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Strongly interacting soliton gas and formation of rogue waves
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We study numerically the properties of (statistically) homogeneous soliton gas depending on soliton density
(proportional to number of solitons per unit length) and soliton velocities, in the framework of the focusing
one-dimensional nonlinear Schrödinger (NLS) equation. To model such gas we use N -soliton solutions (N -SS)
with N ∼ 100, which we generate with specific implementation of the dressing method combined with 100-digits
arithmetics. We examine the major statistical characteristics, in particular the kinetic and potential energies, the
kurtosis, the wave-action spectrum and the probability density function (PDF) of wavefield intensity. We show
that in the case of small soliton density the kinetic and potential energies, as well as the kurtosis, are very well
described by the analytical relations derived without taking into account soliton interactions. With increasing
soliton density and velocities, soliton interactions enhance, and we observe increasing deviations from these
relations leading to increased absolute values for all of these three characteristics. The wave-action spectrum
is smooth, decays close to exponentially at large wavenumbers and widens with increasing soliton density and
velocities. The PDF of wave intensity deviates from the exponential (Rayleigh) PDF drastically for rarefied
soliton gas, transforming much closer to it at densities corresponding to essential interaction between the solitons.
Rogue waves emerging in soliton gas are multisoliton collisions, and yet some of them have spatial profiles very
similar to those of the Peregrine solutions of different orders. We present example of three-soliton collision, for
which even the temporal behavior of the maximal amplitude is very well approximated by the Peregrine solution
of the second order.
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I. INTRODUCTION

Statistical behavior of nonlinear integrable systems, called
in general integrable turbulence [1], is a rapidly developing
area of theoretical and experimental studies, as illustrated by
the recent publications [2–5]. On the one hand, up to a certain
degree of accuracy many physical systems can be described
with nonlinear integrable mathematical models. In compari-
son with nonintegrable models, the corresponding integrable
equations demonstrate significantly different statistical prop-
erties; see, e.g., Refs. [6,7]. On the other hand, an integrable
system allows transformation to the so-called scattering data,
which is in one-to-one correspondence with the wavefield and,
similarly to the Fourier harmonics in the linear wave theory,
changes trivially during the motion. With numerical methods,
see, e.g., Refs. [8,9], the scattering data can be partly ana-
lyzed, that may bring some insights into the dynamical behav-
ior. Another distinctive feature of an integrable system is the
conservation of infinite series of invariants, so that different
types of initial conditions are characterized by different sets
of integrals of motion and, during the evolution, demonstrate
different statistical properties; see, e.g., Refs. [3–5].

In the present paper we examine integrable turbulence
using controlled initial conditions, in the sense that we con-
struct these initial conditions from known scattering data.

*Corresponding author: gelash@srd.nsu.ru; agelash@gmail.com

In contrast to other studies, this gives us exact knowledge
which nonlinear objects interact during the evolution, for
instance, when a rogue wave appear. As a model, we consider
one-dimensional nonlinear Schrödinger (NLS) equation of the
focusing type with initial conditions in the form of N -soliton
solutions (N -SS), with N of order 100. Our methods allow
generation of sufficiently dense N -SS with essential interac-
tion between the solitons, in contrast to rarefied multi-soliton
solutions analyzed, e.g., in Refs. [10–12] for KdV and mKdV
equations. We believe that our approach can also be used to
examine turbulence governed by other integrable equations
and developing from other types of initial conditions, e.g.,
containing nonlinear dispersive waves and different types of
breathers; see Refs. [13,14].

For spatially localized wavefield, the scattering data con-
sists of discrete (solitons) and continuous (nonlinear disper-
sive waves) parts of eigenvalue spectrum, which is calculated
for specific auxiliary linear system. At the first step in our
study, we generate an ensemble of multiple realizations of
scattering data, with each realization containing N discrete
eigenvalues and N complex coefficients. Such scattering data
corresponds to N -SS. Then, we find the wavefield for N -SS
from this data, that for N ∼ 100 is made possible by specific
implementation of the dressing method applied numerically
with 100-digits precision. To our knowledge, multisoliton
solutions containing so many solitons were not generated
by anyone else before. The generating procedure is very
expensive from the computational point of view and returns

2470-0045/2018/98(4)/042210(12) 042210-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.98.042210&domain=pdf&date_stamp=2018-10-18
https://doi.org/10.1103/PhysRevE.98.042210


A. A. GELASH AND D. S. AGAFONTSEV PHYSICAL REVIEW E 98, 042210 (2018)

a wavefield where solitons are distributed unevenly over the
spatial dimension. This is why we then put multisoliton
solutions in a periodic box L and examine their evolution
with the direct numerical simulation. After some time, the
solitons distribute over the box uniformly and the system
arrives to the statistically steady state where its statistical
characteristics do not change anymore. We use this state as
a model of statistically homogeneous soliton gas of density
∝N/L in an infinite space; we confirmed that for large enough
number of solitons N and period L our results depend on them
only in the combination N/L. We study the major statistical
characteristics of such soliton gas, namely the kinetic and
potential energies, the kurtosis, the wave-action spectrum,
and the probability density function (PDF) of wave intensity,
averaging the results over the ensemble of initial conditions.
The described methods allow us to explore statistical behavior
of sufficiently dense soliton gas with randomized soliton
amplitudes and velocities.

