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We study the stability and bifurcation structure of spatially extended patterns arising in nonlinear optical
resonators with a Kerr-type nonlinearity and anomalous group velocity dispersion, as described by the Lugiato-
Lefever equation. While there exists a one-parameter family of patterns with different wavelengths, we focus
our attention on the pattern with critical wave number kc arising from the modulational instability of the
homogeneous state. We find that the branch of solutions associated with this pattern connects to a branch of
patterns with wave number 2kc. This next branch also connects to a branch of patterns with double wave number,
this time 4kc, and this process repeats through a series of 2:1 spatial resonances. For values of the detuning
parameter approaching θ = 2 from below the critical wave number kc approaches zero and this bifurcation
structure is related to the foliated snaking bifurcation structure organizing spatially localized bright solitons.
Secondary bifurcations that these patterns undergo and the resulting temporal dynamics are also studied.
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I. INTRODUCTION

Since the formulation in 1987 of the Lugiato-Lefever (LL)
model describing light propagation in nonlinear optical Kerr
cavities [1], the existence and origin of spatially extended
patterned solutions has been widely studied in both temporal
and spatial systems [2–7]. In the LL model, it was shown that
patterns arise through a Turing instability, usually referred to
as a modulational instability (MI) in the optics context [8–11].
In this type of instability a homogeneous steady state (HSS)
becomes unstable to perturbations with a given wavelength,
which then further develops into an ordered modulated struc-
ture: a pattern.

In recent years, dissipative structures arising in the one-
dimensional LL model have been studied extensively be-
cause of their intimate connection to frequency combs in
microresonators driven by a continuous wave laser [6,12,13].
Such frequency combs correspond to the frequency spectrum
of localized or extended light patterns that circulate inside
the cavity [14–18], and can be used for a wide variety of
applications [19]. In this work, we study the stability and
bifurcation structure of extended patterns in the LL model,

∂tA = −(1 + iθ )A + iν∂2
xA + i|A|2A + ρ, (1)

where ρ and θ are real control parameters representing nor-
malized energy injection and frequency detuning, respec-
tively. We focus here on the anomalous group velocity disper-
sion (GVD) regime and therefore set ν = 1 throughout this
work. We study patterns with the critical wave number kc in-
troduced below, originating from the modulational instability.

For the parameter values for which the patterns are subcrit-
ical, this bifurcation also leads to the formation of localized
structures. For a detailed study of the bifurcation structure of
such localized states in the LL model, we refer to [20].

This paper is organized as follows. In Sec. II, we perform
the linear stability analysis of the HSS solution with respect
to spatially periodic perturbations. This not only reveals the
modulational instability, but more generally indicates which
perturbation wave numbers lead to instabilities and pattern
formation. Next, in Sec. III, we show how analytical expres-
sions for weakly nonlinear pattern solutions can be found
near certain bifurcations. Next, in Sec. IV, we numerically
track these analytical solutions to values of the pump param-
eter ρ away from the bifurcation points, thus revealing the
bifurcation structure of the patterns for a fixed value of the
detuning. In Sec. V we study how this bifurcation structure
changes as the parameter space defined by the cavity detuning
θ and the pump ρ is traversed, and present phase diagrams
showing parameter regimes with distinct pattern behavior. In
Sec. VI a linear stability analysis of the pattern solutions is
performed, and the different secondary instabilities that these
states undergo are discussed. Finally, in Sec. VII we give some
concluding remarks.

II. LINEAR STABILITY ANALYSIS OF THE
HOMOGENEOUS STEADY STATES

The HSS solutions A0 can be found by solving the classic
cubic equation of dispersive optical bistability, namely

I 3
0 − 2θI 2

0 + (1 + θ2)I0 = ρ2, (2)
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where I0 ≡ |A0|2. The solutions in real variables (U0 =
Re[A0], V0 = Im[A0]) are given by

[
U0

V0

]
=

⎡
⎢⎣

ρ

1 + (I0 − θ )2

(I0 − θ )ρ

1 + (I0 − θ )2

⎤
⎥⎦. (3)

For θ <
√

3, Eq. (2) is single valued and hence the system is
monostable. In contrast, for θ >

√
3, Eq. (2) is triple valued.

The transition between the three different solutions occurs via
a pair of saddle-node bifurcations SNb and SNt located at

It,b ≡ |At,b|2 = 2θ

3
± 1

3

√
θ2 − 3, (4)

and these arise from a cusp or hysteresis bifurcation at θ =√
3. In what follows, we denote the bottom solution branch

(from I0 = 0 to Ib) by Ab
0, the middle branch between Ib and

It by Am
0 , and the top branch by At

0 (I0 > It ).
A linear stability analysis of the HSS solution with respect

to spatially periodic perturbations of the form[
U

V

]
=

[
U0

V0

]
+ ε

[
u1(x, t )
v1(x, t )

]
+ O(ε2), (5)

where |ε| � 1 and[
u1

v1

]
=

[
ak

bk

]
eikx+�t + c.c., (6)

leads to the dispersion relation

�(k) = −1 ±
√

4I0θ − 3I 2
0 − θ2 + (4I0 − 2θ )k2 − k4. (7)

Here �(k) is the linear growth rate of a perturbation with wave
number k.

In the linear approximation, the superposition principle
applies and therefore any pattern solution of the problem can
be written as the linear combination[

u1

v1

]
(x,t )

=
∑

k

[
ak

bk

]
eikx+�t + c.c., (8)

where the mode amplitudes ak , bk depend on the parameters θ

and ρ. The growth rate �(k) will in general be positive for
wave numbers within an interval [k−, k+], where the wave
numbers k− and k+ depend on I0 and solve the quadratic
equation

k4 − (4I0 − 2θ )k2 + 3I 2
0 + θ2 − 4I0θ + 1 = 0. (9)

Any mode within this interval will grow, and the profile of
a pattern arising from random noise will be dominated by
the most unstable mode ku defined by the condition �′(ku) ≡
d�
dk

|ku
= 0, giving

ku =
√

2I0 − θ. (10)

The loss of stability occurs at a critical value of kc where
the growth rate first reaches zero, i.e., when conditions (9)
and (10) are satisfied simultaneously. This transition is called
a Turing [8–11] or modulational instability (MI), and occurs
at I0 = Ic, k = kc, where

Ic = 1, kc = √
2 − θ. (11)

FIG. 1. Stable HSS (black solid line) is destabilized at the mod-
ulational instability MI. Close to MI (i) the unstable HSS evolves
to the pattern branch P1 (red) consisting of stationary patterns
with wave number k1 = 0.706849 ≈ kc = 0.707107. Further away
from MI (ii) the unstable HSS evolves into a different pattern
branch P2 (green), associated with patterns with wave number k2 =
0.824564 ≈ ku = 0.836642. Stable (unstable) solutions are denoted
by solid (dashed) lines. Here θ = 1.5 and L = 160.

