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In this paper we address the evolution of finite and structured populations including two types of species. The
evolutionary dynamics of the system is governed by the Moran process with constant fitnesses in the presence of
mutation. We obtain the stationary distribution in a number of topologies. We also approximate the mixing time,
i.e., the time that the system needs to reach its stationary distribution. It is observed that the mean frequency of
a species in the stationary distribution is approximately independent of the population structure, and the mixing
time has a power law behavior with respect to the population size whose exponent is closely related to the
population structure. The obtained results indicate that more heterogeneity leads to longer mixing times.
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I. INTRODUCTION

Traditionally, evolutionary game dynamics has been in-
vestigated in well-mixed infinite populations. Deterministic
evolutionary dynamics is described by the replicator equa-
tion(s) which can be interpreted as a genetic or cultural
evolution. However, in the real world we deal with structured
populations of interacting individuals either in biological or
social systems. Recently, the effect of population structure on
evolution has attracted a lot of attention [1-4]. Moreover, the
evolutionary graph theory is a promising tool for studying the
impact of structure on evolutionary dynamics [5-8].

For small enough mutation rates, one of the species takes
over the whole population before a new mutation arises [9].
In this case, the so-called fixation probability and the fixation
time would be important [10-12]. However, in the systems
where mutation occurs more often, such as in social systems,
the population is a mixture of different species. Structural
symmetries of underlying graphs can be very useful to obtain
analytical results, such as fixation probability and fixation
time for special graph topologies [13].

If we look at the evolutionary process as a Markov chain,
the so-called mixing time as defined in the probability theory is
the time needed for the chain to get close to its stationary dis-
tribution within a small error interval, say € [14]. Black ef al.
[15] studied the stationary distribution and the mixing time
for an evolutionary game in a well-mixed population. Their
results are based on simulations and a WKB approximation
of the master equation. They explored the effect of intensity
of selection on the mixing time as well as the fixation time of
evolutionary games with metastable states and evolutionary
games with bistable states.

The effect of mutation in well-mixed populations is ad-
dressed in some studies [16-21], but researchers have not
treated structured populations in much detail. Here we study
the impact of structures on the evolution of their correspond-
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ing populations where each of them is composed of two types
of species with constant fitnesses. We see how the mixing time
of each topology is related to the mutation rate and population
size. The evolution of populations is modeled by the Moran
process with mutation which behaves as an ergodic Markov
chain, and thus its average behavior over time tends to show a
mutation-selection stationary distribution [22].

The organization of the paper is as follows. In Sec. II,
a description of our model is presented. The process of
obtaining the stationary distribution for complete and star
graphs by using transition matrices is elucidated in Sec. III.
In Sec. IV we compare stationary distribution for different
topologies. Finally in Sec. V, we compute the mixing time
for different topologies. Section VI is devoted to a summary
and concluding remarks.

II. MODEL

Consider a structured population of size N with two types
of species, say A and B, assuming their respective fitnesses
equal 1 and r where r > 1. The evolution of this system is
determined by a birth-death process. In a birth-death process,
one individual is selected at each time step for birth with
a probability proportional to its fitness, and then one of its
randomly chosen neighbors is replaced by its offspring. In a
two-type population without mutations, each individual repro-
duces an offspring of its own type, however in a population
including two types of species with mutations, the selected
individual reproduces an offspring of its own type with the
probability 1 — w and of the other type with the probability w.
Regardless of the topology, we have a set of states (Markov
space states) determined by the number i of type B speciesi €
{0, ..., N}. According to the presented dynamics, the transi-
tions are of three types:i — i+ 1, i — i —1,andi —
i. Let P be the transition matrix of this process. P;; is the
transition probability from state i to state j. This process con-
structs an ergodic Markov chain in which each state is accessi-
ble from every other state (in one or a finite number of steps),
and it has a unique stationary distribution 7= which is the left
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FIG. 1. The Markov states diagram of the evolutionary process
on a network. State i represents all configurations with i as the
number of individuals of type B,i € {0,..., N}. A; = P11, Wi =
P

eigenvector of the transition matrix P with eigenvalue 1,
TP =m. (1)

The stationary distribution is the probability distribution over
the state space of the system in a long period of time. In a
Markov chain, the distribution at time ¢ equals v, = vy P’,
where vy is the initial distribution. Given enough time, the
probability distribution converges to 7 regardless of the initial
conditions. To obtain this quantity, one can easily compute
P! when t — 00 so that every row of P’ equals 7.