Formally, when we simulate evolution of multisoliton solu-
tions in a periodic box, we change a localized wavefield gen-
erated from discrete scattering data by a periodic one, which
corresponds to a finite-band scattering data [15]. However,
since the widths of the solitons are by two-three orders of
magnitude smaller than the size of the box, these eigenvalue
bands are very narrow [15,16] and we neglect this difference.
The similar idea was suggested in Ref. [17], where, vice
versa, the soliton gas was considered as a limit of finite-band
solutions. When generating N -SS from the scattering data,
we also limit spatial positions of solitons in such a way to
ensure that the intensity of the wavefield near the edges of
the periodic box is of round-off order. This allows us to
neglect the edge effects as well. We confirmed that after a long
evolution the first 10 integrals of motion are conserved with
a very good accuracy and the resulting eigenvalue spectrum
virtually coincides with the initial discrete eigenvalues.

The soliton gas was studied previously for different non-
linear systems. The term was introduced in Ref. [18], where
the kinetic equation describing the distribution function for
soliton parameters was derived for the KdV model in the limit
of small soliton density. For the NLS equation, the kinetic
equation was obtained in Ref. [19] in the general case of
dense soliton gas. Another approach to study rarefied soliton
gas consists in the approximation of the nearest-neighbor
interactions between the solitons [20] and is often called
the weak-interaction model (WIM); it can be generalized
to include nonintegrable perturbations as well. The WIM
allows to find the dynamical equations describing evolution of
soliton parameters [21,22] and establish a possible link [23]
between the appearance of extremely large waves—the so-
called rogue waves—and interactions of solitons. The case of
rarefied soliton gas for the NLS equation was also examined
numerically and reproduced experimentally in an optical fiber
ring resonator, with the initial wavefield taken as arithmetic
superposition of individual solitons [24].

In the present study we focus on the statistical descrip-
tion of rogue waves emerging in soliton gas with essential
interaction between the solitons. For this purpose we examine
the PDF P (I ) of relative wave intensity I = |ψ |2/〈|ψ |2〉.
Here 〈|ψ |2〉 is the ensemble and space average of wavefield
intensity |ψ |2, so that small waves correspond to I � 1,

the moderate ones to I ∼ 1, and the large ones to I � 1,
with the formal definition of rogue waves I > 8; see, e.g.,
Refs. [25,26]. The PDF is normalized as∫ +∞

0
P (I ) dI = 1.

If the wavefield is a superposition of a multitude of uncorre-
lated linear waves with random phases and amplitudes satis-
fying the central limit theorem, then its PDF is the exponential
distribution (or Rayleigh one after certain change of variables,
see, e.g., Ref. [27]),

PR (I ) = e−I . (1)

When evolution is governed by linear equations, this super-
position stays uncorrelated and its PDF remains exponential.
Nonlinear evolution may introduce correlation, which in turn
may lead to enhanced appearance of large waves. Throughout
the paper we use the exponential distribution Eq. (1) as a
benchmark, comparing the observed PDFs with it to make
clear whether large waves appear more or less frequently in
the examined system than in a linear one. Unless specified
otherwise, we use the term PDF only in relation to relative
wave intensity.

With the described above methods, we study statistical
properties of homogeneous soliton gas depending on soli-
ton density and velocities. We show that, when the density
is small, the kinetic and potential energies, as well as the
kurtosis, are very well described by the analytical relations
derived without taking into account soliton interactions. With
increasing soliton density and velocities, soliton interactions
enhance, that results in increasing deviations from these
relations leading to increased absolute values for all these
three characteristics. The wave-action spectrum for soliton
gas is smooth (i.e., contrary to the condensate and cnoidal
wave initial conditions [4,5], it does not contain diverging
peaks), decays close to exponentially at large wavenumbers
and widens with increasing soliton density and velocities.
Compared to the cnoidal wave initial conditions, the PDF
of relative wave intensity for soliton gas deviates from the
exponential PDF Eq. (1) much more pronouncedly and at
large intensities exceeds it by orders of magnitude. This
excess is larger for soliton gas with larger velocities. However,
with increasing soliton density the PDF transforms closer to
the exponential PDF. Rogue waves emerging in soliton gas
are collisions of solitons, and yet some of them have spatial
profiles very similar to those of the (scaled) Peregrine solu-
tions of different orders. We present example of three-soliton
collision, when even the temporal behavior of the maximal
amplitude is very well approximated by the Peregrine solution
of the second order. In our opinion, these facts highlight that
the similarity for the spatial and/or temporal behavior cannot
be used to draw conclusions on rogue waves’ composition and
origin.

The paper is organized as follows. In Sec. II we give a
brief introduction to the inverse scattering transform (IST)
and describe how we construct multisoliton solutions. In
Sec. III we summarize our methods for numerical simulation
of statistically homogeneous soliton gas. In Sec. IV we study
the major characteristics of this gas, including the kinetic and
potential energies, the kurtosis, the wave-action spectrum, and
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the PDF of relative wave intensity, and we examine dynamics
of rogue waves. We finish with the conclusions in Sec. V.

II. INVERSE SCATTERING TRANSFORM
AND MULTISOLITON SOLUTIONS

The formulation of the IST problem [28], see
also Refs. [29,30], for the one-dimensional NLS equation of
the focusing type

iψt + 1
2ψxx + |ψ |2ψ = 0, (2)

starts from the introduction of the auxiliary Zakharov-Shabat
(ZS) linear system for 2 × 2 matrix wave function � and
complex (spectral) parameter λ,

�x =
( −iλ ψ

−ψ∗ iλ

)
�, (3a)

�t =
( −iλ2 + i

2 |ψ |2 λψ + i
2ψx

−λψ∗ + i
2ψ∗

x iλ2 − i
2 |ψ |2

)
�, (3b)

from which the NLS Eq. (2) is obtained as compatibility
condition

�xt = �tx .