Evidently, this transition is only found when θ < 2. The
condition I0 = Ic defines a line in the parameter space (θ, ρ)
given by

ρc =
√

1 + (1 − θ )2. (12)

Figure 1 illustrates how the HSS destabilizes when the
pump parameter ρ exceeds ρ = ρc and how the pattern state
is subsequently reached. The wave number of this pattern
changes with the pump parameter as does the most unstable
wave number [see Eq. (10)]. Close to the MI the HSS develops
into a pattern that lies on a branch of pattern solutions with
wave number close to kc, originating near MI. For larger
values of the pump, however, the selected pattern belongs
to a pattern branch corresponding to a wave number close
to the fastest growing wave number ku. This observation
highlights the fact that the pattern branches form a continuum,
parametrized by the wave number k ∈ [k−, k+], with the wave
number selected by nonlinear processes that depend on the
system parameters. In this work we restrict attention to pattern
branches corresponding to the critical wave number kc and its
harmonics, and describe their bifurcation structure in some
detail. The study of patterns with other wave numbers is left
for future work.

Before turning to the bifurcation structure of pattern solu-
tions, we start our analysis by studying the set of points k−
and k+ satisfying Eq. (9). These points define the so-called
marginal stability curve defined by

I±k (θ ) = 2

3
(θ + k2) ± 1

3

√
θ2 + k4 + 2θk2 − 3. (13)

The marginal stability curves are shown in the panels on the
left of Fig. 2 for increasing values of the detuning θ . The HSS
solutions at the corresponding values of θ are shown in the
panels on the right, with solid (dashed) lines representing the
HSS solutions that are stable (unstable) against perturbations
of the form (6). For a fixed value of θ , and for a given
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FIG. 2. Left: marginal instability curves for (a) θ = 1.1,
(b) θ = 1.5, (c) θ = 1.8, and (d) θ = 2.0. Right: the HSS solutions
corresponding to the same values of θ . Solid (dashed) lines represent
stable (unstable) HSSs with respect to perturbations of the form (6).
The locations I±

k corresponding to instabilities with wave number k

are indicated using solid circles. The dashed line inside the marginal
instability curves in the left panels represents the most unstable mode
k = ku.

wave number k′, the HSS solution is unstable if I−k′ (θ ) < I0 <

I+k′ (θ ) and stable otherwise. Thus, for a given wave number
k = kc a pattern Pkc

bifurcates from the points I±kc
(θ ) indi-

cated in Fig. 2 and similarly for patterns with wave number
2kc, 4kc, etc.

In Fig. 2(a), for θ = 1.1, the HSS is always stable against
perturbations with k = 0. Furthermore, a pattern with wave
number kc bifurcates from the MI at I−kc

= Ic and then recon-
nects with HSS again at I+kc

> I−kc
. Similarly, a pattern with

2kc arises initially from I−2kc
and reconnects to HSS at I+2kc

.
The situation for all subsequent harmonics is similar. As the
detuning θ increases, the different instability points for modes
with k = kc and its harmonics approach each other as the
whole tongue of unstable modes shifts to lower values of k

[see Fig. 2(b)]. This behavior can also be seen in Fig. 3 where
we plot the instability boundaries in the parameter space
(θ, I0) and (θ, ρ), respectively, together with the location
of the saddle-node bifurcations SNb and SNt of the HSS
solution. For θ <

√
3, A0 is always stable against spatially

uniform perturbations with k = 0. In contrast, when
√

3 <

θ < 2, the response of the HSSs as a function of the pump
parameter ρ becomes bistable. In this case, the bottom Ab

0 and
top At

0 branches are stable with respect to k = 0 perturbations,
while the middle branch Am

0 is unstable to such perturbations.
However, At

0 and Am
0 are always unstable with respect to k >

0 perturbations, while Ab
0 is only destabilized above I0 = Ic.

FIG. 3. (a) Instability lines I±
kc

and the location of the saddle-node
bifurcations of the HSSs in the parameter space (θ, I0 ). (b) Same as
(a) but in the parameter space (θ, ρ ). (c) Zoom of (b) showing the
main regions with distinct bifurcation behavior (see text). The labels
X1 and X2 indicate codimension-two points. In both (a) and (c) the
gray area represents region V where the HSS is triple valued.

This situation is depicted in Fig. 2(c) for θ = 1.8, where the
tongue of unstable wave numbers now starts at k = 0.

Finally, when the detuning increases to θ = 2 from be-
low, the instability points I±nkc

, n = 1, 2, . . . , approach one
another until they all collapse at k = 0 and the MI dis-
appears [see Fig. 2(d)]. A similar collapse can be seen
in Fig. 3, where I+kc

and I−2kc
, and I+2kc

and I−4kc
collide

pairwise at the codimension-two bifurcation X1 and X2

located at (θX1 , ρX1 ) = (1.1111, 1.4768) and (θX2 , ρX2 ) =
(1.4286, 4.468), respectively. The results presented in Fig. 2
and Fig. 3 are limited to θ < 2 for which the MI exists and
takes place at I0 = Ic. When approaching θ = 2 from below,
the critical wave number approaches zero (kc → 0), implying
that the wavelength of the nascent pattern diverges. In this
context a single peak in a periodic domain can be thought of
as one wavelength of a periodic array of peaks parametrized
by the domain period L. As the wavelength of the pattern
diverges to infinity so does L and the distinction between
patterns and localized structures becomes blurred [20]. A
detailed analysis of how the bifurcation structure of such
localized structures changes as one approaches this critical
point θ = 2 can be found in Ref. [20].

At this point we can already identify several distinct so-
lution regimes based on the existence of patterns and the
stability of A0 as follows.

