
PHYSICAL REVIEW E 98, 042217 (2018)

Floquet analysis of a fractal-spectrum-generating periodically driven quantum system
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We employ Floquet analysis to study the spectral properties of a double-kicked top (DKT) system. This
is a classically nonintegrable dynamical system, which also shows chaos. However, even for the underlying
classically chaotic dynamics, the quantum quasienergy spectrum of this system does not follow the random
matrix conjecture which was proposed for the quantum spectrum of any classically chaotic systems. Instead the
quasienergy spectrum of the DKT system shows a butterfly-like self-similar fractal spectrum. Here we investigate
the relation between the quasienergy spectrum and the energy spectrum of the corresponding time-independent
Floquet Hamiltonian. This Hamiltonian is determined by factorizing the Floquet time-evolution operator into
three terms: an initial kick and a final kick, and in between a time-independent evolution dictated by a
time-independent Hermitian operator which is called the Floquet Hamiltonian. Like any other generic systems,
the Floquet Hamiltonian of the DKT system is also not possible to determine exactly. We apply a recently
proposed perturbation theory to obtain the approximate Floquet Hamiltonian at the high-frequency driving limit.
We then study the parameter regime where the quasienergy spectrum of the Floquet time-evolution operator
matches the energy spectrum of the approximate Floquet Hamiltonian. We have also done a comparative analysis
of how the two butterfly spectra disappear with the variation of a system parameter. Finally, we also explore the
self-similar property of the energy spectrum of the approximate Floquet Hamiltonian and find its connection with
the Farey sequence. Unlike all previous studies, here we have extensively investigated the self-similar property
of the whole DKT butterfly.
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I. INTRODUCTION

Hamiltonian systems undergoing periodic delta kicks are
studied extensively as a generic model for classical and quan-
tum chaos [1]. This has found new relevance in the possi-
bilities of engineering such systems using ultracold atoms
[2–5]. In the traditional approach, such time-dependent sys-
tems are theoretically studied by investigating the quasienergy
spectrum of the Floquet time-evolution operator. The Floquet
time-evolution operator is defined as the time-evolution oper-
ator over one period. This quasienergy spectrum contains the
imprint of the signature of quantum chaos [1] and quantum
criticality with varying parameters of the Hamiltonian [6,7].
Quantum chaos studies have also shown the existence of
fractal butterfly patterns in the quasienergy spectrum of some
periodically driven systems [8–11], which indicates an infinite
number of quantum phase transitions [12]. These systems are
particularly interesting because of the fact that, though their
classical phase space dynamics may be chaotic, the quantum
quasienergy spectrum does not follow the celebrated Bohigas-
Giannoni-Schmit (BGS) conjecture [13]. Here we focus on a
double-kicked top (DKT) system, which is a prototype model
of a classically chaotic system whose quantum spectrum does
not follow the BGS conjecture. Two separate kicks within
one time period have already been realized in cold atoms
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in a magneto-optical trap [3]. There is also a possibility
of realizing this system in driven two-mode Bose-Einstein
condensate systems [14].

We analyze this periodically driven system employing
standard Floquet theory. According to this theory, the time-
evolution operator of any periodically driven system can be
decomposed into a product of three unitary operators. The
first and the third unitary operators are called the micromotion
operators, which describe a time-periodic component of the
dynamics. These unitary operators are expressed in terms
of Hermitian time-periodic kicked operators which represent
the effect of a sudden switching on and off of the time-
dependent forcing. The second unitary operator represents a
time-independent evolution governed by a time-independent
Hermitian operator called the Floquet Hamiltonian or the ef-
fective time-independent Hamiltonian operator of the periodi-
cally driven system. We are investigating spectral properties of
the Floquet Hamitonian of the DKT system and comparing its
spectrum with the quasienergy spectrum of its corresponding
Floquet time-evolution operator.

In most of the physical situations, it is not possible to
construct the effective Hamiltonian exactly. Therefore one
has to adopt a perturbative technique for its construction.
In particular, when the frequency of the driving is large
compared to any natural frequency scale of the nondriven
problem, then the effective Hamiltonian can be calculated
perturbatively with very high accuracy. This happens because
the driving cannot resonantly couple with the slower degrees
of freedom of the nondriven system. In many situations, the
Floquet or effective Hamiltonian is just the time average of

2470-0045/2018/98(4)/042217(10) 042217-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.98.042217&domain=pdf&date_stamp=2018-10-31
https://doi.org/10.1103/PhysRevE.98.042217


SHARMA, GUHA SARKAR, AND BANDYOPADHYAY PHYSICAL REVIEW E 98, 042217 (2018)

the periodically driven Hamiltonian over a single time period
[15]. However, the effective time-independent Hamiltonian
of the dynamical system, which we are considering here,
is not equal to its time-averaged Hamiltonian. Traditionally,
the effective Hamiltonian is obtained from the Floquet time-
evolution operator using the Cambell-Baker-Hausdorff (CBH)
-based Magnus or Trotter expansion [16]. It has been shown
that the CBH-based methods to study the kicked systems
suffer intrinsic flaws, and an alternative formulation [17,18]
is better suited for more accurate analysis of such systems [7].
The effective Hamiltonian thus obtained is found to mimic the
exact time evolution for a large range of parameter values.