For a structured population one can distinguish a number of
configurations with the same number of species. Practically,
tracing all of these configurations and transitions between
them is not possible. Therefore, we represent all configura-
tions with the same number of species of type B by a single
state in the Markov chain (Fig. 1). This is in some sense a kind
of coarse graining the original state space.

III. THE STATIONARY DISTRIBUTION OF COMPLETE
AND STAR GRAPHS

Complete and star graphs are prototypes of highly homo-
geneous and heterogeneous networks, respectively. Therefore,
they are worth studying to understand the relationship be-
tween evolutionary dynamics and structural properties of net-
works. This has been the subject of a number of investigations.
For example, in Refs. [23,24] the fixation probability of the
Moran process on star graphs is obtained analytically. The
effect of heterogeneity is also studied in Ref. [25].

In this section we numerically calculate the stationary
distribution for star and complete graphs. Then we compare
the mean fraction of B’s for complete and star graphs by
approximating the master equation.

A. Probability distribution

The Markov space of a complete graph is of the general
form shown in Fig. 1. In the case of a star graph, we prefer to
study the state space in more detail. We consider two types of
states distinguished by the type of the central node. Therefore,
a Markov chain composed of 2N states (Fig. 2) could be
obtained. The stationary distributions for complete and star
graphs are depicted in Figs. 3 and 4, respectively. For these
two graphs, one can calculate the exact form of the transition
matrix analytically (see the next section). Therefore, we can
use Eq. (1) to find the stationary distribution. Figures 3 and
4 are generated by this method. Both graphs show peaks in
i ~ 80 for the mutation probability u = 0.1. As mentioned

FIG. 2. Markov chain states of a star graph with N nodes. The
states are divided into two groups in which the center is occupied by
either type A or type B. We determine these two groups by using
the notation (k, i) in which k is O or 1 if the center is occupied by
type A or B, respectively, and i denotes the number of nodes in the
periphery that are occupied by B.

before, in the star graph we can distinguish two types of
states, namely, the B-centered and A-centered states. In Fig. 4
stationary (sub)distributions corresponding to these two types
are shown separately as well as the overall distribution which
is, in fact, the sum of A-centered and B-centered distribut}{/ons.
—m

The ratio of A-centered to B-centered peaks is ﬁ—’; ==,

where p4 and pjp are the probabilities of the center occupation
by A or B at the stationary distribution and m denotes the av-
erage number of B-type species in the stationary distribution.

B. Comparing the mean fraction of B’s for complete and star
graphs

The probability p*(i) of finding the system in state i at
time t obeys the master equation,

P = pT() = pT—DT (=) + p"((+DT(i+1)
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FIG. 3. The numerical stationary distribution for the complete
graph with » =2 and N = 100.
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FIG. 4. The numerical stationary distribution for the star graph
with parameters r =2, u = 0.1, and N = 100. The three curves
correspond to the A-centered, B-centered configurations, and the
overall probability distribution. The mean value of the number of
B’sisn = 82.

where T (i) and T (i) are the transition probabilities from
itoi+1andi — 1, respectively. Considering both selection
and mutation, there are four types of transitions that change
the number of B’s. Two of them increase the number of B’s
with the probability 77 (i), and the other two decrease the
number of B’s with the probability 77 (i). Here we explain
in detail the computation of T7%(i) for a complete graph.
Assume the system is in state i. The transitions that increase
the number of B’s are of the following two types:

(a) A node of type A is chosen for reproduction with
probability N —7 and reproduces an offspring of type B with
probability w. Then one of its ne1ghb0rs of type A is replaced
by the newborn B with the probablhty . As a result, the

probability of increasing the number of B s in this transition
IS,LL N—i N—-i—1
N—i+ri N—-1 ° . . .
(b) A node of type B is chosen for reproduction with

probability +—— and reproduces an offspring of its own type
with probablhty 1— . Then one of its neighbors of type Ais
replaced by the newborn B with the probablhty .Asa
result, the probability of increasing the number of B s in this
transition is (1 — ) 52— 4=

Therefore, T (i) is the sum of the above two probabilities,

TH() = WN =0)(N—i -1+ 1A —wri(N —1i) 3)
(N—i+ri)(N-1) '

Likewise, T~ (i) is easily obtained as below,

() = (1 ,u)(N. l)l.+/irl(l 1). @
(N—i+ri)(N—-1)

For the star graph there are eight possible transitions that
change the number of B’s such that four of them increase the
number of B’s and the other four decrease it. Here we explain
just one of B increasing transitions. The other ones can be
deduced analogously.

