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Origin of the 1/ f α spectral noise in chaotic and regular quantum systems
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Based on the connection between the spectral form factor and the probability to return, the origin of the energy
level fluctuation 1/f α noise in fully chaotic and fully integrable systems is traced to the quantum interference
between invariant manifolds of the classical dynamics and the dimensionality of those invariant manifolds. This
connection and the order-to-chaos transition are analyzed in terms of the statistics of Floquet’s quasienergies of a
classically chaotic driving nonlinear system. An immediate prediction of the connection established here is that
in the presence of decoherence, the spectral exponent α takes the same value, α = 2, for both fully chaotic and
fully integrable systems.
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I. INTRODUCTION

Quantum systems that are fully chaotic in the classical
limit exhibit a variety of universal features [1] such as level
repulsion [2], while in the semiclassical limit they exhibit
a nonlinear dependence on time of the spectral form factor
K (τ ) [3]. Specifically, it was conjectured that the spectral
fluctuation of quantum systems, which in the classical limit
are fully chaotic, coincides with those of random matrix
theory (RMT) [2] and that the fluctuation properties of a
quantum system whose classical analog is fully integrable are
well described by Poisson statistics [4]. These seminal results
were obtained on the basis of the predictions of RMT [5]
and the ramifications of the Gutzwiller trace formula [6,7],
respectively. Only recently was a connection between these
pioneering works established in the context of semiclassical
periodic-orbit theory [8,9].

By considering the energy levels of a system Hamiltonian
as a discrete time series with energy in the role of time, a
decade ago, it was discovered and proved that the spectral
level fluctuations of fully chaotic systems display 1/f -noise
whereas for fully integrable systems, the spectral noise be-
haves as 1/f 2 [10–12]. By means of RMT, it is also possible
to show that for KAM systems, chaos-assisted tunneling
[13] causes the spectral noise to behave like 1/f α of the
energy level fluctuations with 1 < α < 2 [14]. Therefore, the
order-to-chaos transition is fully characterized by the spectral
exponent α, and contrary to the Dyson �3(L) statistic, the
exponent α quantifies the chaoticity of the system in a single
parameter. Moreover, α is a natural measure of the fluctuation
properties of a quantum system through the power spectrum.
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However, having being developed on the basis of RMT,
the 1/f α behavior of the energy level fluctuation is the result
of statistical averages over the probability distribution of the
elements of random matrices. Therefore, it is not possible
to interpret, e.g., the particular value of α for fully chaotic
or integrable systems in terms of invariant manifolds of the
dynamics as in Refs. [8,9]. Since the average power noise that
defines the 1/f α behavior is a function of the spectral form
factor K (τ ) (see below), an interpretation is provided here
on the basis of recent progress toward the identification of
the classical invariant manifolds that contribute to the spectral
form factor [15]. Specifically, by resolving the spectral form
factor in phase space, it is shown that the particular value of
α for fully chaotic and regular systems can be understood in
terms of the dimensionality of the classical invariant mani-
fold of the dynamics (one-dimensional for isolated unstable
periodic orbits and N -dimensional for regular tori) and their
coherent quantum interference.

The connection established here enables us to identify
the different values of the spectral exponent α as a delicate
interplay between quantum and classical signatures of the
dynamics, namely quantum interference and the dimensional-
ity of classical invariant structures. The consequences of this
connection are manifolds, e.g., it predicts that the different
value of the spectral exponent for fully chaotic and fully
integrable systems does not survive in the classical limit.

II. SPECTRAL FLUCTUATIONS: THE AVERAGE POWER
NOISE AND THE SPECTRAL FORM FACTOR

The fluctuating parts of the energy-level and accumu-
lated energy-level densities are denoted by ρ̃(ε) and ñ(ε),
respectively. Spectral fluctuations are analyzed in terms of
the form factor K (τ ) and the power spectrum P n(τ ), defined
as the square modulus of the Fourier transform of ρ̃(ε) and
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ñ(ε), respectively. For τ �= 0, under the assumptions that
〈ρ̃(ε)ρ̃(ε + η)〉 → 0 faster than 1/η as η → ∞ and for a large
energy window �E � 1, it can be shown that [12]

〈|n̂(τ )|2〉
�E

= 〈P n(τ )〉 = K (τ )

4π2τ 2
, (1)

where 〈·〉 stands for spectral averages whereas ·̂ stands for the
Fourier transform of ·̃. The program developed in Refs. [10–
12] aims at introducing a time-series perspective to charac-
terize the spectral noise of 〈P n(τ )〉. As stated above, the
main idea behind this approach is to consider the sequence
of energy levels as a discrete time series with energy in the
role of time, and to study level correlations using tools from
time-series analysis.