This paper begins with a brief discussion on the Floquet
formalism and a perturbation scheme to construct an effec-
tive static Hamiltonian of a periodically driven system. In
Sec. III we introduce the DKT model. Here we discuss the
Floquet time-evolution operator of the system and obtain the
corresponding effective static Hamiltonian by a perturbation
scheme. We also discuss underlying symmetries of the sys-
tem. In the next section, we discuss the spectral properties
of the effective Hamiltonian of the DKT model. Here we
show the fractal property of the spectrum and also show the
multifractality in the corresponding eigenstates. In Sec. V we
show how the DKT butterfly dissolves with the increment of
a system parameter. Here we compare this disappearance of
the DKT butterfly among its quasienergy spectrum, unfolded
eigenvalues of its effective Hamiltonian, and eigenvalues of
the effective Hamiltonian folded in the first Floquet-Brillouin
zone. Section VI discusses the self-similar properties of the
DKT butterfly. Here we treated the whole butterfly as a self-
similar object and explore this property employing number
theoretical approach. Finally, we conclude the paper.

II. FORMALISM

A general time-dependent problem where Ĥ (t ) = Ĥ0 +
V̂ (t ), with a time-periodic potential V̂ (t ) = V̂ (t + T ) of pe-
riodicity T , has a Floquet operator F̂ = U (T ) which corre-
sponds to the time-evolution operator for one time period of
the external driving. The eigenrelation of the Floquet operator
F̂ |φα (0)〉 = exp(−iεαT )|φα (0)〉, where the Floquet modes
satisfy the periodic condition |φα (t )〉 = |φα (t + T )〉 and εα

are the quasienergies. The quasienergy εα is not unique;
we can always define a quasienergy εα,n ≡ εα + nω where
ω = 2π/T and n are all integers. This nonuniqueness of
the quasienergy is the signature of the temporal periodicity
in the Hamiltonian. Here we shall consider the quasienergy
spectrum in the first Floquet-Brillouin zone, which is defined
by −ω/2 � εα � ω/2 [19,20].

A traditional approach to extract an effective static Hamil-
tonian is to write F̂ = exp(−iĤeffT ) and use the CBH expan-
sion to read out Ĥeff up to any order in T ∼ 1/ω. This method,
however, has been found to suffer from several inadequacies
[7,17]. The method used in Refs. [17,18] expresses the time-
evolution operator Û (ti → tf ) between time instants ti and
tf = ti + T , as a sequence of operations consisting of an
initial kick followed by an evolution under a time-independent
Hamiltonian and a final “micromotion,”

Û (ti → tf ) = Û †(tf )e−iĤeff T Û (ti ), (1)

where Û (t ) = eiĜ(t ) such that Ĝ(t ) = Ĝ(t + T ) with zero
average over one time period. For high-frequency pulsing, the
operators Ĥeff and Ĝ(t ) can be expanded as a perturbation
series in 1/ω of the form

Ĥeff =
∞∑

n=0

1

ωn
Ĥ

(n)
eff , Ĝ(t ) =

∞∑
n=1

1

ωn
Ĝ(n). (2)

This ansatz along with Eq. (1) can be used to obtain Ĥeff

and Ĝ(t ) up to any desired accuracy. In this method, the
average time-independent part is retained in Ĥeff , and all
the time dependence is pushed to the operator Ĝ(t ) at each
order of perturbation. The convergence of the perturbation
series has been surmised in earlier works [17,18]. The periodic
potential V̂ (t ) may be expanded in a Fourier series as V̂ (t ) =
V̂0 + ∑∞

n=1 (V̂ne
inωt + V̂−ne

−inωt ). The truncated series for

Ĥeff and Ĝ(t ) up to O(1/ω2) can be expressed in terms of
the Fourier coefficients of V̂ (t ) [18]. A brief discussion of
this method is discussed in Appendix A. We use this as the
general expression for the effective Hamiltonian for a system
having a periodically delta function kicked potential V̂ (t ) =
V̂

∑
n δ(t − nT ). The effective Hamiltonian of this system is

given by [7,18]

Ĥeff = Ĥ0 + V̂

T
+ 1

ω2T 2
[[V̂ , Ĥ0], V̂ ]

( ∞∑
n=1

1

n2

)
+ O

(
1

ω3

)

= Ĥ0 + V̂

T
+ 1

24
[[V̂ , Ĥ0], V̂ ] + O

(
1

ω3

)
. (3)

For the simplicity of notation, we would continuously use
the notation Ĥeff to refer the approximate effective time-
independent Hamiltonian without explicitly referring to the
correction term.

III. MODEL

We are interested in studying the Floquet Hamiltonian of
a system whose quasienergy spectrum shows fractal behavior.
One such system, which has been studied extensively, is the
DKT model [10,11]. The Hamiltonian of this system is

Ĥ = 2α

T
Ĵx + η

2j
Ĵ 2

z

+∞∑
n=−∞

[
δ

(
t − nT + T

2

)
− δ(t − nT )

]
.

(4)
The Ĵi here represent SU(2) generators (angular momentum
operators) in the d = (2j + 1)-dimensional Hilbert space.
The time-independent term describes a rotation about x axis of
angle α within the time period T . This rotation terms acts all
the time on the system. The second term describes a twisting
about the z axis of strength η. This term acts stroboscopically
and twice within a given period T on the system. However,
the direction of the second twisting is the opposite of the
first one.

The double kicked systems can be experimentally realized
in a cloud of Cs atoms collected in a magneto-optical trap and
cooled at the temperature of the order of few micro-Kelvins.
The time-dependent potential can be formed by two counter-
propagating laser beams incident on the cold atom cloud. This
potential is switched on and off by acousto-optic modulators
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to create pulses or kicks of pulse width of the order of a few
hundreds of nanoseconds [3].