Similar to quantum mechanics, see, e.g., Ref. [31], a scattering
problem for � is considered, where the wavefield ψ (x, t ) of
the NLS equation plays the role of x-dependent potential. The
so-called scattering data obtained from the solution of this
(direct) problem is in one-to-one correspondence with the x-
dependency of the potential ψ and can be used to reconstruct it
with the inverse scattering transform. The key result of the IST
approach is that the scattering data depends on time trivially,
so that the Cauchy initial-value problem for the NLS equation
can be solved formally by identifying the scattering data from
the direct scattering problem, finding its evolution in time and
applying the inverse scattering transform.

The first equation of the ZS system can be rewritten in the
form of the eigenvalue problem,

L̂� = λ�, L̂ = i

(
1 0
0 −1

)
∂

∂x
− i

(
0 ψ

ψ∗ 0

)
. (4)

For spatially localized potentials ψ , the eigenvalues λ are
presented by a finite number of discrete points with Im λ 
=0
(discrete spectrum) and the real line λ ∈ R (continuous spec-
trum). The scattering data consists of discrete eigenvalues λn,
n = 1, ..., N , complex coefficients Cn for each λn and the
so-called reflection coefficient r (ξ ),

{r (ξ ); λn, Cn}, (5)

where ξ means λ on the real axis. Its time evolution is trivial,

r (ξ, t ) = r (ξ, 0)e−2iξ 2t ,

∀n : λn = const, (6)

Cn(t ) = Cn(0)e−2iλ2
nt ,

and, in principal, allows one to find the wavefield ψ for
any given moment of time with the IST by solving the
(integral) Gelfand–Levitan–Marchenko (GLM) equations. In

the general case, the latter procedure can only be done nu-
merically or asymptotically at t → ∞. In the present paper
we consider the so-called reflectionless r (ξ ) = 0 potentials
ψ , which represent N -soliton solutions of the NLS equation.
Then, factorization of the GLM equations leads to a system
of linear algebraic equations and the N -SS can be found in
explicit form.

The simplest multisoliton solution of the NLS Eq. (2)
represents 1-SS,

ψ(1)(x, t ) = a
eiv(x−x0 )+0.5i(a2−v2 )t+iθ

cosh(a(x − x0) − avt )
, (7)

and depends on four real parameters a > 0, v, x0, and θ . The
first two of them are soliton amplitude a and group velocity v,
while x0 and θ correspond to position in space and complex
phase. At t = 0, the scattering data for 1-SS is a combination
of discrete eigenvalue and complex coefficient,

λ = −v/2 + ia/2, C = ei(θ+2λx0 ). (8)

To construct N -SS at the initial time t = 0, we generate N

pairs of discrete eigenvalues λn = −vn/2 + ian/2 and com-
plex coefficients Cn = ei(θn+2λx0n ) by using certain statistical
distributions for an, vn, x0n, and θn, which we discuss later
in the paper. Here an, vn, x0n, and θn describe, respectively,
amplitude, group velocity, and “approximate” position and
complex phase of the nth soliton. Note that due to soliton
interactions within the N -SS, the real position and complex
phase of a soliton may differ considerably from x0n and θn.
Without loss of generality, we consider λn on the upper half-
plane only, Im λn > 0, since complex-conjugated eigenvalues
relate to the same class of soliton solutions.

Then, we find the potential ψ (x, 0) corresponding to the
generated scattering data by using the Zakharov-Mikhailov
variant [32] of the dressing method, see also Ref. [33], which
can be briefly described as follows. Let us suppose that
ψ(n−1)(x, 0) is the (n − 1)-SS constructed from the first n − 1
eigenvalues λm and complex coefficients Cm, and �(n−1)(x, λ)
is the corresponding solution of the ZS system Eqs. (3a) and
(3b) at the initial time t = 0. Then, the n-SS containing the
first n solitons is given by

ψ(n)(x, 0) = ψ(n−1)(x, 0) + 2i(λn − λ∗
n)

q∗
n1qn2

|qn|2 , (9)

where vector qn = (qn1, qn2)T is determined by �(n−1) and
the scattering data of the nth soliton {λn, Cn},

qn(x) = �∗
(n−1)(x, λ∗

n) ·
(

1
Cn

)
. (10)

The corresponding solution �(n)(x, λ) of the ZS system is
calculated through �(n−1) and the so-called dressing matrix
χ ,

�(n)(x, λ) = χ (x, λ) · �(n−1)(x, λ), (11)

χml (x, λ) = δml + λn − λ∗
n

λ − λn

q∗
nmqnl

|qn|2 , (12)

where m, l = 1, 2 and δml is the Kronecker δ. The recurrent
dressing procedure starts from the trivial solution of the NLS
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equation ψ(0) = 0 and the corresponding solution of the ZS
system,

�(0)(x, λ) =
(

e−iλx 0
0 eiλx

)
, (13)

and allows one to construct multisoliton solutions by adding
one soliton at each step. The dependence in time can be
recovered using time-evolution of the scattering data Eq. (6)
and repeating the dressing method for each moment of time.

