + dΔB
v′ + 1 < 2λΔB

N < λN.

Therefore, we always have

σmin(A,G) = 1 − λΔA
N

λN

> 0.

�
Monotonicity and smoothness concerns different thresh-

olding on the same graph G. We can similarly derive submod-
ularity for the same thresholding on different graphs. In other

MASS k-means Louvain core-periphery global efficiency Transitivity CPL DeltaCon |maxComponent|
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FIG. 3. Variation of MASS and other variables under weight thresholding, for a synthetic network generated by the LFR benchmark (a) and
the world trade network (b) with randomized weight and 0 weight-degree correlation. The “|maxComponent|” curve represents the fraction of
vertices remaining in the largest connected component.
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words, removing the same set of edges has a greater impact
on the similarity measure for smaller graphs.

Property 4 (Submodularity): Let A be a subgraph of B.
For any common thresholding on both graphs such that ΔA =
ΔB ∈ A, we have σmin(Ã, A) � σmin(B̃, B ).

Proof. Assume λA
N = vT LAv, where v is the correspond-

ing unit length eigenvector. Because of the monotonicity of
the Laplacian quadratic form, we have vT LBv � λA

N . We also
have λB

N � vT LBv � λA
N . Since ΔA = ΔB, we get λΔA

N =
λΔB

N . Therefore,

σmin(Ã, A) = 1 − λΔA
N

λA
N

� 1 − λΔB
N

λB
N

= σmin(B̃, B ).

�
The fifth axiom asserts that when thresholding out a single

edge, the greater the edge weight, the greater the impact on
the similarity measure.

Property 5 (Weight Awareness): Let A,B be different sub-
graphs of the original graph G by removing a single edge, with
the edge (u, v) /∈ A (but ∈ B), and (u′, v′) /∈ B (but ∈ A). If
the edge weights follow Wuv � Wu′v′ , we have σmin(A,G) �
σmin(B,G).

Proof. By complement, we know that ΔA and ΔB both
consist of a single edge and WΔA

uv � WΔB
u′v′ . The largest eigen-

value of the Laplacian of a single-edge graph is simply λΔA
N =

2Wuv � 2Wu′v′ = λΔB
N , and we thus have σmin(A,G) = 1 −

2Wuv

λN
� 1 − 2Wu′v′

λN
= σmin(B,G). �

The last property provides an important structural con-
straint. If thresholding creates disconnected components, it

should have a greater impact on the similarity measure. Ax-
iomatizing this property in its most general form is difficult,
we thus focus on an intuitive special case: the unweighted
Barbell graph.

Property 6 (Structure Awareness): Let graph G be an un-
weighted graph with two nonoverlapping stars of equal size
N/2 connected by a single edge (u, v), where u and v are
the two center vertices. Assume that A,B are subgraphs of
G, which differs only by swapping a single edge, with the
edge (u, v) /∈ A (but ∈ B), and (u′, v′) /∈ B (but ∈ A). Then
we have σmin(A,G) � σmin(B,G).

Proof. By complement, we know that ΔA is composed of
two connected stars while ΔB consists of two disconnected
stars. Without loss of generality, let us assume that |ΔA| =
|ΔB| = k, and that the two stars in ΔB have sizes k1 � k2,
with k = k1 + k2. Since the largest eigenvalue of Laplacian
of an unweighted k-star is exactly k, and the spectrum of the
Laplacian of a disconnected graph is simply the union of those
of its components, we have λΔB

N = k2.
Without loss of generality, assume that the bridge edge

(u, v) in ΔA has its endpoint u in the bigger compo-
nent, which is of size k2. Vertex u therefore has a de-
gree that is at least k2 [It will equal k2 + 1 if (u′, v′) is
in the opposite star component.] Vertex u and its neigh-
bors thus form a (k2 + 1)-star subgraph of ΔA. Since the
largest eigenvalue of Laplacian of an unweighted (k2 + 1)-
star is exactly k2 + 1, by the monotonicity of the Laplacian
quadratic form, we have λΔA

N � k2 + 1 � λΔB
N . Therefore,

σmin(A,G) � σmin(B,G). �
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