The corresponding time-evolution operator for the given
time period T = 2π/ω, also known as the Floquet operator, is
given as

F̂ = exp(−iαĴx ) exp

(
−i

η

2j
Ĵ 2

z

)
exp(−iαĴx )

× exp

(
i

η

2j
Ĵ 2

z

)
. (5)

Following Refs. [10,11], the Floquet operator can be repre-
sented in a more compact form as

F̂ = exp(−iαĴx ) exp {−iαĴ+ei[η(2Ĵz+1)/2j ] + H.c.}, (6)

where Ĵ+ denotes the operator (Ĵx + iĴy )/2. The quasiperi-
odic nature of the factor ei[η(2Ĵz+1)/2j ] for irrational values
of the parameter η/j leads to interesting spectral properties
[10,11]. The above Floquet operator can also be obtained from
a different driven SU(2) Hamiltonian of the form

Ĥ = Ĥ0 + V̂
+∞∑

n=−∞
δ(t − nT ), where V̂ = αĴx

and Ĥ0 = α
Ĵ+
T

exp

[
i

η

2j
(2Ĵz + 1)

]
+ H.c. (7)

This is a single kicked system whose Floquet operator,
given in Eq. (6), matches exactly with that of the DKT and

thereby exhibits interesting Cantor set-like properties in the
quasienergy spectrum. Since the double kicked system is now
converted into an effective single kicked system, we can now
use Eq. (3) to get the Floquet Hamiltonian or the effective
Hamiltonian Ĥeff approximately up to an order of 1/ω2.

According to the definition, the Floquet modes |φα (0)〉 are
also eigenstates of the Floquet operator Ĥeff : Ĥeff |φα (0)〉 =
Eα|φα (0)〉. The eigenvalues Eα of Ĥeff are just unfolded
quasienergies. However, here we have calculated Ĥeff ap-
proximately up to an order of 1/ω2. Therefore the obtained
eigenvalues Eα are the approximate unfolded quasienergies.
If we map the unfolded eigenvalues into the first Floquet-
Brillouin zone by the transformation εα = Eα mod ω, we
shall get the approximate quasienergies up to an accuracy of
the order of 1/ω2.

We are interested in the spectral properties of this effective
Hamiltonian Ĥeff . The original time-dependent Hamiltonian
Ĥ has a unitary symmetry:

R†
x

(π

2

)
ĤRx

(π

2

)
= Ĥ , where Rx

(π

2

)
= exp

(
−i

π

2
Jx

)
.

For α/T = π/4, the Hamiltonian Ĥ will have an additional
unitary symmetry. However, in this paper, we shall mostly
consider (except in Sec. VI A) much smaller values of α/T ,
and therefore this additional symmetry will never appear. This
unitary symmetry is also preserved in the effective Hamil-
tonian Ĥeff . Because of this symmetry, instead of standard
{|m〉} basis states, we can choose other basis states which are
classified as even and odd basis states [21]:

Even:

{
|0〉, 1√

2
(|2m〉 + | − 2m〉),

1√
2

(|2m − 1〉 − |1 − 2m〉)

}
of dimension j + 1;

Odd:

{
1√
2

(|2m〉 − | − 2m〉),
1√
2

(|2m − 1〉 + |1 − 2m〉)

}
of dimension j, (8)

where m = 1, . . . , j/2 and we shall always consider j as an even integer. If we write the Hamiltonian Ĥeff in the above basis
states, the Ĥeff matrix will be broken down into a block diagonal form with blocks of size j + 1 (even block) and j (odd block).
These two blocks represent two invariant subspaces of Ĥeff , and hence they are dynamically independent. Therefore, we can
independently study the spectral properties of even and odd subspaces of Ĥeff , and they are expected to show qualitatively
similar behavior. Our numerics have confirmed this fact, and in this paper we are reporting only the results performed for the
even subspace. In the even subspace, we denote the basis states as {|m〉}, and these are represented in terms of the standard basis
states {|m〉} in the following way:

|m = 0〉 = |m = 0〉,
|m〉 = 1√

2
(|2m〉 + | − 2m〉) where m = 1, . . . , j/2 and m = 1, . . . , j/2,

|m〉 = 1√
2

(|2m − 1〉 + |1 − 2m〉) where m = j/2 + 1, . . . , j and m = 1, . . . , j/2. (9)

IV. RESULTS

A. Properties of the eigenvalues

Figure 1(a) shows the folded energy spectrum of the
Hamiltonian Ĥeff as a function of ξ = η/2πj for α = 1/j

where we have chosen an even value of spin j = 20. We note
that odd values of j would bring about changes in the spec-
trum. The appearance of a butterfly or the static approximate

eigenspectrum is in very good agreement with the quasienergy
spectrum of the original DKT [10,11]. The spectrum shows
qualitative similarity with the Hoftstadter butterfly [22] owing
to the presence of the quasiperiodic term. This feature is,
however, along the off-diagonal nearest neighbor band and is
therefore different from the Harper-Hofstadter case where it
appears along the diagonal. In order to study multifractality
of the energy spectrum, we set η/j at an irrational value of the
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FIG. 1. (a) Energy spectrum of the effective time-independent
Hamiltonian of the DKT folded in the first Floquet-Brilouin zone.
The spectrum is showing the butterfly pattern. (b)–(c) Self-similarity
in the DOS of the energy spectrum is shown by zooming on different
scales. Here we set ξ = Gr/2π , where Gr = (

√
5 − 1)/2 is the

golden mean ratio, the “most irrational number.”

golden ratio Gr = (
√

5 − 1)/2 and a large value of j = 2500.
To study the statistical property of the energy spectrum, we
consider the histogram of eigenvalues for different scales. The
density of states (DOS) ρ(E) exhibits self-similarity as seen
in Figs. 1(b) and 1(c).