Note that the N -SS can also be found via the ratio of two
determinants, see, e.g., Refs. [29,30] and also Ref. [33],

ψ(N )(x, t ) = 2i
detM̃

detM
, Mnm = (q̃n · q̃∗

m)

λn − λ∗
m

,

M̃ =

⎛⎜⎜⎜⎝
0 q̃1,2 · · · q̃N,2

q̃∗
1,1
... MT

nm

q̃∗
N,1

⎞⎟⎟⎟⎠, (14)

where

q̃n(x, t ) = (q̃n,1, q̃n,2)T = (e−φn , eφn )T ,

φn(x, t ) = −iλn(x − x0n) − iλ2
nt − iθn/2. (15)

However, as we note in Sec. III, Eq. (14) is significantly
less stable with respect to numerical round-off errors than the
described procedure via the dressing method.

III. NUMERICAL METHODS

A. Initial conditions

With the dressing method described in Sec. II, we generate
multisoliton solutions at the initial time t = 0 using Wolfram
Mathematica software with 100-digits precision. This allows
us to reliably construct N -SS with N more than 100. With
the standard 16-digits precision, the dressing method works
well up to N ∼ 30, while the determinant Eq. (14) fails due
to numerical errors already from N ∼ 10 with the output
containing extra large spatial gradients. The main source of
these errors is the roundoff during summation of exponentially
small and large values enhanced through the ill-conditioning
of the IST problem. In addition to better reliability, the dress-
ing method uses O(N2) operations to calculate N -SS at one
space point, while calculation of the determinants demands
O(N3) operations. We think that the difference in the number
of operations is the main source of the better numerical stabil-
ity of the dressing method. We did not check performance of
the determinant formula with 100-digits precision, as it takes
too much computational time.

We calculate N -SS in the numerical box x ∈ [−L/2, L/2],
limiting soliton positions x0n in such a way that the generated
multisoliton solution is small near the edges of the box.
Specifically, we choose x0n as random values uniformly dis-
tributed in a smaller box x0n ∈ [−L̃/2, L̃/2], L̃ < L, setting
L̃ so that

|ψ (±L/2, 0)| � 10−16 max
−L/2�x�L/2

|ψ (x, 0)|.

Later this allows us to treat the box L as periodic and simulate
evolution of N -SS inside it. The soliton phases are generated

as uniformly distributed random values too, in the interval
θn ∈ [0, 2π ). With our methods, we can reliably construct
multisoliton solutions with randomized soliton amplitudes
and velocities, and with soliton density

ρ = 2N

LA , A = 1

N

∑
n

an, (16)

of up to 0.65. Here A is the average soliton amplitude; our
choice for the definition of soliton density is explained below.
For larger densities, it is difficult to generate ensembles of
initial conditions with random soliton parameters, since some
of the realizations have to be skipped due to solitons not fitting
into the box L. The latter is the result of the presence of close
soliton eigenvalues, when solitons interact remotely except
for the case of a particular phase synchronization; see, e.g.,
Ref. [33].

For N -SS, we use Gaussian-distributed soliton velocities
with zero mean and standard deviation V0, vn ∼ N (0, V 2

0 );
we examined the uniform distribution of velocities as well
and didn’t find essential difference. For an, we mainly study
the case of equal amplitudes an = A = π/3.2, briefly demon-
strating the results for Gaussian-distributed amplitudes for
comparison. Note that in the latter case, for each realization
within the ensemble, we first generate amplitudes an and then
shift them by a constant δa to fix the average intensity,

|ψ |2 = 1

L

∫ L/2

−L/2
|ψ |2 dx = 2

L

N∑
k=1

an, (17)

to the same constant for all initial conditions, see Eqs. (20)
and (23) below; otherwise, averaging across ensemble
wouldn’t be representative. The value of A ≈ 0.98 is chosen
to allow direct comparison with the study [5] of integrable
turbulence generated from modulational instability of cnoidal
waves. After initial generation of soliton velocities vn, for
each initial condition we shift all vn by a constant δv to make
the momentum equal to zero,

P = i

2L

∫ L/2

−L/2
(ψ∗

x ψ − ψxψ
∗) dx = 2

L

N∑
n=1

anvn = 0. (18)

Relation Eq. (17) explains our definition of soliton den-
sity Eq. (16), as in this case the density equals to the ratio
between the average square amplitude of the wavefield and
square average soliton amplitude,

ρ = |ψ |2
A2

.

Thus, the case ρ � 1 corresponds to weak interactions be-
tween the solitons within rarefied N -SS, while ρ ∼ 1 de-
scribes sufficiently dense multisoliton solutions.

If two eigenvalues λn and λm turn out to be close to
each other, the numerical implementation of both the dressing
method and the determinant formula may fail due to very
small denominators in Eqs. (12) and (14) (for λn = λm these
equations become indeterminate). To avoid such situations,
we use threshold δλ = 10−9 for the minimal distance between
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the eigenvalues,

|λn − λm| > δλ, n,m = 1, ..., N, m 
= n. (19)

Technically, we generate λn in sequential order, check for λn

if the relation Eq. (19) is valid for all m < n, and if it does
not, we generate λn again, for n = 2, ..., N . For our velocity
distributions, the probability of one event when any λn has to
be recalculated is of 10−5 order. This is why we think that the
influence of this threshold on the statistical characteristics of
soliton gas can be neglected.

An 128-soliton solution generated with the above de-
scribed rules together with its Fourier spectrum is shown in
Figs. 1(a) and 1(b).