Region I: the HSS solution A0 is stable. This region spans
the parameter space ρ < ρc.

Region II: the pattern Pkc
exists between MI and I+kc

, and
A0 is unstable.
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Region III: the pattern P2kc
exists between I−2kc

and I+2kc
, and

A0 is unstable.
Region IV: the pattern P4kc

exists between I−4kc
and I+4kc

, and
A0 is unstable.

Region V: multistability of the HSS A0. Ab
0 is stable, while

At
0 and Am

0 are unstable. This region spans the parameter
region between SNb and SNt . The patterns Pkc

and P2kc
also

exist in this region since they appear subcritically.
In the following sections we study how the different pat-

terns reconnect as parameters are varied, and identify the
different instabilities these patterns undergo.

III. WEAKLY NONLINEAR PATTERN SOLUTIONS

Weakly nonlinear patterns are present in the vicinity of the
MI bifurcation at I0 = Ic and can be computed using multi-
scale perturbation analysis. At leading order in the expansion
parameter ε, defined by the relation ρ = ρc + ε2μ, the pattern
solution is given by[

U

V

]
=

[
Uc

Vc

]
+ ε

[
u1

v1

]
+ ε2

[
U2

V2

]
, (14)

where Uc and Vc correspond to the HSS solution (3) at ρ = ρc,
U2 and V2 represent the leading order correction to this HSS,
given by[

U2

V2

]
= μ

(θ2 − 2 θ + 2)(θ − 2)

[
θ2

−θ2 − θ + 2

]
, (15)

and the space-dependent correction is given by[
u1

v1

]
= 2

[
a

1

]
B cos(kcx + ϕ), (16)

where ϕ is an arbitrary phase and

a = θ

2 − θ
. (17)

The amplitude B of the pattern state corresponds to the
constant solution of the amplitude equation

C1BXX + μC2B + C3B
3 = 0, (18)

i.e.,

B =
√

−μC2/C3. (19)

Here

C1 = −2 (θ2 − 2 θ + 2)

θ − 2
, (20)

C2 = 2 (θ2 − 2 θ + 2)
3
2

(θ − 2)4 , (21)

C3 = 4 (θ2 − 2 θ + 2)2(30 θ − 41)

9 (θ − 2)6 . (22)

It follows that the pattern is supercritical for θ < 41/30 but
subcritical for θ > 41/30, as already predicted in Refs. [1,21].
In the following we refer to this pattern as Pkc

. Details of
the above calculation can be found in Ref. [20]. We have
to point out that in the weakly subcritical regime (i.e., θ �
41/30) one may proceed to fifth order in the calculation in
order to capture larger amplitude stable solutions. However,

FIG. 4. Comparison between the asymptotic solution (14) (blue
solid line) and the corresponding numerically exact solutions (red
diamonds) obtained using a Newton-Raphson solver (see Sec. IV)
for (a),(b) a supercritical pattern at θ = 1.1 and (c),(d) a subcritical
pattern at θ = 1.5. In (a) and (c) the real part U is shown, while
(b) and (d) show the imaginary part V . In both cases the numerical
and analytical curves are almost indistinguishable. In both cases L =
n2π/kc, with n = 16, and |ρ − ρc| = 10−5.

in our case, we are only interested in the small amplitude
periodic patterns emerging from the MI bifurcation, which
are well described by Eq. (18). Figure 4 shows the excellent
correspondence between the analytical asymptotic solution
(14) (solid blue line) and the numerically exact solution (red
diamonds) of Eq. (1) obtained using numerical continuation
(see Sec. IV) for both super- and subcritical patterns in this
regime. Panels (a),(b) correspond to the real and imaginary
parts of a supercritical pattern at (θ, ρ) = (1.1, 1.00499),
while panels (c),(d) correspond to a subcritical pattern at
(θ, ρ) = (1.5, 1.11802).

IV. BIFURCATION STRUCTURE OF PATTERNS

We now present the main features of the bifurcation struc-
ture of the pattern states for a fixed value of the detuning,
choosing θ = 1.5 as a representative value, leaving the study
of how this structure is modified as θ varies to the following
section. Starting from the analytical solution (14), valid close
to the MI bifurcation, we use a numerical continuation algo-
rithm to construct the bifurcation diagram shown in Fig. 5,
showing the intensity ||A||2 as a function of the parameter
ρ. This algorithm allows us to calculate numerically, using
a Newton-Raphson solver, not only stable, but also unstable
stationary periodic patterns, and to track them as a function of
a suitable continuation (control) parameter [22–24]. Further-
more, the spectrum of the linearization about these patterns
gives us information about their linear stability. Section VI
is devoted to this analysis. As in Fig. 1, the black lines
in Fig. 5 represent HSSs, while red, blue, and green lines
correspond to patterned states with wave number kc, 2kc,
and 4kc, respectively. Furthermore, solid lines denote stable
solutions, while dashed lines indicate unstable ones. The solu-
tion profiles along these branches, calculated numerically with
these methods, are illustrated in panels (i)–(xii). As shown in
Fig. 1, the pattern Pkc

with wave number kc originates at the
MI bifurcation.

While the MI bifurcation corresponds to the point where
the HSSs lose stability to temporal perturbations, it is also
possible to study this transition in the context of spatial
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FIG. 5. Bifurcation diagrams for patterns with wave numbers kc, 2kc, and 4kc for θ = 1.5. Solution profiles along the different branches
obtained from numerical continuation are shown in panels (i)–(xii).

dynamics. Here, the HSS is interpreted as a fixed point in a
four-dimensional phase space [20], and the MI corresponds to
a Hamiltonian-Hopf (HH) bifurcation with eigenvalues λ =
±ikc of double multiplicity. In this formulation the pattern
state corresponds to a periodic orbit, and this orbit bifurcates
from HSS at ρc (for θ < 2) with initial period (wavelength)
2π/kc. Together with this critical pattern there is a continuous
family of patterns with k ∈ [k−, k+] that bifurcates from
the HSS solution for ρ > ρc. Within the spatial dynamics
framework the HSS points for ρ > ρc are nonhyperbolic and
the bifurcations to P2kc

, P4kc
, . . . have no particular signature

within the spatial dynamics point of view. However, linear
stability theory in the time domain shows that bifurcations
occur whenever the spatial eigenvalues on the imaginary axis
are in resonance, k = nkc, where n is an integer. Theory also
shows that the primary bifurcation to periodic orbits at ρc

is accompanied by the simultaneous appearance of a pair
of branches of spatially localized structures, provided only
that the periodic states bifurcate subcritically. As a result the
localized states can be interpreted as portions of the pattern
state embedded in a uniform background. The bifurcation
structure of such localized structures is studied in detail in
Ref. [20].