B. Properties of the eigenstates

We have selected six eigenstates of Ĥeff based on their
different (de)localization property as shown in top panel of
Fig. 2. We use the participation ratio (PR) as a measure of
(de)localization and use that to select the eigenstates. The PR
of a state is defined in the following way: If a quantum state of
any system |�〉 is expanded in a (discrete) basis, say, {|φm〉},
then |�〉 = ∑

m cm|φm〉, and the PR of this state in the given
basis is 1/

∑
m |cm|4. The PR basically measures how many

basis states {|φm〉} are participating or supporting to construct
the given state |�〉. A larger value of PR means that the state is

0
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0
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|
c
m
|
2

0
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m

0
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0.02
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0 200 400 600 800 1000
m

0
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E

0
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P
R

E=-0.89
PR=2.06

E=-0.036
PR=8.31

E=-0.016
PR=41.17

E=-0.0017
PR=98.62

E=-0.00018
PR=109.26

E=-0.00017
PR=120.80

FIG. 2. The top box shows the PR values of all the eigenstates.
The remaining six boxes show the selected eigenstates. The energy
value and the PR value of these eigenstates are shown.

2 4 6 8 10
q

0
0.2
0.4
0.6
0.8

D
q

FIG. 3. Generalized fractal dimensions are shown for the above
mentioned six eigenstates. The top four states are showing their
stronger sensitivity to the scaling parameter q. This indicates their
multifractal nature. The remaining two states can be identified as
localized states from their PR values. In addition, they also show
almost no dependence on q.

highly delocalized, whereas a very small value of PR suggests
that the state is localized.

In the top box of Fig. 2 we have plotted the PR values of
all the eigenstates. We have selected six eigenstates (marked
by colored boxes) based on their PR values. The selected
eigenstates are presented in the remaining six boxes of Fig. 2.
Among the selected eigenstates, one of the eigenstates is
very much localized, which has very sharp support over a
narrow band of basis states {|m〉} around m = 1. Its corre-
sponding PR = 2.07, which suggests that approximately two
or three basis states have a major contribution or support for
this state. We have chosen five more eigenstates with PR =
8.31, 41.17, 98.62, 109.26, and 120.80. The PR = 120.80
is the most delocalized state among all the eigenstates of
Ĥeff . Here we have taken j = 1000, hence the dimension
of the even subspace is j + 1 = 1001. Therefore, the PR of
the most delocalized eigenstate should be equal to j + 1 =
1001, which happens only when all the components of that
eigenstate are equal to 1/

√
j + 1 = 1/

√
1001. However, here

we observe that, in comparison to the maximally delocalized
state, all the eigenstates of Ĥeff are very much localized.

In Fig. 3 we have presented the multifractal property of
the selected eigenstates. We study this property by estimating
their generalized fractal dimensions Dq , and these are calcu-
lated by the standard box-counting procedure [23]: We con-
sider the components of the nth eigenstate as {c(n)

m } and divide
the total dimension d = j + 1 into Ml partitions or boxes of
linear size l ∼ d/Ml . We then define the box probability of
the eigenstate in the ith box as

p̃i (l) =
∑

m∈i ′th box

∣∣c(n)
m

∣∣2
,

where the summation extends over the components m in the
ith box. We then calculate qth moments of this measure over
all boxes and determine χq (l) = ∑

i p̃(i)q . For the multi-
fractal eigenstates, it is expected that the measure χq (l) is
proportional to some power τq of the box size l and τq is called
the scaling exponent. The generalized fractal dimensions Dq

are then calculated from the relation −τq = (q − 1)Dq =
liml→0 ln χq (l)/ ln l. According to the definition of Dq , the
parameter q can be any real number. However, here we are
restricting ourselves only in the region where q � 0, for the
following reason: for the positive values of q, the larger
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FIG. 4. Disappearance of the DKT butterfly is shown as a func-
tion of the parameter α = n/j , where n = 1, 3, 5, 7, 10 (from top to
bottom). The left column is showing this behavior in the quasienergy
spectrum, whereas the right column is showing the same for the
energy spectrum of the Floquet Hamiltonian folded in the first
Floquet-Brillouin zone. The central column is showing the unfolded
energy spectrum of the Floquet Hamiltonian. At the central column,
we do not see any disappearance of the butterfly; however, the size
of the butterfly increases with the increment of the parameter α. Here
we set j = 20.

components of the eigenstates determine Dq . On the other
hand, for the negative values of q, the smaller components
of the eigenstates play the major role in determining Dq .
However, the smaller components of the eigenstates are very
sensitive to numerical errors, and consequently the calculated
values of Dq for q < 0 will be erroneous.

Figure 3 reveals the following important features of Dq :
According to our expectation, the generalized fractal dimen-
sion Dq of the most localized state is completely independent
of q and Dq = 0 for all q. The moderately localized state
shows very weak q dependence. The other four selected eigen-
states show much stronger q dependence on Dq . Figure 3 also
shows a general feature of all the eigenstates: Dq is greater for
all values of q for the eigenstate with larger PR.

V. DISAPPEARANCE OF THE BUTTERFLY

It is well known for the quasienergy butterfly spectrum
of the DKT Floquet operator that it gradually dissolves with
the increment of the parameter α [11]. In Fig. 4 we have
compared the quasienergy spectrum of F̂ (left column), the
energy spectrum of the effective Hamiltonian Ĥeff (center
column), and the energy spectrum of Ĥeff folded into the first
Floquet-Brillouin zone (right column) for different values of
α. The top three boxes are showing these spectra for α = 1/j ,
and they are similar. As we increase the value of the parameter
α, we see initial deformation of the butterfly spectrum of
the quasienergy spectrum, and eventually it completely disap-
pears at larger values of α. This behavior is already reported
in Ref. [11].

0
0.2
0.4
0.6
0.8
1

0
0.2
0.4
0.6
0.8
1

ρ(
E
)

-2
E

0
0.2
0.4
0.6
0.8
1

-20 2 0 2
E

n=1 n=3

n=5 n=7

n=10 n=100

FIG. 5. The DOS of the folded energy eigenvalues of the Floquet
Hamiltonian is shown for the same values of the parameter α, which
we considered in Fig. 4. In addition, we have also shown the DOS for
α = 100/j . Here we set the spin size at a very large value j = 2500.