B. Time evolution

We generate ensembles containing ∼103 individual real-
izations of N -SS (we use ensembles of 1000 for 128-SS
and 2000 for 64-SS). Then, we simulate their evolution solv-
ing the NLS Eq. (2) numerically and treating the box x ∈
[−L/2, L/2] where the N -SS were generated as periodic, so
that with time the solitons spread over the box (statistically)
uniformly. With this approach, we actually change N -SS by
N -band solutions with very narrow bands [15,16] (soliton
widths are by two-three orders of magnitude smaller than
the box size), neglecting the difference between the two. We
use pseudospectral Runge-Kutta fourth-order method with
adaptive change of the spatial grid size �x and Fourier
interpolation between the grids, as described in Refs. [4,5];
�x is set from the analysis of the Fourier spectrum of the
solution. The time step �t changes with �x as �t = h �x2,
h � 0.1, to avoid numerical instabilities.

Integrability of the NLS equation implies conservation of
infinite series of integrals of motion [29],

In = 1

L

∫ L/2

−L/2
fn dx,

fn = ψ
∂

∂x

(
fn−1

ψ

)
+

∑
l+m=n−1

flfm, (20)

where f1 = |ψ |2. The first three of these invariants are wave
action (in our notations equals to average intensity),

S = |ψ |2 = 1

L

∫ L/2

−L/2
|ψ |2 dx, (21)

momentum Eq. (18), and total energy,

E = Hd + H4,

Hd = 1

L

∫ L/2

−L/2
|ψx |2 dx, (22)

H4 = − 1

L

∫ L/2

−L/2
|ψ |4 dx.

Here Hd is the kinetic energy and H4 is the potential one, and
we use prefactor 1/L for further convenience. For N -SS, these
invariants can also be found via the eigenvalues,

In = (2i)n

nL

N∑
k=1

[(
λn

k

)∗ − λn
k

]
. (23)
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n
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x

|ψ
|

(c)

FIG. 1. (a) The wavefield of 128-SS at the initial time t = 0,
(b) its Fourier spectrum |ψk|2, and (c) the wavefield for the same
128-SS at t = 200. The simulation box x ∈ [−L/2, L/2] has length
L = 128π , the soliton density is ρ ≈ 0.65, the amplitudes are equal,
an = A = π/3.2, and the velocities are Gaussian-distributed, vn ∼
N (0, V 2

0 ), V0 = 2. The left inset in figure (a) and the inset in figure
(c) illustrate the wavefield at the center of the box L with better
resolution, and the right inset in figure (a) shows the eigenvalues λn,
n = 1, ..., 128.

In our simulations, the first ten integrals calculated via the
recurrent Eq. (20) conserve with time and coincide with the
exact values Eq. (23) with the relative errors from 10−14 (for
I1) to 10−8 (for I10) orders. Additionally, we compare discrete
eigenvalues λn of the initial conditions with eigenvalues �n

calculated at the final time of the evolution, which we find by
solving the ZS eigenvalue problem Eq. (4) with the Fourier
collocation method, see, e.g., Refs. [8,34]; the eigenvalues
coincide up to the relative error |λn − �n|/|λn| of 10−9 order.

Due to periodic border conditions, the solitons spread
over the computational box sufficiently uniformly to time
t ∼ 80 for our N -SS parameters, and the system arrives to its

042210-5



A. A. GELASH AND D. S. AGAFONTSEV PHYSICAL REVIEW E 98, 042210 (2018)

statistically steady state, where its ensemble-averaged charac-
teristics do not change anymore. In particular, among these
characteristics we check the moments of amplitude Mn =
〈|ψ |n〉 (using them to determine the steady state), the wave-
action spectrum,

Sk = 〈|ψk|2〉, ψk = 1

L

∫ L/2

−L/2
ψ e−ikx dx, (24)

the kinetic 〈Hd〉 and potential 〈H4〉 energies, the kurtosis
κ = M4/M

2
2 , and the PDF of relative wave intensity; see,

e.g., Refs. [4,5]. Here 〈...〉 means arithmetic averaging across
ensemble of initial conditions, while the overline denotes
spatial averaging; see, e.g., Ref. (21). We use the achieved sta-
tistically steady state as a model of homogeneous soliton gas
of density Eq. (16) in an infinite space; we confirmed that for
N � 32 and L � 32π the statistical properties of the steady
state depend on N and L only in the combination N/L ∝
ρ. We perform simulations until t = 200 and additionally
average the results in the time interval t ∈ [160, 200]; an
example of the wavefield at t = 200 is shown in Fig. 1(c). For
smaller soliton velocities we shift to larger times, which we
determine according to the same principle as described above.

As we noted earlier, see Eqs. (17) and (18), all realizations
within the ensemble of initial conditions have zero momentum
P = 0 and the same value of wave action (average intensity)
S = |ψ |2. However, as one can see from Eq. (23), the integrals
of motion of higher order are not fixed and may change sig-
nificantly from one realization to another. Of these integrals,
the total energy can be fixed by fixing the average square
velocity u2 = (1/N )

∑
n v2

n for each realization; see Eq. (25)
for the total energy below. Technically, this can be done by
multiplying each soliton velocity vn by a constant to make u2

the same for each realization. We compared our results against
those obtained using N -SS with the fixed value of the total
energy and found no difference.

We checked our statistical results against the size of the
ensembles and parameters of our numerical scheme, and
found no difference. We also found that, for random soliton
velocities, the statistical properties of the steady state do
not depend on distributions of positions x0n and complex
phases θn. The latter result is straightforward from the point of
view of soliton collisions. Indeed, when solitons collide, they
experience jumps in positions and complex phases, which
depend on the velocity difference [29]. If soliton velocities are
random, these jumps lead to stochastization of positions and
complex phases even when their initial values are not random.
Thus, for random velocities, the statistical characteristics of
homogeneous soliton gas depend only on soliton density and
distributions of amplitudes and velocities.