Consider a star graph with one B at its center andi — 1 B’s
at its leaves. Let the central node be selected for reproduction

with probability y——- and reproduce an offspring of its own
type with probablhty M- . Then one of its neighbors of
type A is replaced by the newborn B with probability %
Therefore the probability of increasing the number of B’s
in this transition is (1 — M)m%. By considering the
other types of transitions, one can obtain the total transition
probabilities as follows:

T D)= pp (1) pa(l=)
N—i+ri N—1 —i+ri
1 —i—1 —i—1
My v NNl—l 'uIJVV—il+ri’ G0)
T*(i>=pA(1—u)ﬁN' ot ps(l u)—jn

where p4 and pp are the fractions of A-centered and
B-centered configurations, respectively, with i B’s that are
closely related to the initial condition and the time step. It is
N—i

worth mentioning that in the stationary distribution ps = =

and pp = lﬁ

The stationary distribution (i) is obtained by the con-
dition p™*!(i) = p™(i) = m (i) which leads to the following
detailed balance condition:

T~(i+ D@ +1) =T @)m ). (6)
The stationary distribution is obtained as follows:
i1
Nl K=
Yicollj=o R;

This is exactly the stationary distribution v of Eq. (1). Using
this stationary distribution one can obtain the mean value for
the number of B’s, /i = Y~ i (i).

As an example for the application of the above relations
we consider the evolutionary dynamics of a complete graph
of size N = 100 with parameters » =2 and u = 0.1. The
mean value of the number of B’s in this case is 7 = 82 which
is in agreement with the peak of the stationary distribution
illustrated in Fig. 4.

Now, we use this formalism to compare the effect of
mutation probability in star and complete graphs. Figure 5
shows the mean value of the fraction of B’s versus mutation
probability for star and complete graphs with N = 100 nodes.
As is seen, they completely coincide. This can be explained by
obtaining the large N approximation of the master equation
Eq. (2),ie, N > 1.

By defining x :=i/N and ¢ := /N and the probability
density p(x, t) := Np* (i), we can expand the master equation
in a Taylor series in x and ¢ which ultimately leads to [22]

T ()

(i) = m (7N

dp(x,1) _ d ld_ 2
T [a(x)p(x ] + > dx s[6°(x)p(x, D), (8)
where ax)=T%(x)—T"(x) and b(x) =

\/%[TJF(x) + T-(x)]. For large but finite values of N,
this equation has the form of Fokker-Planck equation which
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FIG. 5. The comparison of the mean fraction of B’s 7 for the
star (blue circles) and complete graph (red line) versus mutation
probability p with parameters r = 2 and N = 100. They are exactly
matched.

corresponds to the following Langevin equation:
X =a(x)+ b(x)E, 9

where £ is a white noise with properties (£(¢)) =0 and
(E@E()) =6 —1t'). In large N approximation, only
the drift term survives and a deterministic equation is

obtained as
x =a(x), (10)

where a(x) is the same for the complete and star graphs in the
stationary regime,

A=rx®+[r(l—p)—p—1x+pn
l—x+rx '

a(x) = (11)
Therefore, for a large population, the mean fraction of B’s
versus mutation probability for both the star and the complete
graphs is identical.

IV. THE EFFECT OF STRUCTURE ON THE
STATIONARY DISTRIBUTION

In this section, we investigate the role of the population
structure on the stationary distribution of the evolutionary
process. Examining the topologies that are more complex than
the star and complete graphs is more challenging because of
their greater complexity and less symmetry. Here we cannot
calculate the transition matrix analytically. Therefore, for
these types of topologies we found the stationary distribu-
tions by simulation. The results are depicted in Figs. 6-8.
According to Fig. 6, the probability distribution for the cycle
graph has a maximum in a lower number of B-type individuals
compared to other topologies. The star graph has a sharper
maximum than other topologies. This may be traced in the
special structure of the star graph because all the sites are
connected to each other via the central node. Therefore, the
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FIG. 6. The stationary distribution for the complete, star, ran-
dom, and cycle graphs with r =2, u =0.1, and N = 100. All
stationary distributions are approximately the same except for the
cycle graph which has the minimum average degree.

changes happen slowly, and the system stays in the same state
for a longer time compared to the other topologies.

The stationary distribution of the scale-free (SF) network
based on the Barabasi-Albert (BA) model is illustrated in
Fig. 7 for different values of m which denote the number
of links in the BA model through which each new node
connects to the present nodes. As m increases, the probability
distribution converges to that of the complete and star graphs.