As the detuning θ in Fig. 5 is larger than 41/30, the pattern
Pkc

is created subcritically and is therefore initially temporally
unstable [see profile (i)]. Following this branch away from
MI, the pattern grows in amplitude and gains stability at
a saddle-node bifurcation SN1 [profiles (ii),(iii)], but loses
stability at a secondary finite-wavelength-Hopf (FWH1) bi-
furcation occurring very close to the second saddle-node SN2

[profiles (iv)–(vi)]. Such secondary instabilities are studied
in detail in subsequent sections. Once SN2 is passed, spatial

oscillations (SOs) start to appear in between the peaks in
the pattern profile as seen most clearly in profile (v). These
SOs correspond to the growth of the second harmonic 2kc

of the pattern wave number, and these grow in amplitude
with increasing ρ [profile (vi)] until Pkc

merges with the
pattern P2kc

, a state with wave number 2kc (plus harmonics).
The merging of these two periodic orbits occurs in a 2:1
spatial resonance [25–27], which in the context of patterns
corresponds to a finite wavelength (FW) instability of P2kc

that doubles its wavelength, i.e., to a (spatial) subharmonic
instability.

The pattern P2kc
itself bifurcates supercritically from HSS

at I−2kc
. Since this branch inherits the unstable eigenvalue

of HSS the P2kc
branch is initially unstable. The resulting

pattern likewise grows in amplitude as ρ increases [profiles
(vii),(viii)]. Moreover, a region of stability appears between
two new secondary bifurcations: an Eckhaus bifurcation
(EC2) and the FWH2 (see Sec. VI). At SN4, the solution
branch folds back and, just as for Pkc

, SOs appear between
successive peaks in the profile and the pattern terminates at a
FW′ point on the P4kc

branch with characteristic wave number
4kc once the amplitude of the SOs reaches that of the orig-
inal peaks. This new pattern again bifurcates supercritically
from the HSS, this time at I−4kc

[profile (xi)], and is like-
wise initially unstable before terminating in yet another 2:1
spatial resonance [profile (xii)]. We have identified a whole
cascade of such bifurcations involving even higher harmonics
of kc.

Bifurcation theory sheds light on the bifurcation sequence
described above. We imagine that the bifurcations to Pkc

and
P2kc

occur in close succession and so look for solutions in the
form (U,V ) ∝ z1 exp ikcx + z2 exp 2ikcx + c.c. + h.o.t. The
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FIG. 6. Phase diagram in the (θ, ρ ) parameter space showing the main bifurcations of the HSS and pattern states. In (a),(b) the regions of
existence of Pkc

and P2kc
are shaded in light gray. In (a) the region of bistability between Ab

0 and Pkc
is indicated in dark gray. For clarity the

bifurcation lines EC and FWH corresponding to the Eckhaus and Hopf bifurcations are omitted in these two panels. Panel (c) shows the full
phase diagram, including the EC and FWH lines, with the region of stability of both patterns shown in light blue. Panel (d) shows a close-up
view of (c) around the cusp bifurcation C. The symbol • represents the codimension-two points X1, C, D1, D2, and D3, Z1, and Z2.

complex amplitudes z1, z2 then satisfy the equations [25–27]

ż1 = αz1 + c1z̄1z2 + (e11|z1|2 + e12|z2|2)z1 + · · · ,

ż2 = (α − β )z2 + c2z
2
1 + (e21|z1|2 + e22|z2|2)z2 + · · · .

(23)

We see that for fixed β > 0 the HSS solution (z1, z2) = (0, 0)
loses stability in succession to modes with wave numbers
kc, 2kc as α increases. We also see that the equations admit
a pure P2kc

solution (0, z2) but that the Pkc
state acquires a

contribution with wave number 2kc as soon as α > 0, exactly
as observed in the figure, i.e., the mode starting out as (z1, 0)
is in fact a mixed mode (z1, z2) as soon as α > 0. Moreover, as
α increases the contribution from the amplitude z2 grows and
the mixed mode terminates on the (0, z2) branch of pure wave
number 2kc states, also as observed. The latter is a 2:1 reso-
nance since at this bifurcation a pure mode with wave number
2kc bifurcates into a mixed mode with a contribution from
wave number kc. We can therefore think of this bifurcation as
a subharmonic instability in space.

In the next section, we explore how the bifurcation struc-
ture connecting Pkc

with all its harmonics is modified when
the cavity detuning θ varies.

V. PATTERNS IN THE (θ, ρ ) PLANE

Figure 6 shows the different bifurcation lines and dynam-
ical regions introduced in the previous sections in the (θ, ρ)

parameter space. For clarity we show three different versions
of the phase diagram, with increasing complexity going from
panel (a) to (c). Diagrams (a),(b) show the same diagram as in
Fig. 3 together with the saddle nodes of pattern branches Pkc

and P2kc
and the FW bifurcation that connects them. In (a) we

shaded in light gray the region of existence of Pkc
, while in (b)

we show the region of existence of P2kc
. Looking at these two

diagrams one can see a region of coexistence of both patterns,
indicating the complex multistable nature of the system. The
stability of the pattern states changes not only through saddle-
node bifurcations, but also through subsequent Eckhaus (EC)
and finite-wavelength-Hopf (FWH) instabilities, resulting in
yet more complex scenarios. These new bifurcation lines are
added in Figs. 6(c) and 6(d), with the latter a close-up view of
panel (c). The aim of this section is to describe the different
bifurcation lines and the dynamical regions shown in these
phase diagrams, while Sec. VI discusses the stability of the
patterns in greater detail. As this phase diagram is quite dense
and therefore difficult to interpret, we also show (Fig. 7) how
the bifurcation structure changes as a function of the pump ρ

for increasing values of the detuning θ .
For small values of θ [Fig. 7(a), θ = 1.1 < 41/30], the