III. TIME-SERIES PERSPECTIVE OF QUANTUM CHAOS:
THE AVERAGE POWER NOISE AND THE SPECTRAL

FORM FACTOR

The analogy between the energy spectrum and a dis-
crete time series is established in terms of the δq statistic
[10], defined as the deviation of the (q + 1)th level from
its mean value. In terms of unfolded energy levels δq =∑q

i=1 (si − 〈s〉) = εq+1 − ε1 − q, where si = εi+1 − εi , εi is
the ith unfolded level and 〈s〉 = 1 is the average value of si .

The unfolded energy levels are defined using the average
accumulated level density N̄ (E) as εi = N̄ (Ei ). This map-
ping is needed to remove the main trend defined by the smooth
part of the level density, and to compare between the statistical
properties of the spectral fluctuations of different systems
or different parts of the same spectrum. In the language of
time-series analysis, the unfolding mapping is a procedure for
making stationary the discrete time series defined by δq , its av-
erage and fluctuations not depending on time. Sampling ñ(ε)
for integer values of the energy leads to the discrete function
ñq (ε) with averaged power spectrum 〈P n

k 〉, and the Fourier

transform is given by n̂k = D
− 1

2
H

∑∞
q=−∞ n̂(k/DH + q ), with

k = 1, 2, . . . , DH − 1. DH = �E/〈d〉 is the effective dimen-
sion of the Hilbert space H, and 〈d〉 denotes the mean spectral
density for a finite range �E. The averaged power noise
of δk is related to 〈P n

k 〉 by 〈P δ
k 〉 = 〈P n

k 〉 − 1
12 for chaotic

systems and by 〈P δ
k 〉 = 〈P n

k 〉 for regular systems. If DH �
1 and k � DH, 〈P δ

k 〉β = DH/(2βπ2k) for chaotic systems
belonging to the three β = {1, 2, 4} classical RMT (for fully
chaotic systems), whereas 〈P δ

k 〉 = D2
H/(4π2k2) for integrable

systems. Thus, for small frequencies, the excitation energy
fluctuations exhibit 1/f (∼ 1/k) noise in chaotic systems and
1/f 2 (∼ 1/k2) noise in integrable systems [12].

IV. INTERFERENCE OF TIME-DOMAIN SCARS:
SPECTRAL FORM FACTOR

AND PROBABILITY TO RETURN

The key quantity that allows for the identification of the
contribution of classical invariant manifolds to K (τ ) is the
probability to return P

qm
ret (t ) [15–17]. To make a clear connec-

tion with the classical invariant manifolds of the underlying
classical dynamics, it is convenient to express the return prob-
ability in terms of phase-space objects. To do so, introduce
the Weyl representation of quantum mechanics [18], which

assigns a phase-space function O(p, q) to an operator Ô. For
the density operator ρ̂(t ) at time t , the Weyl transform defines
the Wigner function ρW(r, t ) = ∫

dNq ′ exp(−ip · q′/h̄)〈q +
q′/2|ρ̂(t )|q − q′/2〉, with r = (p, q) a vector in 2N -
dimensional phase space. The propagator GW(r′′, t ′′; r′, t ′) of
the Wigner function evolves the Wigner function from t ′ to
t ′′, ρW(r′′, t ′′) = ∫

d2Nr GW(r′′, t ′′; r′, t ′)ρW(r′, t ′), and it has
a clear classical analog, namely the Liouville propagator [19].

The quantum probability to return can be expressed as a
trace over the phase space of the propagator of the Wigner
function, namely P

qm
ret (t ) = ∫

d2Nr0GW(r0, t ; r0), with t =
t ′′ − t ′. For t � tH/DH, the form factor is related to the
quantum return probability by [15]

DHK (τ ) =
∫

d2Nr GW(r, t ; r, 0) = P
qm
ret (t ), (2)

where τ = t/tH, and tH = h〈d〉 denotes the Heisenberg time.
Remarkably, before tracing, the quasiprobability density to
return GW(r, t ; r, 0) allows for the identification of the mani-
folds that contributed to the form factor (see Fig. 1 below). At
the semiclassical level, besides the classical invariant mani-
folds with period T p and invariant manifolds with period T =
T p/l, where l is an integer, also sets of midpoints between
them contribute [15]. These midpoint manifolds constitute
important exceptions from a continuous convergence in the
classical limit of the Wigner toward the Liouville propagator
[15], and, as shown below, they are responsible for the differ-
ent functional form of the spectral noise in chaotic and regular
systems.