The stationary distribution of the Watts-Strogatz (WS)
model for the small-world (SW) network is shown in
Fig. 8. Two parameters are varied in this kind of graph: the
node degree of initial regular network K and the rewiring
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FIG. 7. The stationary distribution for the BA scale-free network
for different m’s, i.e., the number of links in the BA model through
which each new node connects to the present nodes withr =2, pu =
0.1, and N = 100. As m increases, the probability distribution con-
verges to the probability distribution of the complete and star graphs.
The number of realization, 100.
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FIG. 8. The stationary distribution for a WS small-world net-
work for different mean degrees, and the rewiring probability p =
0.1withr =2, u=0.1,and N = 100.

probability p. To build a small-world graph based on the
Watts-Strogatz algorithm, we first construct a regular graph
with a circular shape in which each node is connected to
its K nearest neighbors K /2 at each side. Then, we rewire
every edge with a determined rewiring probability. For the p
values between 0.001 and 0.1, the obtained graph will be a
small-world network with a high clustering coefficient and
a small average shortest path length. Except for K =4, it
is seen that the results are very similar for different average
degrees. All in all, there is not much discrepancy between the
probability distributions of different topologies of the small-
world network with the same number of nodes.

According to these outcomes, we conclude that, by consid-
ering only the number of individuals regardless of their con-
figuration, the topology does not play an important role in the
average stationary distribution. The only examined topologies
which have more discrepancies compared to the others are the
cycle and scale-free graphs with the least number of edges. A
plausible justification is that these two graphs have the least
average degree among all the studied topologies.

We also demonstrate the mean frequency of type B indi-
viduals versus mutation probability in Fig. 9 for all topologies.
When the mutation probability is increased, the frequency of
individuals with a higher fitness decreases until the mutation
probability reaches p = 0.5 where all the graphs meet at the
mean frequency 7 = 0.5.

V. THE MIXING TIME

The time needed for a Markov chain to get close enough to
its stationary state is called the mixing time [14]. In order to
obtain the mixing time, we need to define close enough more
precisely. To this end, we introduce a measure named the total
variation distance between two probability distributions on the
state space of a Markov chain. Let « and 8 be two proba-
bility distributions on the state space S. The total variation
distance d(«, B) between these two probability distributions is

cycle

random
SF 1
SF1
SW
complete i
star

1!

0.9
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I
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0.4 1 1 1 1
0.0 0.2 . .

FIG. 9. The mean fraction of B’s 71 versus the mutation probabil-
ity u for different topologies with r = 2, N = 100. The number of
realizations for the SF and SF1 is taken to be 100.

defined by
1
d(@, p) =5 la(s) =BGl (12)

ses

According to this definition, one can measure the total vari-
ation between the probability distribution p(s) of the state
space at time ¢ and the stationary distribution 7 (s) as d(t) =
% Y ses |p(s) — m(s)|. Since d(r) tends to O when 1 —> oo,
it makes sense to define the mixing time as below [14],

Imix(€) = min{z|d(r) < €}, (13)

where € > 0 is a small parameter which determines the
closeness of the probability distribution to the stationary
distribution. A standard choice for € which is widely used

1000 T T T T

800

600

tmix

400

200

0 20 20 60 80 100
Initial state
FIG. 10. The mixing time #;, versus the initial state for the com-
plete graph withr =2, © = 0.1,and N = 100. The closer the initial
state approaches the average number of B’s, the sooner the dyna-
mics converges to the stationary distribution.
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FIG. 11. Log-log plot of the mixing time #yx versus the popu-
lation size N for different topologies with » =2 and pu = 0.1. SF
and SF1 denote the scale-free networks with m > 1 and m =1,
respectively, and SW denotes the small-world graph. The number of
realizations for the SF and SF1 is taken to be 100.

by many authors is 1/4 [14,15]. It can be shown that smaller
values of € do not considerably affect d(¢). We approximate
the mixing time for the complete, star, cycle, scale-free, small-
world, and random graphs. For the complete graph, the mixing
time is obtained for different initial states (Fig. 10). This figure
shows that the closer the initial state approaches the average
number of B’s, the sooner the system finds its stationary
distribution.

It is also interesting to see how the mixing time is related
to the population size. Our observations show a power law
relation between the mixing time and the population size
tmix ~ N¢ (Fig. 11). The exponent « is closely related to the
heterogeneity of the network (Table I).

This power law relation can be compared to the behavior
of the average fixation time of the cycle and star graphs for
fitness values greater than 1 [23], although the exponents are
not the same.