pattern Pkc
(red line) bifurcates supercritically from MI at

I0 = Ic and connects back to the HSS at I+kc
; P2kc

(blue
line) is disconnected from Pkc

and bifurcates from I−2kc
and

then extends to higher values of ρ before connecting with
HSS at I+2kc

. At this parameter value both patterns emerge
supercritically from HSS, with Pkc

stable and P2kc
initially
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FIG. 7. Bifurcation diagrams corresponding to (a) θ = 1.1,
(b) θ = 1.3, (c) θ = 1.4, (d) θ = 1.5, (e) θ = 1.6, and (f) θ = 1.8.
Red lines correspond to Pkc

and the blue lines to P2kc
. Panels (a) and

(b) show the situation before and after the codimension-two point X1.
Panels (b) and (c) show the transition from supercritical to subcritical
bifurcation of pattern Pkc

via a degenerate HH at θ = 41/30. For
θ = 1.5 [panel (d)] P2kc

bifurcates supercritically from HSS at I−
2kc

.
In contrast, for θ = 1.6 [panel (e)] P2kc

emerges subcritically. Solid
(dashed) lines indicate stable (unstable) branches.

unstable. However, both states can change stability through
subsequent Eckhaus (EC) and finite-wavelength-Hopf (FWH)
instabilities [see Fig. 6(c)]. In particular, for θ = 1.1, Pkc

becomes unstable at the EC1 point. When θ increases, I+kc

and I−2kc
collide at a codimension-two bifurcation labeled X1,

after which the Pkc
and P2kc

branches connect to one another

via a FW instability originating in X1. This is the 2:1 spatial
resonance mentioned in the previous section. This situation is
shown in Fig. 7(b). Note that Pkc

now loses stability through
the FWH1 bifurcation.

At θ = 41/30, the bifurcation to Pkc
is a degenerate HH

bifurcation denoted in Figs. 6(a)–6(c) by D1. For θ > 41/30
the bifurcation is subcritical as shown in Fig. 7(c) for θ =
1.4. Here, Pkc

is initially unstable but acquires stability at
a saddle-node labeled SN1. This branch subsequently loses
stability at FWH1 and connects with P2kc

at FW just as in
Fig. 7(b). It follows that in this regime there is a small region
of coexistence between stable Ab

0 and stable Pkc
, close to MI.

As a result localized structures (LS) are also present and these
are organized in a so-called homoclinic snaking structure
[20,28–31]. The Ab

0–Pkc
bistability region is colored in dark

gray in Fig. 6(a). For slightly larger values of θ a cusp (C)
bifurcation is encountered creating a pair of saddle nodes SN2

and SN3 on the Pkc
branch [see Fig. 6(d)]. The SN3 disappears

almost immediately in a degenerate codimension-two point
D2 on the curve FW, changing the direction of branching of
Pkc

from P2kc
, while the EC1 bifurcation collides with SN2

and disappears in another codimension-two point (Z1). The
pattern Pkc

bifurcates supercritically from FW below the D2

point and subcritically above it. The latter case is shown in
Fig. 7(d) for θ = 1.5. Here the upper portion of the Pkc

branch
is stable between SN1 and FWH1, and unstable otherwise.
Further increase in θ leads to a collision of FWH1 with SN2

and its disappearance in a codimension-two point Z2. After
this point the Pkc

branch is stable between SN1 and SN2.
For θ = 1.6 [Fig. 7(e)], the HSS branch is still monotonic

but P2kc
now also emerges subcritically, having crossed an-

other degeneracy at D3 (Fig. 6). This leads to the creation of
a saddle-node bifurcation SN5 on the P2kc

branch similar to
SN1 on the Pkc

branch. At the same time an Eckhaus (EC2)
bifurcation moves in from larger values of ρ, stabilizing the
large ρ part of the P2kc

branch. With further increase in θ

the EC2 point collides with FW, and the whole P2kc
branch

beyond FW becomes stable. For yet larger θ the FW point
moves towards SN5 so that Pkc

now terminates on P2kc
at SN5

and the P2kc
branch is stable from SN5 towards larger ρ. This

multiple bifurcation occurs for θ ≈ 1.72 but is not analyzed
in this work. Figure 7(f) shows the resulting bifurcation
diagram when θ = 1.8. Since this value of θ exceeds

√
3 the

HSS branch is no longer monotone, with I−kc
lying below the

resulting fold SNb and I−2kc
above it. The regions of stability of

Pkc
and P2kc

are shaded using light gray in Figs. 6(c) and 6(d).
In Figs. 6 and 7, we focus on the bifurcations associated

with Pkc
and P2kc

, although very similar transitions occur
between P2kc

and P4kc
, P4kc

and P8kc
, and so on. This scenario

resembles foliated snaking of localized structures that appears
for θ > 2 [20]. Since kc → 0 as θ → 2 from below, in a finite
system a pattern with domain-size wavelength becomes in-
distinguishable from a single peak localized structure present
for θ > 2, i.e., in the limit θ → 2 Pkc

becomes a single peak
LS, P2kc

becomes a two peak LS, etc., thereby reproducing
precisely the foliated snaking bifurcation scenario.

A similar pattern organization exists for patterns with wave
number k 
= kc, implying that the complete scenario is funda-
mentally complex. A detailed study of secondary bifurcations
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of patterns with wave numbers k 
= kc is therefore left for
future work.

VI. LINEAR STABILITY ANALYSIS OF THE
PATTERN SOLUTIONS

The preceding section has highlighted the importance of
secondary bifurcations such as the finite wavelength (FW) and
finite-wavelength-Hopf (FWH) bifurcations, as well as the
wavelength changing instability called the Eckhaus instability.
Long wavelength secondary instabilities of one-dimensional
patterns can be classified using symmetry-based arguments
that describe the possible coupling between the instability
modes and the phase of the periodic pattern solution [32].
This procedure is particularly valuable in the case of the
Eckhaus instability which is a long wavelength instability,
with domain-size wavelength. The nonlinear evolution of
this instability generally leads to the generation of a phase
slip whereby a new roll is injected (or annihilated) at the
location of the phase slip, followed by relaxation of the new
pattern towards a periodic structure with a new and different
wavelength in the domain [33,34]. This process cannot be
described by a phase equation which necessarily breaks down
prior to a phase slip.