IV. RESULTS

In the limit of small soliton density, the soliton gas is
a superposition of almost non-interacting individual solitons
moving with different velocities, and the wavefield is very
close to arithmetic sum of one-soliton solutions Eq. (7). Then,
neglecting soliton interactions and using Eqs. (17) and (22)
and definition of soliton density (16), one can find the average
intensity, the kinetic, potential and total energies, and the
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FIG. 2. (a) The kinetic 〈Hd〉, potential 〈H4〉, and total 〈E〉 ener-
gies for statistically homogeneous soliton gas with density ρ = 0.32
and equal amplitudes an = A = π/3.2, depending on the average
square velocity V 2

0 ; we model these gases with 64-SS. The dashed
lines indicate the relations Eq. (25) with u2 = V 2

0 for the kinetic
(upper black), the potential (lower blue), and the total (middle
red) energies, respectively. (b) The same for soliton gas with fixed
characteristic velocity V0 = 2, depending on soliton density ρ; we
model these gases with 128-SS.

kurtosis, respectively,

〈|ψ |2〉 = A2ρ, 〈Hd〉 = A2ρ

3
(3u2 + A2),

〈H4〉 = −2A4ρ

3
, 〈E〉 = A2ρ

3
(3u2 − A2), (25)

κ = 〈|ψ |4〉
〈|ψ |2〉2

= 2

3ρ
.

Here u2 = 〈v2
n〉 is the average square velocity, and we consider

soliton gas with equal amplitudes an = A for simplicity. Rela-
tions for average intensity and total energy are exact ones and
follow directly from Eqs. (17) and (23), while the other ones
for the kinetic energy, the potential energy and the kurtosis are
approximate and valid only when ρ � 1.

To test these relations, we perform simulations with several
ensembles of initial conditions, which differ from each other
by characteristic soliton velocity V0 or soliton density ρ.
Using these ensembles we model statistically homogeneous
soliton gas as described in the previous Section, finding
numerically the values for the kinetic, potential, and total
energies, as well as the kurtosis; these results are shown in
Figs. 2 and 3 depending on V 2

0 and ρ. Note that, as we use
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FIG. 3. (a) The kurtosis κ (black dots) depending on the average
square velocity V 2

0 ; all the parameters are the same as in Fig. 2(a).
The dashed line indicates the relation Eq. (25) for the kurtosis, with
u2 = V 2

0 . (b) The same depending on the soliton density ρ; all the
parameters are identical to those in Fig. 2(b).

Gaussian distribution for the velocities vn ∼ N (0, V 2
0 ), the

average square velocity coincides with the variance, u2 =
V 2

0 . Numerical results correspond very well with the rela-
tions Eq. (25). The deviations represent next-order corrections
due to soliton interactions and increase with characteristic
velocity V0 or density ρ. Indeed, larger values for V0 or ρ

lead to enhanced soliton interactions due to more frequent
collisions or decreased spacing. This results in more frequent
appearance of large amplitudes |ψ | and gradients |ψx | for
the wavefield, i.e., in larger absolute values for the potential
and kinetic energies, respectively. More frequent appearance
of large “spikes” should increase the kurtosis as well, with
respect to its collisionless value. We observe this behavior in
Figs. 2 and 3, where the deviations from relations Eq. (25)
increase with V0 and ρ, and lead to increased absolute values
for the kinetic and potential energies, and also the kurtosis.
Note that the kurtosis κ in our simulations approaches to 2
with increasing density ρ, that hints to the possibility that
in the limit of dense soliton gas the PDF of relative wave
intensity may converge to the exponential PDF Eq. (1).

Figure 4 shows the wave-action spectrum for different
characteristic soliton velocities V0 and densities ρ. In con-
trast to the condensate [4] and the cnoidal wave [5] initial
conditions, the spectrum is smooth—it does not contain peaks
diverging by power-law with the wave number. At small and
moderate wave numbers, the spectrum has a characteristic
bell-shaped form which significantly depends on the charac-

FIG. 4. (a) The wave-action spectrum Sk for statistically homo-
geneous soliton gas, for different characteristic soliton velocities V0.
All the parameters are the same as in Fig. 2(a). (b) The same for
different soliton densities ρ; all the parameters are the same as in
Fig. 2(b).

teristic velocity and density, while at large k the spectrum
decays close to exponentially. Enhanced soliton interactions
with increasing V0 and ρ are reflected in widening of the
spectrum. Note that since in our notations∑

k

Sk = 〈|ψ |2〉 = A ρ,

the sum of the spectrum over the wave number depends
linearly on the soliton density.

We examine the PDF starting from the example of soli-
ton gas with density ρ = 0.32, equal amplitudes an = A =
π/3.2, and characteristic soliton velocity V0 = 2; we model
this gas with 64-SS. The corresponding PDF is shown in
Fig. 5(a), in comparison with the exponential PDF Eq. (1) and
the asymptotic PDF for the cnoidal wave initial conditions,
with the cnoidal wave “constructed” from solitons of the same
amplitude (ω1 = 1.6 in notations of Ref. [5]).