V. PROBABILITY TO RETURN AND
THE AVERAGE POWER NOISE

The connection between the averaged power spectrum
of the spectral fluctuations and the invariant manifolds of
the classical dynamics, and their quantum interferences, is
established from the comparison between Eqs. (1) and (2),

〈P n(τ )〉 = D−1
H (2πτ )−2P

qm
ret (t ). (3)

Because this identity does not rely on any semiclassical
approximation, it is exact and holds for finite- and infinite-
dimensional Hilbert spaces. Moreover, because it is formu-
lated at the level of the statistical operator ρ̂ and not at the
level of elements of the projective Hilbert space, it holds for
unitary as well as nonunitary dynamics.

As stated above, the calculation of 〈P δ
k 〉 requires the un-

folding of the energy level. Here, that unfolding needs to be
reinterpreted and calculated at the level of the return probabil-
ity, which is defined as a direct trace over the phase space of
the diagonal propagator GW(r, t ; r, 0). Thus, the subtraction
of the main trend translates here into the subtraction of the
classical contribution, i.e., it is assumed that the quantum
propagator can be accounted for by the superposition of the
classical propagator plus quantum fluctuations [15,20–22].
Thus, define the quantities �Pret (t ) = P

qm
ret (t ) − P cl

ret (t ) and
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(a)

(c) (d)

(e) (f)

(b)

FIG. 1. Quantum (left-hand side panel) and classical (right-hand side panel) diagonal propagators G(r, t ; r, 0) for the harmonically driven
quartic oscillator at t = T ≡ 2π/�, with ω0 = 1.0, � = 0.95, Eb = 100.0, and φ = π/3 with S = 0 [upper panels, Figs. 1(a) and 1(b)], S =
2.5 [central panels, Figs. 1(c) and 1(d)], and S = 10 [lower panels, Figs. 1(e) and 1(f)]. For better understanding of the midpoint contributions
in the diagonal propagator, Poincaré surfaces of sections are shown behind the classical diagonal propagator.

〈�P n(τ )〉 = D−1
H (2πτ )−2�Pret (t ). In the semiclassical limit,

P
qm
ret (t ) ≈

{
DH(2/β )τP cl

ret (t ) for fully chaotic systems,

DHP cl
ret (t ) for integrable systems,

(4)

where no degeneracies are considered for the integrable case
[17]. Therefore, for DH � 1,

〈�P n(τ )〉
P cl

ret (t )
≈

{
(2π2β )−1τ−1 for fully chaotic systems,

(4π2)−1τ−2 for integrable systems.
(5)

〈�P n(τ )〉/P cl
ret (t ) measures deviations from the main trend,

i.e., classical contributions, normalized by the classical return
probability. From Eq. (5), it is clear that the description in
terms of the return probability provides results consistent with
the time-series perspective developed in Refs. [10–12], i.e.,
deviations of the averaged power spectrum from the main
trend behave like 1/τα with α = 1 for chaotic and α = 2 for

integrable systems, respectively. The results formally coincide
after, as defined above, τ is replaced by k/DH.

The main advantage of the present formulation concerns
the possibility of interpreting the origin of the different values
of the exponent 1 � α � 2. As shown above, the different
nature of the energy level fluctuation relies on the particular
functional dependence of the quantum return probability on
τ [see Eq. (4)]. Therefore, this particular dependence relies
on the different nature of classical invariant manifolds that
contribute to the quantum return probability [15]. Specifically,
it is understood in terms of midpoint manifolds showing up
from the interference of periodic invariants of the dynamics
(see, e.g., Fig. 1 and the description below). For regular
systems, the number and size of these manifolds scale with
time the same way as that of the underlying tori [3,15], so that
no τ factor arises between quantum and classical return prob-
abilities in Eq. (4). This situation in turn reflects the fact that
periodic tori form N -dimensional surfaces in phase space and
are space-filling, e.g., in position space. In contrast, isolated
periodic orbits remain one-dimensional subsets independent
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of the number of freedoms. This dimensionality property is
in turn responsible for the emergence of the τ factor for fully
chaotic systems [15]. There is, therefore, qualitatively “more
room” available for midpoint manifolds in the latter case than
in the former.

VI. EXAMPLE

Traditionally, the study of spectral fluctuations has been
performed in nuclear systems or 2D billiards [10–12]. More
recently, the 1/f α noise has been studied in spin systems
such as nanowires [23,24]. However, because the dimen-
sion of the Wigner propagator is four times the real-space
dimension, a phase-space characterization of the invariant
manifolds in this object is not feasible for those systems.
For this reason, a one-dimensional driven mixed chaotic sys-
tems, prototypical in, e.g., coherent destruction of tunneling
[25], is considered here, namely H = p2/2m − mω2q2/4 +
m2ω4q4/64Eb + S cos(�t + φ). Eb denotes roughly the
number of tunneling doublets, and S stands for the strength
of the driving force.