At the center column, we have presented the energy spec-
trum of the effective Hamiltonian Ĥeff for the same values
of α. For this spectrum, we do not see any disappearance of
the butterfly, but we observe the enlargement of the butterfly
with the increment of α. This behavior is expected because
the effective Hamiltonian Ĥeff up to the order of 1/ω2 has two
parts. One part is Ĥ0 + V̂ , which is linearly dependent on α;
and the second part 1

24 [[V̂, Ĥ0], V̂] is quadratically dependent
on α. The values of α which we are considering here are very
small (order of 1/j ). Therefore, the spectrum of Ĥeff is mostly
dependent linearly on α. Consequently, as we increase α, the
size of the butterfly increases linearly with α. Furthermore,
if we divide the spectrum corresponding to α = n/j by the
factor n, where n > 1, then we can project the entire spectrum
exactly on the spectrum corresponding to α = 1/j . Similarly
we can project any two spectrum with different α on the top
of each other just dividing or multiplying the spectrum by
proper scaling factor. Here we have presented the spectrum for
α = n/j where n = 1, 3, 5, 7, 10, and we set spin j = 20.

The energy spectrum of Ĥeff folded into the first Floquet-
Brillouin zone is expected to behave similarly to the
quasienergy spectrum. The results presented in the right col-
umn of Fig. 4 are indeed showing the dissolution of the folded
energy spectrum with the increment of α. However, due to the
truncation at 1/ω2, we observe a marginal difference between
the quasienergy and the folded spectra for larger α = n/j with
n = 2, 5, 7, and 10.

We further study the behavior of DOS ρ(E) of the folded
eigenvalues of Ĥeff as a function of the parameter α for a fixed
value of η/j which we set equal to π times the golden mean
ratio. Here we set the spin size at very large value j = 2500 to
get a good statistic for the DOS. In Fig. 5 we have presented
ρ(E) for α = n/j where n = 1, 3, 5, 7, 10, 100. The result
corresponding to n = 1 is already presented in Fig. 1(b). Here
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we have presented it again to show the transformation of ρ(E)
as a function of α. For n = 3, the spectrum has widened
to the edge of the first Floquet-Brillouin zone |E| = π . The
central band of the spectrum within |E| � 0.4 still shows the
self-similar property. This we have verified by zooming ρ(E)
within |E| � 0.4. As we further increase α by varying n,
we observe gradual disappearance of the self-similar part of
the spectrum around the central band. For a sufficiently large
value of α, when n = 100, we see a complete disappearance
of any self-similarity in the spectrum. Moreover, at this value
of α, ρ(E) is approximately flat, which suggests an almost
uniform random distribution of the eigenspectrum.

VI. FRACTAL AND SELF-SIMILARITY
OF THE DKT SPECTRUM

The best known quantum spectrum which shows a self-
similar fractal property is the Hofstadter butterfly. This
spectrum was obtained for a system of noninteracting free
electrons which are moving in a two-dimensional (2D) sur-
face under the presence of a magnetic field perpendicular to
the surface [22]. The butterfly spectrum appears when one
plots the energy spectrum as a function of the magnetic flux
strength. The fractal properties, as well as the self-similar
properties, of the Hofstadter butterfly were mostly studied for
some specific values of the magnetic flux strength. Therefore,
all these studies were restricted only on some local parts of
the butterfly. For the case of the DKT butterfly spectrum, the
parameter ξ is playing the role of magnetic flux strength. Also
for this butterfly spectrum, all previous studies focused only
on some specific parameter values [9–11]. In Sec. IV A we
have presented the self-similar properties of the spectrum for
a specific value of the parameter η/j = Gr or ξ = Gr/2π ,
where Gr is the golden ratio. In this section, we study fractal
properties and their self-similarity for the whole DKT butter-
fly spectrum.

A. Fractal properties

In Sec. V we have found that the DKT butterfly spectrum
disappears with the increment of the parameter α. This hap-
pened in the quasienergy spectrum of the Floquet operator, as
well as in the energy spectrum of the perturbatively obtained
Ĥeff . We also observed a complete random distribution of
the DOS ρ(E) of Ĥeff for very large value of α. We now
investigate how the fractal property of the butterfly spectrum
obtained from the quasienergy spectrum and the energy spec-
trum of Ĥeff change with parameter α. Here we are assuming
that the butterfly is lying on a 2D which is formed by the
parameter ξ and the (quasi)energy. We calculate the fractal
dimension D2 of the whole butterfly by the box-counting
method [24]. Since the object is lying on a 2D surface, we
divide the region into many square boxes or partitions and
count the number of points of the butterfly spectrum in each
of the boxes. We know the total number of points are used
to construct the butterfly from the spin size j and the number
of division within the parameter range 0 � ξ � 1. Here we set
j = 20 and vary the parameter ξ from 0 to 1 in 1000 steps. For
the butterfly constructed from the spectrum with even parity,
the total number of points is (j + 1) × 1000 = 21 000. From

0 1 2 3 4 5 6
α/π

1

1.2

1.4

1.6

1.8

2

D
2

FIG. 6. The whole butterfly is considered as one single fractal
object. We have compared how the fractal dimension D2 varies as
a function of the parameter α. Here we have compared this for the
butterfly formed by the quasienergy spectrum ε (blue circles) and by
the folded energy eigenvalues E of the Floquet Hamiltonian (orange
circles). The solid black colored straight line is showing how D2

of the butterfly formed by the folded energy spectrum continuously
increasing in linear fashion with slope of the order of 10−3 and
will reach asymptotically at D2 = 2.0 (Euclidean dimension of the
parameter space “ξ − E”) as a function of α. On the other hand, for
the quasienergy spectrum, we see oscillatory behavior of D2 as a
function of α.

this, we assign the box probability of individual boxes. We
then calculate D2 as a function of the parameter α and present
this result in Fig. 6.