The traditional approach to describing the Eckhaus in-
stability is based on the use of an amplitude equation, the
Ginzburg-Landau equation, that describes the pattern-forming
instability close to the primary pattern-forming bifurcation,
assumed to be supercritical [34,35]. As a result the predictions
concerning the onset and evolution of the Eckhaus instability
are valid only when the instability sets are close to the primary
instability. We have seen that in the present case this is not
the case; moreover, in some cases the primary bifurcation is
subcritical and the analysis of the Eckhaus instability is then
substantially modified [36]. For this reason we apply here a
technique described in [7,37] that permits us to compute the
onset of the Eckhaus instability for finite amplitude fully non-
linear spatially periodic patterns. The technique is necessarily
numerical but allows us to find and characterize, as a function
of θ , ρ, and k, the secondary bifurcations introduced in Sec. V.
Similar numerical studies have been performed in the context
of fluid mechanics in Ref. [38] and for supercritical patterns
within the LLE in Ref. [21].

The stationary patterns, hereafter Ap = (Up, Vp ), can be
written as a Fourier modal expansion

Ap(x) =
N/2∑

m=−N/2+1

ameimkx, (24)

with k the wave number of the pattern, am the complex
amplitude of the Fourier mode with wave number mk, and
N the number of Fourier modes retained in the analysis. To
study the linear stability of such a pattern state, one must
first linearize Eq. (1) around the state (24). Writing A(x, t ) =
Ap(x) + εδA(x, t ), ε � 1, leads to the following leading
order equation for the perturbation δA:

∂tδA = −(1 + iθ )δA + i∂2
x δA + 2i|Ap|2δA + iA2

pδA∗.

(25)

Owing to the periodicity of Ap, we can apply the Bloch
ansatz and write the eigenmodes of this equation as Bloch
waves [32]

δA(x, t ) = eiqxδa(x, t, q ) + e−iqxδa(x, t,−q ), (26)

where δa has the same spatial period as the pattern Ap and
can be written in the form

δa(x, t, q ) =
N/2∑

m=−N/2+1

δam(t, q )eikmx. (27)

Inserting Eqs. (24) and (26) in Eq. (25) leads to a set of lin-
ear equations for the complex amplitudes δa±

n ≡ δan(t,±q ),
namely

d

dt
δa±

n = −(1 + iθ )δa±
n − i(kn ± q )2δa±

n

+ i

N/2∑
m=−N/2+1

ala
∗
mδa±

n−l+m + i

N/2∑
m=−N/2+1

alamδa∗±
−n+l+m.

(28)

This equation has the form

∂t�(t, q ) = L(an, q )�(t, q ), (29)

where

�(t, q ) ≡ (δa+
0 , . . . , δa+

N−1, δa
∗−
0 , . . . , δa∗−

N−1).

Thus the linear stability analysis of Ap(x) reduces to finding
the 2N eigenvalues λj (q ) of the N × N matrix L(an, q ) and
the corresponding eigenvectors, for each value of q. For more
details, see Refs. [7,37,39]. The eigenvalues for a given q

determine the stability of the pattern against perturbations
containing wave numbers k ± q for any k. For this purpose
it is sufficient to consider only q values inside the first
Brillouin zone. Any perturbation with wave number q ′ outside
the Brillouin zone is equivalent to another with q = q ′ + k.
In solid state physics this representation is described as the
reduced zone scheme [40].

Using this technique we characterize how the eigenspec-
trum of L(an, q ) changes as a function of q for different values
of (θ, ρ), and predict the different secondary bifurcations that
a pattern with wave number k undergoes.

Figure 8 shows an enlarged version of the phase diagram
in Fig. 6. Both Pkc

and P2kc
change their stability across the

lines EC (Eckhaus) and FWH (finite wavelength Hopf), as
indicated in Figs. 6 and 8. Furthermore, their branches connect
one another through the FW (finite wavelength) instability.
For θ < 41/30 Pkc

is initially stable and loses stability when
crossing either EC1 or FWH1. For θ > 41/30 Pkc

bifurcates
subcritically and so is stable only between SN1 and the lines
EC1 or FWH1. In either case, P2kc

is initially unstable but
gains stability with increased detuning via EC2 or FWH2.

These bifurcations divide regions II and III (see Figs. 6
and 8) into the following subregions.

Region IIA: the pattern Pkc
is stable. This region spans the

parameter space between MI and SN1 from below, and EC1,
FWH1, and SN2 from above.

Region IIB: the pattern Pkc
is either Eckhaus unstable (by

crossing EC1) or Hopf unstable (by crossing FWH1). This

042212-8



BIFURCATION STRUCTURE OF PERIODIC PATTERNS IN … PHYSICAL REVIEW E 98, 042212 (2018)

FIG. 8. Phase diagram in (θ, ρ ) parameter space showing an
enlargement of the diagrams shown in Fig. 6 focusing on the main
stability regions of Pkc

labeled IIA,B and P2kc
labeled IIIA,...,C. The

dashed line at θ = 1.5 refers to the slice of this diagram shown in
Fig. 9. The small black dots along this line correspond to points
where the stability analysis of the patterns shown in Sec. V was
performed. In light blue we show the regions where Pkc

and P2kc
are

stable.

region spans the parameter space between EC1 and FWH1

from below and FW and SN2 from above.
Region IIIA: P2kc

is stable between EC2 and SN5 from
below and FWH2 and FWH3 from above.

Region IIIB: the pattern P2kc
is Eckhaus unstable. This

region spans the parameter space between I−2kc
and SN5 from

below and FWH2 and EC2 from above.
Region IIIC: P2kc

oscillates in time and in space. This
region spans the parameter space inside the region defined by
FWH2 and FWH3 from below and between FWH3 and SN4

(see inset).
In what follows we analyze in detail the different secondary

bifurcations the periodic patterns undergo when the control
parameters are varied. Without loss of generality, we focus on
the P2kc

branch, which—in addition to EC2 and FWH2,3—also
undergoes an FW instability. This bifurcation is essential for
its reconnection with the Pkc

branch. The dynamics of the
latter when crossing EC1 and FWH1 are similar to those
shown here for P2kc

.
In Fig. 9, we show the bifurcation diagram for θ = 1.5, a

value we will use to explore the different instabilities in more
detail. For θ = 1.6, discussed in Sec. VI, the results are similar
except that P2kc

bifurcates initially subcritically. The temporal
evolution indicated by arrows in the figure results from phase
slips, as discussed next, and is obtained on a periodic domain
of length L = 2πn/kc, with n = 16.