Cnoidal waves are exact periodic solutions of the NLS
equation which can be represented as lattices of overlapping
solitons [35]. The case ω1 = 1.6 corresponds to a lattice
of solitons with amplitude A = π/3.2 and with “soliton”
density ρ = 0.32—the same parameters as for the soliton gas
we examine in Fig. 5(a). Modulational instability of such
lattices leads to integrable turbulence, which asymptotically
approaches to its statistically steady state in an oscillatory
way [5]. The PDF in this state depends on the degree of
“overlapping” of solitons. When the overlapping is weak,
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FIG. 5. (a) The PDF P (I ) for statistically homogeneous soliton
gas (thick red) and the cnoidal wave initial conditions (thin black),
in comparison with the exponential PDF PR (I ) (dashed black). The
soliton gas has density ρ = 0.32, equal amplitudes an = A = π/3.2
and characteristic velocity V0 = 2; we model it with 64-SS. The
cnoidal wave is “constructed” from solitons of amplitude A and has
the same “soliton” density as the soliton gas, that corresponds to
ω1 = 1.6 in notations of Ref. [5]; the PDF is taken from this publi-
cation. (b) The PDF P (I ) for soliton gas depending on characteristic
soliton velocity V0; all other parameters are the same as in figure (a).
The dashed line shows the exponential PDF PR (I ). The thin vertical
dashed lines in both figures mark relative intensities I corresponding
to amplitudes |ψ | = A, 2A, and 3A, while the insets show PDFs at
small and moderate I .

the wavefield remains close to a collection of thin and high
solitons with different phases and positions, soliton amplitude
exceeds significantly the space-average amplitude, and the
PDF deviates from the exponential distribution PR (I ) Eq. (1)
pronouncedly. For strong overlapping, the behavior of the
system is similar to that of the modulational instability of
the condensate [4] and the PDF in the steady state coincides
with PR (I ). The case ω1 = 1.6 shown in Fig. 5(a) by the thin
black line is an “intermediate” and mixes properties of these
two limits. In particular, on the one hand the corresponding
PDF is relatively close to the exponential, and from the other
one it can be subdivided by characteristic parts representing
(1) a singular soliton, (2) two-soliton, and (3) three-soliton
collisions, as demonstrated by the vertical dashed lines in the
figure. These three lines are drawn at intensities corresponding
to amplitudes A, 2A, and 3A, as the maximal amplitude of
N -SS equals to NA; see, e.g., Ref. [36]. The same parts can
also be distinguished for the PDF of soliton gas in Fig. 5(a);
however, at the soliton interactions region |ψ |2 � A2 this

FIG. 6. (a) The PDF P (I ) for statistically homogeneous soliton
gas, depending on soliton density ρ. The soliton gas has equal ampli-
tudes an = A = π/3.2 and characteristic velocity V0 = 2; we model
it with 128-SS. The dashed line is the exponential PDF PR (I ), the
inset shows PDFs at small and moderate relative intensities I . (b) The
same PDFs recalculated for renormalized intensity Is = |ψ |2/A2.
The thin vertical dashed lines correspond to soliton amplitude A,
and maximal amplitudes of two-soliton 2A and three-soliton 3A

collisions; the inset shows PDFs at small and moderate Is .

PDF exceeds the exponential distribution PR (I ) by orders of
magnitude.

As demonstrated in Fig. 5(b), the excess over PR (I ) is
larger for soliton gas with larger velocities. Note that the
cnoidal wave in the limit of small soliton overlapping ap-
proaches to soliton gas with zero velocities. Thus, we may
assume that when the soliton density is small, the PDF
for soliton gas with small velocities should be close to the
asymptotic PDF for the cnoidal wave initial conditions (if the
corresponding cnoidal wave with the same soliton density and
amplitudes can be constructed). However, we cannot reliably
model soliton gas with V0 � 0.5 to check it, since in this
case some of the realizations of N -SS do not fit into the
computational box and have to be skipped from the ensemble
of initial conditions.

Figure 6(a) shows PDF for soliton gas with fixed ampli-
tudes an = A and characteristic velocity V0 = 2, depending
on soliton density ρ; we model these gases with 128-SS.
When the density is small ρ � 1, the soliton gas is a collec-
tion of weakly interacting thin (compared to average spacing)
and high (compared to average amplitude [|ψ |2]1/2 � A)
solitons. In this case, even an individual pulse with amplitude
close to A may already be a rogue wave, and the PDF deviates
drastically from the exponential distribution PR (I ), exceed-
ing it by orders of magnitude at sufficiently large relative
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FIG. 7. The PDF P (I ) for statistically homogeneous soliton gas
with density ρ = 0.32 and characteristic velocity V0 = 2 containing
solitons with Gaussian-distributed amplitudes (thick curve) an ∼
N (A, δA2 ), δA = 0.2, and the exponential PDF PR (I ) (dashed line);
we model this soliton gas with 128-SS. The thin vertical dashed lines
mark relative intensities I corresponding to amplitudes A, 2A, and
3A, while the inset shows the PDF at small and moderate I .

intensities I . The regions on the PDF representing a singu-
lar soliton, and two- and three-soliton collisions are clearly
visible in Fig. 6(b), which shows PDFs for renormalized
intensity Is = |ψ |2/A2; these regions correspond to segments
Is ∈ [0, 1], Is ∈ [1, 4] and Is ∈ [4, 9], respectively.

For larger densities, the solitons collide more frequently,
and the PDF P (I ) of relative wave intensity transforms closer
to the exponential PDF PR (I ). When the density becomes of
unity order, ρ ∼ 1, the collisions become so frequent that the
regions on the PDF corresponding to two- and three-soliton
collisions are difficult to distinguish, Fig. 6(b). We think
that for soliton gas with large density ρ � 1 the PDF may
coincide with the exponential PDF Eq. (1); however, we can
neither explain this hypothesis theoretically, nor confirm it
numerically.