Now we look at the effect of mutation probability on the
mixing time. Figure 12 shows the mixing time as a function
of mutation probability for different topologies. According
to this figure, when heterogeneity increases, the mixing time
increases as well. For the same values of parameters, the
maximum mixing time corresponds to the star graph, whereas
the minimum one belongs to the complete graph.

Clearly in homogeneous graphs, such as the complete,
random, and small-world graphs, increasing the mutation
probability leads to shorter mixing times. The reason lies

TABLE I. Exponent of the power law relation of the mixing time
with respect to the network size N“.

Topology Complete Random Small-world Cycle SF SF1 Star

o 1.07 1.04 1.16 123 126 1.4 2.13

10°

@ cycle OO SwW
4 V¥ random *—@ complete
10 MDA SF *— star b
B SF1
8
g
-~
10° 1
2 L L L L
100.0 0.2 0.4 0.6 0.8
2

FIG. 12. Semilogarithmic plot of the mixing time #,,x versus the
mutation probability wu for different topologies with N = 100 and
r = 2. SF and SF1 denote the scale-free graphs withm > 1 andm =
1, respectively and SW denotes the small-world graph. The number
of realizations for the SF and SF1 is taken to be 100.

in the behavior of TT — T~ which determines the speed
of approaching the system its stationary distribution. It is
straightforward to measure the average value of T+ — T~
from the initial distribution to the stationary distribution of
every mutation probability for the complete graph. It is seen
that this quantity grows as the mutation probability increases.
Hence, the mixing time decreases for greater mutation prob-
abilities. It is seen that for the other topologies, such as the
star and scale-free graphs that are more heterogeneous, the
mixing time has a minimum in mutation probabilities less
than 1. As we saw in Sec. III, approximating 7 and T~
for the star graph is not possible because p4 and pp are not
determined exactly except in the steady state regime. There-
fore, one cannot easily obtain T+ — T~ for the star graph.
By comparing the mixing time versus mutation probability
for homogeneous and heterogeneous topologies, one can infer
that the behavior of the mixing time with respect to the
mutation probability is related to heterogeneity or in other
words locally starlike topologies. We do not have a rigorous
explanation for this observation. It may also be related to other
structural properties, such as the mean shortest path length
and clustering coefficient. This can be the subject of further
investigation.

In Fig. 13 we show the error bars for the mixing time over
100 realizations of BA graphs with m = 1 and m = 2. As is
seen, the mixing time for different realizations of a BA net-
work does not differ significantly. We also check how the ini-
tial configuration of a BA graph could affect the mixing time.
We compare the mixing time of a BA graph when in the initial
state the single B is located on the most connected node with
the mixing time of that graph when in the initial state the sin-
gle B is located on the less connected node. Intuitively we ex-
pect that when we start with the most connected node we reach
the stationary distribution faster. Interestingly our results do
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FIG. 13. The error bars for the mixing time #,;; over different
realizations of BA graphs N = 100 and » = 2. SF and SF1 denote the
scale-free graphs with m > 1 and m = 1, respectively. The number
of realizations for the SF and SF1 is taken to be 100.

not fulfill this expectation, and the values of the mixing time
obtained for both initial conditions are almost the same.

VI. SUMMARY AND CONCLUDING REMARKS

In this paper we studied the evolutionary dynamics in the
finite structured populations with mutation. For the star and
complete graphs, we could compute the exact form of the
transition matrix. Using the transition matrix is an easy way to

interpret the average behavior of the system in the stationary
regime. For other topologies we were not able to obtain
the transition matrix because of the variety of configurations
that the distribution of species on the topologies have. These
topologies include the scale-free graph constructed by the
Barabasi-Albert model, the small-world graph constructed by
the Watts-Strogatz model, the cycle graph, and the random
graph. We looked at the time evolution of the number of each
type of species. This way, we approximated the probability
distribution at the stationary regime for each topology. We
observed that the stationary distribution is almost independent
of the network topology, but this is not the case for the mixing
time.

The mixing time is the time that the system needs to reach
its stationary distribution. The behavior of the mixing time
with respect to the population size is closely related to the
topology. As the heterogeneity increases from the random
graph to the star graph, changing the population size has more
effect on the mixing time. It is also seen that the more the
heterogeneity is, the more time the system takes to reach its
stationary distribution. For homogeneous topologies, such as
the complete graph, as the mutation probability increases, it
is expected that the system converges more rapidly to the
stationary distribution. As a result, the absolute minimum of
the mixing time is reached when the mutation probability is
maximized. Interestingly, what we have obtained in hetero-
geneous graphs, such as the star graph, is different in a way
that the minimum value of the mixing time in heterogeneous
topologies occurs in a mutation probability less than one.
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