FIG. 9. Bifurcation diagram for θ = 1.5. The pattern branch Pkc

(red) bifurcates subcritically from HSS at I−
kc

, while the branch P2kc

(blue) bifurcates supercritically at I−
2kc

. Labels (a)–(c) correspond to
the unstable patterns with 32 rolls initially that evolve in time to
patterns with different numbers of rolls depending on the value of
ρ and lying on new branches of periodic states (gray) labeled by Pn,
where n is the new roll number. The points where linear stability
analysis has been carried out are indicated using the symbol •.

A. Eckhaus instability

For values of θ and ρ in region IIIB (see Fig. 8), patterns
are unstable against long-wavelength perturbations (q ∼ 0),
and for this reason the Eckhaus instability is also known as
a long-wavelength (LW) instability [11,41]. Furthermore, this
instability is triggered by a phase instability [41]. For small
values of q, the least stable branch of eigenvalues λ1(q ) has a
parabolic shape centered at q = 0, namely Re[λ1(q )] ∝ |q|2,
and the instability takes place when the convexity of this
eigenvalue branch changes sign.

The result of the stability analysis of P2kc
for θ = 1.5

and increasing values of ρ as one crosses the EC2 instability
threshold is summarized in Fig. 10. In panel (c) ρ = 1.59
and Re[λ1(q )] is negative for all nonzero q. Therefore, P2kc

is stable no matter the wavelength of the perturbation. This
situation corresponds to region IIIA in Fig. 8. In panel (b) ρ =
1.58 and the eigenspectrum flattens around Re[λ1(q )] = 0,
indicating the onset of the EC instability. Finally, in panel (a)
ρ = 1.57 and the eigenspectrum has changed its convexity, in-
dicating that the pattern is now unstable to perturbations with
q ∈ [0, q∗]. This property characterizes region IIIB, which
extends from EC2 down to I−2kc

as ρ decreases.
In Fig. 11 the right panels show the temporal evolution of

an unstable initial condition along the branch P2kc
together

with the real part of the leading eigenvalue λ1(q ) (left panels)
for different values of ρ in region IIIB. The labels (a)–(c)

FIG. 10. Eigenspectrum in the vicinity of the EC instability of
the P2kc

branch when θ = 1.5, showing Re[λ1(q )] for different values
of ρ: (a) ρ = 1.57, (b) ρ = ρEC2 = 1.58, and (c) ρ = 1.59.
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FIG. 11. Re[λ1(q )] at θ = 1.5 in the region of Eckhaus instabil-
ity and the associated temporal evolution of an unstable initial pattern
to patterns of different wavelengths. These new states are shown in
gray in Fig. 9: an unstable pattern with initially 32 rolls evolves to
P25 in panel (c) for ρ = 1.4, to P24 in panel (b) for ρ = 1.3, and to
P22 in panel (a) for ρ = 1.2. The left panels show the unstable modes
0 < q < q∗, while the right panels describe the resulting evolution
in space-time plots.

correspond to different points along the branch P2kc
identified

in Fig. 9.
For ρ = 1.4 [Fig. 11(c)], P2kc

is unstable to perturbations
with q in between zero and q∗, and the most unstable mode
is that corresponding to maximum growth rate. Time simu-
lations show that after an initial transient during which the
pattern appears stable, the wavelength of the pattern suddenly
increases to the wavelength of the most unstable mode. The
pattern, which initially had 32 rolls, becomes a pattern with
25 rolls that we label P25. This new pattern can be tracked in
ρ and results in the P25 solution branch plotted in Fig. 9.

Reducing the value of ρ further, the P2kc
pattern becomes

unstable to any q ∈ [0, k′/2], with k′ = kc/2, and the most
unstable wave number increases [Figs. 11(a) and 11(b)]. The
maximum growth rate Re[λ1(q )] also increases so that the
time needed to destabilize the pattern decreases with ρ. The
final patterns that are reached further beyond the EC2 insta-
bility are P24 with 24 peaks in case (b) and the pattern P22 in
case (a). Once tracked in ρ, these stationary patterns generate
the solution branches shown in Fig. 9.

B. Finite-wavelength instability

We now characterize the finite-wavelength (FW) insta-
bility that allows the pattern Pkc

to terminate on P2kc
. As

already mentioned these locations correspond to a spatial 2:1
resonance located along the line FW in Fig. 8. However,
the theory described in Refs. [25–27] applies only near the

FIG. 12. Eigenspectrum of P2kc
in the vicinity of the FW insta-

bility when θ = 1.5, showing the first two branches Re[λ1(q )] and
Re[λ2(q )] for different values of ρ: (a) ρ = 1.175, (b) ρ = ρFW ≈
1.177, and (c) ρ = 1.179.

codimension-two case in which the two primary bifurcations
from HSS to states with wave numbers kc and 2kc occur in
close succession. This is not the case here, and we therefore
employ the numerical technique of the previous section to
compute the location of the FW bifurcation when this occurs
in the fully nonlinear regime.

If k′ = 2kc is the wave number of P2kc
, the FW bifurcation

is characterized by a branch of eigenvalues λ2(q ) having
a parabolic shape centered at q = k′/2, i.e., Re[λ2(q )] ∝
|q − k′/2|2, which crosses Re[λ2(q )] = 0 at q = k′/2. This
transition is shown in Fig. 12 for θ = 1.5 and for three values
of ρ in the vicinity of the FW bifurcation (see inset in Fig. 9).
The real part of the two leading eigenvalues λ1(q ) and λ2(q )
is shown in the left panels, while the right columns show the
full eigenspectrum at q = k′/2 = kc. In any case Re[λ1(q )]
is positive for all the range q ∈ [0, k′/2 = kc], and therefore
P2kc

is unstable against Bloch modes with q ∈ [0, kc], i.e., in
this regime P2kc

is EC unstable. The FW transition is triggered
by the second eigenvalue λ2 centered at q = k′/2. In (a) ρ <

ρFW, and a portion of the branch Re[λ2(q )] is positive, with
its maximum occurring at q = k′/2. Therefore, in this case
P2kc

is unstable to the most unstable mode, i.e., q = k′/2 = kc,
and therefore to Pkc

, in addition to the unstable EC mode.
In (b) ρ = ρFW, and the maximum growth rate Re[λ2(q )] at
q = k′/2 vanishes, as can be appreciated by looking at the
corresponding eigenspectrum in the right column. This point
therefore corresponds to the presence of the FW bifurcation.
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FIG. 13. Hopf bifurcation of P2kc
at θ = 1.5 showing (left pan-

els) Re[λ(q )] for different values of ρ: (a) ρ = 1.82, (b) ρ = ρFWH =
1.87, and (c) ρ = 1.92. The right panels show the corresponding
eigenspectrum at q = kc, the onset wave number.