We started with α = 1/j where j = 20. At this value of
α, we observed a nice butterfly in the exact quasienergy
spectrum of the Floquet operator and in the energy spectrum
of the approximate Ĥeff . In Fig. 4 we observed that these
two butterflies are very much identical, at least to the naked
eye. But they are actually not. This fact is revealed while
calculating D2. We have found that D2 of these two butterflies
are not exactly equal for the quasienergy spectrum D2 

1.35 and for the energy spectrum D2 
 1.76. This indicates
some minute differences between these two spectra, which we
detect by calculating D2. In any case, the fractional value of
D2 shows the fractal nature of the DKT butterfly. We then
gradually increase the value of the parameter α and observe
the variation in D2. For the quasienergy spectrum (blue line
with circles), D2 reaches its maximum value at α = π/2, and
then D2 decreases as we increase the parameter α. At α = π ,
D2 goes down to its minima. which is equal to unity. We
then observe a periodic behavior of D2 as we increase the
value of the parameter α. The fractal dimension D2 reaches
its maxima at α = (2m + 1)π/2 and its minima D2 = 1.0 for
α = mπ , where m = 0, 1, 2, 3, . . . . However, here we have
not shown the spectrum for the trivial case of m = 0. The
periodic behavior of D2 as a function of α can be understood
by substituting α → α + mπ in Eq. (5). For any integer value
of m, the Floquet operator F̂ remains invariant. Therefore,
the whole quasienergy spectrum within 0 � ξ � 1 will repeat
itself for every window of mπ � α � (m + 1)π . This means
that we shall see the identical butterfly for all values of α =
mπ + 1/j . The minima D2 = 1.0 is observed for α = mπ be-
cause at these values of α the Floquet operator F̂ becomes an
identity operator. Consequently, in the first Floquet-Brillouin
zone, all the quasienergies become degenerate at ε = 0 for all
values of the parameter ξ . Therefore, the whole quasienergy

042217-6



FLOQUET ANALYSIS OF A FRACTAL-SPECTRUM- … PHYSICAL REVIEW E 98, 042217 (2018)

0 0.2 0.4 0.6 0.8 1
ξ

-2

-1

0

1

2

E

1/31/4ξ =

FIG. 7. Skeleton of the DKT butterfly is shown for a set of
rational values of the parameter ξ within the range [0, 1]. We have
considered those rational numbers which we have obtained from
Farey sequence of order 8.

spectrum will become a straight line along ξ axis at the energy
E = 0. For a straight line D2 = 1.0 is expected.

The quantum resonances at α = mπ are a typical property
of the Floquet operator F̂ , and this is not observed in the
energy spectrum of Ĥeff . In Fig. 6 the solid orange line with
the circle shows the variation of D2 as a function of α for
the energy spectrum of Ĥeff . We have given a straight line
fitting to this curve in the region α � π . The linear fitting
gives a small O(10−3) but a positive slope. This suggests a
steady increase of D2 as a function of α, and this will reach
asymptotically to a value D2 −→ 2. This asymptotic value
of D2 is nothing but the Euclidean dimension of the “ξ − E

plane” where the whole spectrum is lying.

B. Self-similarity: “Butterfly at every scale”

We now explore self-similar properties of the DKT butter-
fly using simple geometrical and number theoretical tools. A
pattern is called self-similar if it is exactly similar to some
part of itself. In other words, if a pattern repeats itself at
every scale, then it is called self-similar. Here we analyze
the self-similar properties of the DKT butterfly following
the method suggested in Ref. [25]. Originally this method
was proposed for the analysis of the Hoftstadter butterfly.
However, our numeric suggests that the DKT butterfly shares
almost similar number theoretical properties with those of the
Hofstadter butterfly. However, there is a fundamental differ-
ence between these two butterflies. Wings of the Hofstadter
butterfly represent gaps in the spectrum. However, we have
seen in Fig. 1(a) that the wings of the DKT butterfly are not
completely empty, consequently we do not have perfect gaps
in the spectrum. Figures 1(b) and 1(c) have shown the absence
of any gap in the DOS.

We start our analysis by considering rational values of the
parameter ξ . We have constructed these rational values within
[0, 1] from Farey sequence [26]. Figure 7 shows a basic
structure of the DKT butterfly, which we have obtained using
the sequence of rational numbers F8, the Farey sequence of
order 8. This sequence is given in Eq. (B2). In the case of the
Hofstadter butterfly, for a fixed rational value of the magnetic
flux strength φ = p

q
, the energy spectrum has q bands and

(q − 1) gaps. Moreover, for even values of q, the two central

0.2 0.25 0.3 0.35
ξ

-1

-0.5

0

0.5

1

E

FIG. 8. We have presented the DKT butterfly in the vicinity of
two rational values of the parameter ξ : ξ = 1/4 (even denominator;
black colored region) and ξ = 1/3 (odd denominator; green colored
region).

bands of the spectrum touch each other, and therefore (q − 2)
bands are observed. However, for the DKT butterfly, we do
not see such a distinct band gaps for different rational values
of the parameter ξ . In Fig. 7 we see continuous spectrum
at ξ = 1

4 (q is even) and ξ = 1
3 (q is odd). For both these

values of q, the Hofstadter spectrum shows two gaps. We shall
explore more about the gapless property of the DKT butterfly
elsewhere [27].