Because of the periodicity of the driving force, spectral
fluctuations are analyzed for Floquet’s quasienergies, which
are eigenvalues of the unitary-time evolution operator Û (t )
over one period of driving T = 2π/�. This characterization
of the spectral noise is performed for a driven mixed chaotic
system, and thus some comments are in order. The unitarity of
the time-evolution operator implies that its eigenvalues are of
unit magnitude, and therefore they can be conveniently written
as exp(iEαT /h̄), where Eα denotes Floquet’s quasienergies.
Eα is defined modulo integer multiples of h̄�, namely Eα =
En,l = En,0 + lh̄�, n = 0, 1, 2, . . . and l = 0,±1,±2, . . .

For the spectral statistics, only the quasienergies in the first
Brillouin zone, l = 0, are considered, so that −h̄� < En <

h̄�.
Before discussing the spectral features of this system, it

is instrumental to have a qualitative idea about the under-
lying manifolds that will determine the spectral exponent
α. Figure 1 depicts the quantum quasiprobability density
GW(r, t, r, 0) for the driven double-well potential considered
above for zero driving [S = 0, Figs. 1(a) and 1(b)], strong
driving [S = 2.5, Figs. 1(c) and 1(d)], and ultrastrong driving
[S = 10, Figs. 1(e) and 1(f)]. For the classical dynamics of
the undriven case, there exists three periodic orbits of period
T that can be clearly seen in the diagonal classical propagator
(right-hand side of Fig. 1). There is also a family of orbits
whose period is a rational fraction of T , e.g., T/2, that is
located outside of the domain of the plot. The interference
of these manifolds is clearly visible in the upper panel of
Fig. 1. In the presence of driving, these continuous manifolds
are replaced by a set of unstable elliptical and hyperbolic
periodic points (see the central and lower panels in Fig. 1).
Remarkably, the quantum interference between these mani-
folds (contributions from midpoints between classical invari-
ant manifolds) is also clearly visible in the central and lower
panels of Fig. 1.

Figure 2 depicts the functional dependence of 〈P δ
k 〉 on

k for Floquet’s quasienergies for S = 0 (α = 1.99), S = 2.5
(α = 1.71), S = 10 (α = 1.29), and S = 100 (α = 1.13). De-
spite the KAM nature of the system at hand, the spectral

S = 0.0, α = 1.99
S = 2.5, α = 1.71

S = 100, α = 1.13
S = 10, α = 1.29

FIG. 2. Theoretical power spectrum of the δq function. Parameter
values are as in Fig. 1.

fluctuations exhibit a clear 1/f α dependence. This feature of
Floquet’s quasienergies supports the evidence found in the
Robnik billiard [11], and they are in sharp contrast to the
conventional expectation that in the strict semiclassical limit,
spectral fluctuations of mixed chaotic systems cannot follow
a power law [11,14]. Figure 2 does not contain the calculation
for 〈P δ

k 〉 from the quantum return probability; however, note
that the relation in Eq. (3) is an identity, and the numerical
verification of this identity is beyond the scope of the present
contribution.

VII. DISCUSSION

By establishing a connection between the energy level
fluctuation and the probability to return [see Eqs. (3) and
(5)], the origin of the 1/f α behavior of the energy level
fluctuation in quantum systems (for α = 1, 2) was tracked
to the interference and dimensionality of classical invariant
manifolds of the regular and chaotic dynamics. In the process,
the main trend of the power spectrum was associated with
the classical contribution to the quantum dynamics, so that
〈�P n(τ )〉/P cl

ret (t ) measures purely quantum fluctuations.
The extreme values of the α parameter, α = 1 and 2, are the

result of the τ dependence of the quantum return probability
[see Eq. (4)]. Because the connections established above are
valid in general, it suggests that the fractional behavior of
the spectral noise, 1 < α < 2, emerges for the interference
between regular and chaotic invariant manifolds, however an
analytic account of this fact remains a challenge.

This same connection allows for the immediate prediction
that in the presence of decoherence, the spectral coefficient
α takes the same value, α = 2, for classically chaotic and
classically regular systems. This follows from the fact that in
the presence of decoherence, the quantum return probability
behaves equally for both integrable and chaotic systems [26].
In a nutshell, decoherence removes the interference between
invariant manifolds so that the additional coherent contribu-
tions to the form factor discovered in Ref. [15] are not present
anymore. Work along these lines will be reported soon [27].

The approach presented here can be extended to uncover
the invariant manifolds responsible for the behavior of the
power spectrum of energy level fluctuations, which were
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discussed very recently in the nonperturbative analysis of fully
chaotic quantum structures [28].
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