Finally, panel (c) shows the situation at ρ > ρFW, where
Re[λ2(q )] is negative for all q, and the P2kc

pattern is FW
stable.

C. Finite-wavelength-Hopf instability

For values of θ and ρ in region IIIC patterns undergo a
finite-wavelength-Hopf instability, hereafter FWH. In contrast
to the homogeneous Hopf bifurcation which occurs with q =
0, this Hopf bifurcation sets in with a finite wave number q 
=
0, here q = kc. In the former case, patterns which are Hopf
unstable will oscillate with a uniform amplitude and temporal
period T = 2π/ω, with ω = Im(λ2(0)) = Im(λ3(0)). Here
λ2,3(0) are the Hopf modes. In the FWH case, however,
patterns oscillate both in time and in space, and this is why
this instability is also referred to as a wave instability (WI)
[11,41–44].

In Fig. 13 the real part of the three leading eigenvalues
(left) and the full eigenspectrum at q = k′/2 = kc (right)
are plotted when crossing the FWH2 bifurcation at θ = 1.5
(see Figs. 8 and 9). In panel (a) ρ = 1.82, and the real
parts of λ2(q ) and λ3(q ) are both negative, with a parabolic
shape centered at q = k′/2 = kc. In fact these eigenvalues
are complex conjugates of one another, as can be seen in the
full eigenspectrum for q = kc shown in the right panel. This
is the situation in region IIIA, where P2kc

is FWH stable. In
panel (b) ρ = ρFWH2 = 1.87 and the real part of the complex
conjugate eigenvalues λ2,3(q ) vanishes at q = kc, indicating

FIG. 14. Time evolution of the oscillating patterns for θ = 1.5
and (a) ρ = 1.9, (b) ρ = 2.1, and (c) ρ = 2.3.

the onset of the FWH2 bifurcation. Finally, in (c) ρ = 1.92,
and the real part of the eigenvalues is now positive and P2kc

starts to oscillate, not only in time but also in space. This is
the situation of region IIIC shown in Fig. 8.

In Fig. 14, we show the resulting oscillatory states for
different values of ρ in region IIIC when θ = 1.5. For ρ = 1.9
[see panel (i)], the amplitude of P2kc

oscillates nonuniformly
not only in time but also in space resulting in zigzag motion
whose amplitude grows with increasing ρ as seen in panel (b).
Finally, in panel (c), for ρ = 2.4, the pattern exhibits much
complex dynamics including phase slips at which peaks merge
or split resulting in fluctuations in the total number n(t ) of
rolls in the domain at any one time. A complete description
and understanding of the dynamics of these oscillatory states
in time and space involves interaction with the marginally
stable q = 0 mode (Fig. 13 and [45]) and is beyond the scope
of this paper.

VII. CONCLUSIONS

In this paper we have studied the bifurcation structure and
stability properties of spatially periodic patterns arising in the
LL model in the anomalous GVD dispersion regime.

Linear stability theory predicts that the HSS solution be-
comes modulationally unstable at I0 = Ic = 1 to a pattern
with a critical wave number kc = √

2 − θ , namely Pkc
[1,5].

A weakly nonlinear analysis has allowed us to obtain a
perturbative description of this pattern in the neighborhood
of this bifurcation. From this calculation one finds that Pkc

emerges supercritically for θ < 41/30 and subcritically when
θ > 41/30, where θ = 41/30 corresponds to a degenerate HH
point.
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This analytical approximation for the pattern Pkc
around

the MI point (or, equivalently, HH) has been used as an
initial condition in a numerical continuation algorithm that
allowed us to track the pattern solutions to parameter values
away from the bifurcation point. Using this method, we have
studied the bifurcation structure of spatially periodic patterns
as a function of ρ for different values of the detuning θ . In
doing so, we have found that for low θ patterns arising from
the MI bifurcation reconnect with the HSS for larger values
of the intracavity intensity I0, at I+kc

. In addition, harmonic
patterns with wave numbers nkc, n = 2, 4, . . . , also bifurcate
from the HSS, P2kc

at I±2kc
, P4kc

at I±4kc
, etc. With increasing θ

these two types of patterns connect pairwise in a 2:1 spatial
resonance, for example, Pkc

with P2kc
and P2kc

with P4kc
. We

have referred to these bifurcation points as finite-wavelength
(FW) instabilities and computed their location via numeri-
cal Floquet analysis. This FW bifurcation originates in the
codimension-two point X, which appears to organize these
connections. Finally, as θ → 2 and kc → 0 the bifurcation
structure of the patterns transforms into foliated snaking of
localized structures [20], as a pattern with infinite wavelength
corresponds in effect to a single peak localized structure in a
finite size system.

We have provided an almost complete discussion of the
various possible secondary bifurcations in the parameter space
(θ, ρ) of the LL equation, mapping out the different dynami-
cal regions for the patterns Pkc

and P2kc
. In particular, patterns

corresponding to P2kc
were found to undergo Eckhaus and

finite-wavelength-Hopf instabilities, in addition to the FW
instability, and these were found to lead to rich and complex
dynamics. Several significant but higher codimension bifurca-
tions were also identified, but a detailed study of these remains
for future work.

While we have focused our study on patterns with the
critical wave number kc determined by the onset of the MI,
and its harmonics, we have confirmed that similar behavior
also occurs for patterns with wave number k 
= kc that also
emerge from the HSS solution but do so for I0 > Ic. Together
with the instabilities described in this work, other bifurcations
such as an FW with q = k/3 are also known to exist [21].
A detailed study of secondary instabilities of patterns with
arbitrary wave number k is beyond the scope of this paper,
however, and is likewise left to future work.
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