In Fig. 8 we have presented some part of the DKT butterfly.
We have shown the behavior of this butterfly in the vicinity of
ξ = 1

4 and ξ = 1
3 . The even denominator fractional value of

ξ = 1
4 forms the center of a butterfly. This is true for every

even denominator case. For example, ξ = 1
2 forms the center

of the biggest butterfly. On the other hand, around the odd
denominator fractional value of ξ = 1

3 , the behavior of the
spectrum is completely different. Here we see a boundary
which separates a proliferation of nested butterflies. Unlike
the Hofstadter case, here we do not see the left-right symmetry
in the spectrum about this boundary at ξ = 1

3 .
We further analyze the “self-similarity” of the DKT but-

terfly spectrum by studying it at different scales. Here also
we closely follow the method proposed in Ref. [25]. As we
zoom in the entire butterfly, we obtain butterflies at ever
smaller scales, and they exhibit minute details of the original
butterfly. We shall refer to the butterflies that are produced
on zooming in at different scales as different generations
of the DKT butterfly. Each butterfly can be represented by
a triplet (ξL = pL/qL, ξR = pR/qR, ξC = pC/qC ) of rational
numbers, where ξL and ξR are the left and right edges of the
butterflies and ξC = pC/qC is the center point. The triplets
required for the description of butterfly are connected to each
other by the relation

pC

qC

= pL + pR

qL + qR

≡ pL

qL

⊕ pR

qR

. (10)

The above rule is known as the Farey sum [26]. The different
scales of the butterfly can be considered as different genera-
tions. The first generation is the full butterfly stretching from
ξ = 0 to 1. Here we restrict ourselves only to those cases
where the larger and the smaller butterflies share neither their
left edge nor their right edge. Every generation of the butterfly
is obtained by zooming the butterfly in the previous genera-
tion. The recursive scheme that connects the two successive
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FIG. 9. Self-similarity in the butterfly pattern in the folded en-
ergy spectrum of the effective Hamiltonian of the DKT is shown. The
ranges of the figures are (a) ξ = 1

3 to ξ = 2
5 , (b) ξ = 4

11 to ξ = 7
19 ,

and (c) ξ = 15
41 to ξ = 26

71 .

generations of butterfly is given by [25]

ξL(l + 1) = ξL(l) + ξC (l),

ξR (l + 1) = ξL(l + 1) + ξC (l),

ξC (l + 1) = ξL(l + 1) + ξR (l + 1), (11)

where l and l + 1 represents the successive generations.
Figure 9 shows the three successive generations of but-

terfly. The first generation is shown in Fig. 1(a), whose
ξL = 0

1 , ξR = 1
1 , and ξC = 1

2 . This is a complete butterfly.
Figure 9(a) shows the second generation of the butterfly. The
left and right edges of a second generation butterfly are,
respectively, at ξL(l + 1) = 0

1 ⊕ 1
2 = 1

3 and ξR (l + 1) = 1
3 ⊕

1
2 = 2

5 with its center at ξC (l + 1) = 1
3 ⊕ 2

5 = 3
8 . We have ob-

tained these by the above recursion relation given in Eq. (11).
Therefore, this second generation butterfly is represented by
a triplet ( 1

3 , 2
5 , 3

8 ). Following the above discussed method, we
can get butterflies in higher generations. In Figs. 9(b) and 9(c)
we have shown, respectively, a third and a fourth generation
butterfly. Using the above recursion scheme, we have detected
these butterflies, and they are, respectively, represented by
the following pair of triplets: ( 4

11 , 7
19 , 11

30 ) and ( 15
41 , 26

71 , 41
112 ).

Figure 9 clearly shows that the DKT butterfly is self-similar.
Interestingly, we have found that the DKT butterflies share
the same Farey sequence-based number theoretical property
as that of the Hofstadter butterfly. The two models have no
physical similarity whatsoever.

VII. CONCLUSION

In this work we have compared the properties of the
quasienergy spectrum of a double kicked top (DKT) system
and the energy spectrum of the corresponding static Floquet
Hamiltonian. In principle, the Floquet Hamiltonian can be
determined by factorizing the Floquet time-evolution operator
defined in one single period. However, like any other generic
systems, the Floquet Hamiltonian of the DKT system cannot
be determined exactly. We have applied a recently proposed
perturbation theory to obtain the Floquet Hamiltonian at the
limit of high-frequency driving.

The quasienergy spectrum of the periodically driven DKT
system gives a butterfly-like self-similar fractal if we plot all
the quasienergies as a function of one of the system param-
eters. If we keep increasing the value of that parameter, then

the butterfly spectrum will repeat itself periodically. Since we
have obtained the Floquet Hamiltonian approximately by em-
ploying a perturbation theory, we have investigated whether
the energy spectrum of the Floquet Hamiltonian does share
the identical self-similar property. We have found that this
is indeed the case if we fold the energy spectrum within the
first Floquet-Brillouin zone and consider a certain parameter
regime.

In the present work, we have mostly restricted our study
within that parameter regime where the quasienergy spectrum
and the energy spectrum folded into the first Floquet-Brillouin
zone are very much identical. Therefore, we have concen-
trated mostly on the spectrum of the perturbatively obtained
Floquet Hamiltonian. First, we have observed self-similarity
in the DOS of the energy spectrum at a parameter fixed at an
irrational value. We have also closely looked at the eigenstates
and have found a large number of multifractal eigenstates. In
addition, we have witnessed many localized eigenstates. The
most delocalized eigenstate is also a multifractal state.

Further, we have investigated how the butterfly spectrum
can be melted or disappeared by varying a suitable system
parameter. For this study, we have compared the quasienergy
spectrum of the Floquet time-evolution operator with the
energy eigenvalues of the Floquet Hamiltonian for different
values of that suitable system parameter. For the energy
eigenvalues of the Floquet Hamiltonian, we consider unfolded
eigenvalues as well as the eigenvalues folded in the first
Brillouin zone. We have observed the disappearance of the
butterfly in the quasienergy spectrum and in the folded energy
spectrum of the Floquet Hamiltonian. Correspondingly, for
the unfolded case, we have not observed any disappearance
of the butterfly, but we have observed enhancement of the size
of the butterfly without changing its structure.

Finally, we have extensively studied the self-similarity
of the butterfly spectrum of the Floquet Hamiltonian. All
previous works concentrated on the self-similar property of
the DKT butterfly for a particular value of a system parameter.
Here we have studied the self-similarity of the whole DKT
butterfly as one single object. Following a recent number
of theoretical studies of the Hoftstadter butterfly, we have
observed identical-looking DKT butterflies in ever smaller
scales. Interestingly, we have found that the DKT butterfly
shares many of the number theoretical properties with the
well-known Hoftstadter butterfly. The reason behind this can
be explored in future work.
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APPENDIX A: TIME-INDEPENDENT HAMILTONIAN
FOR PERIODICALLY DRIVEN SYSTEM

We consider a general time-dependent Hamiltonian
Ĥ (t ) = Ĥ0 + V̂ (t ), with a time-periodic potential V̂ (t ) =
V̂ (t + T ) of periodicity T that has a Floquet operator F̂ (t )
which is the time-evolution operator for one time period.
The method used in Refs. [17,18] factors the time-evolution
unitary operator Û (ti → tf ) between times ti and tf = ti + T ,
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as a sequence consisting of an initial kick followed by an
evolution under a time-independent Hamiltonian and final
kick [18]:

Û (ti → tf ) = Û †(tf )e−iĤeff T Û (ti ), (A1)

where Û (t ) = eiĜ(t ) so that Ĝ(t ) = Ĝ(t + T ) with vanishing
average over one time period. For high-frequency forcing, the
operators Ĥeff and Ĝ(t ) are expanded as a perturbation series
in 1/ω given by

Ĥeff =
∞∑

n=0

1

ωn
Ĥ

(n)
eff , Ĝ(t ) =

∞∑
n=1

1

ωn
Ĝ(n). (A2)

This along with Eq. (1) can be used to obtain Ĥeff and Ĝ(t )
up to any desired order of perturbation. At each order of per-
turbation, the average time-independent part, in this method,
is retained in Ĥeff and all the time dependence pushed to the
operator Ĝ(t ). The convergence of the perturbation series is
to be checked on case-by-case basis [17,18]. Expanding the
periodic potential V̂ (t ) in a Fourier series we have

V̂ (t ) = V̂0 +
∞∑

n=1

(V̂ne
inωt + V̂−ne

−inωt ). (A3)

In terms of the Fourier coefficients, the truncated series for
Ĥeff and Ĝ(t ) up to O(1/ω2) can be written as

Ĥeff = Ĥ0 + V̂0 + 1

ω

∞∑
n=1

1

n
[V̂n, V̂−n] + 1

2ω2

∞∑
n=1

1

n2
([[V̂n, Ĥ0], V̂−n] + H.c.)

+ 1

3ω2

∞∑
n,m=1

1

nm
([V̂n, [V̂m, V̂−n−m]] − 2[V̂n, [V̂−m, V̂m−n]] + H.c.),

Ĝ(t ) = 1

iω

∞∑
n=1

1

n
(V̂ne

inωt − V̂−ne
−inωt ) + 1

iω2

∞∑
n=1

1

n2
([V̂n, Ĥ0 + V̂0]einωt − H.c.)

+ 1

2iω2

∞∑
n,m=1

1

n(n + m)
([V̂n, V̂m]ei(n+m)ωt − H.c.) + 1

2iω2

∞∑
n�=m=1

1

n(n − m)
([V̂n, V̂−m]ei(n−m)ωt − H.c.). (A4)

This general expression for the approximate effective static Hamiltonian for periodically driven systems is used in the article.

APPENDIX B: FAREY SEQUENCE

A Farey sequence Fn is the set of rational numbers p/q with p and q, with 0 < p < q < n, ordered by size. Each Farey
sequence start with value 0, denoted by the fraction 0

1 , and ends with the value 1, denoted by the fraction 1
1 . If we have two

fractions a
b

and c
d

with the properties that a
b

< c
d

and bc − qd = 1, then the fractions are known as Farey neighbors, and they
appear next to each other in some Farey sequence. The mediant of these two fractions is given by

a

b
⊕ c

d
= a + c

b + d
. (B1)

The Farey sequences of order 1 to 8 are given as

F1 =
{

0

1
,

1

1

}
F2 =

{
0

1
,

1

2
,

1

1

}
F3 =

{
0

1
,

1

3
,

1

2
,

2

3
,

1

1

}
F4 =

{
0

1
,

1

4
,

1

3
,

1

2
,

2

3
,

3

4
,

1

1

}
F5 =

{
0

1
,

1

5
,

1

4
,

1

3
,

2

5
,

1

2
,

3

5
,

2

3
,

3

4
,

4

5
,

1

1

}
F6 =

{
0

1
,

1

6
,

1

5
,

1

4
,

1

3
,

2

5
,

1

2
,

3

5
,

2

3
,

3

4
,

4

5
,

5

6
,

1

1

}
F7 =

{
0

1
,

1

7
,

1

6
,

1

5
,

1

4
,

2

7
,

1

3
,

2

5
,

3

7
,

1

2
,

4

7
,

3

5
,

2

3
,

5

7
,

3

4
,

4

5
,

5

6
,

6

7
,

1

1

}
F8 =

{
0

1
,

1

8
,

1

7
,

1

6
,

1

5
,

1

4
,

2

7
,

1

3
,

3

8
,

2

5
,

3

7
,

1

2
,

4

7
,

3

5
,

5

8
,

2

3
,

5

7
,

3

4
,

4

5
,

5

6
,

6

7
,

7

8
,

1

1

}
,

and so on. (B2)
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