Note that, if for different soliton densities ρ we compare
PDFs P (I ) of relative wave intensity I = |ψ |2/〈|ψ |2〉, then at
large enough I the PDF is larger for smaller ρ; see Fig. 6(a).
Thus, the probability of large waves’ occurrence is larger
for soliton gas with smaller density, if these large waves are
counted relative to the average amplitude of the wavefield
[|ψ |2]1/2. However, as shown in Fig. 6(b), the PDF P (Is )
of renormalized intensity Is = |ψ |2/A2 is almost everywhere
larger for larger ρ, i.e., the probability of occurrence of waves
with the given absolute intensity |ψ |2 is larger for soliton gas
with larger density.

The PDF for soliton gas containing solitons of different
amplitudes demonstrates the same properties as discussed
above, except that the regions of two- and three-soliton colli-
sions are significantly less pronounced, Fig. 7. We model this
gas with 128-SS of density ρ = 0.32 and with characteristic
soliton velocity V0 = 2, using Gaussian distribution for the
amplitudes an ∼ N (A, δA2), δA = 0.2.

In simulations, we observe rogue waves that exceed soliton
amplitude A by up to 4 times. As these waves appear in
soliton gas, they are multiple collisions of solitons. However,
some of these waves, at the time of their maximal elevation,
have profiles along x coordinate very similar to those of the
so-called Peregrine solutions of the first, the second, and the

third orders. The Peregrine solution of the first order [37]
is localized in space and time rational solution of the NLS
Eq. (2),

� (1)
p (x, t ) = eit

[
1 − 4

1 + 2it

1 + 4t2 + 4x2

]
. (26)

The Peregrine solutions (also called rational breathers) of the
second and the third orders are too cumbersome, and we
refer the reader to Ref. [38] where they were first found.
If �p(x, t ) is a solution of the NLS equation, then ψp =
A0�p(X, T ) with X = |A0|(x − x0) and T = |A0|2(t − t0)
is also a solution; in the case of the Peregrine breathers, x0

and t0 describe position and time for the maximal elevation
of |ψp|. Figure 8 shows examples of large waves which we
observe in our simulations, in comparison with the Peregrine
solutions of the first, the second and the third orders, scaled
with parameters A0, x0, and t0 to fit the observed waves
in their maximal amplitude, and also the position and time
of occurrence. All large waves in Fig. 8 are obtained using
128-SS with density ρ = 0.65, equal amplitudes an = A, and
with characteristic soliton velocity V0 = 2. The large wave in
Fig. 8(a) exceeds the soliton amplitude A by about two times,
in Fig. 8(b) by about three times, and in Fig. 8(c) by about four
times; by checking the temporal dynamics we can confirm that
these are instances of two-, three-, and four-soliton collisions.
Along the x coordinate, in the region between the two local
minima closest to the maximal amplitude, the presented large
waves are very well approximated by the Peregrine solutions
of the first, the second, and the third orders, respectively.
Note that the phase arg ψ between the two local minima has
almost constant slope with coordinate x for the numerically
observed waves, while the Peregrine solutions have constant
phase in the same region (i.e., zero slope). However, the
constant (nonzero) slope can be constructed for the Peregrine
solutions as well, if we consider them moving: indeed, if
�p(x, t ) is a solution of the NLS equation with zero slope
for the phase arg ψ = const in some coordinate region, then
�p(x − vt, t ) eivx−iv2t/2 is also a solution with nonzero slope,
arg ψ − vx = const, in the same region. Note that the time
evolution of the maximal amplitude maxx |ψ (x, t )| for the
observed large waves is significantly different from those for
the corresponding Peregrine solutions, as shown in the insets
in Fig. 8.

The large waves presented above demonstrate that quasir-
ational profiles similar to those of the Peregrine solutions
may appear for rogue waves even they emerge in soliton gas,
where all such waves are collisions of solitons. This is further
demonstrated in Fig. 9, where we present 2-SS and 3-SS with
parameters selected to achieve the maximal amplitude growth.
For the 2-SS we take velocities v1,2 = ±0.1 and symmetric
initial positions x01 = −x02, while for the 3-SS–v1,3 = ±0.1,
v2 = 0 and x01 = −x03, x02 = 0, respectively; solitons have
amplitude A and the same value of complex phase θ when
they are far away from each other. As shown in the figure, with
these parameters the spatial profile for the two-soliton colli-
sion at the time of its maximal elevation is very well described
by the (scaled) Peregrine solution of the first order, while for
the three-soliton collision—by the Peregrine solution of the
second order. In the latter case even the temporal behavior
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FIG. 8. Large waves at the time t0 of their maximal elevation
with profiles similar to those of the Peregrine solutions of the first
(a), the second (b), and the third (c) orders. Thick black and dash-dot
red show coordinate dependencies for the amplitude |ψ | and phase
arg ψ , respectively, while dashed green indicates fits by the Pere-
grine solutions. The insets show time-dependency for the maximal
amplitude maxx |ψ | (thick black) and its fit with the corresponding
Peregrine solution (dashed green).

of the maximal amplitude maxx |ψ (x, t )| is almost identical
to that of the Peregrine solution of the second order. In our
simulations, colliding solitons do not have “ideal” parameters
as in Fig. 9, that may explain larger deviations between the
observed large waves in Fig. 8 and their fits with the Peregrine
solutions. When the soliton parameters are far from the ideal,
the spatio-temporal profile of the collision may differ signif-
icantly from those of the Peregrine solutions. Note that the
Peregrine-like spatial profiles were observed previously for
the collisions of breathers [39] and in quasiperiodic wavefields
described by the finite-band solutions [40]; such profiles may
also appear as the result of the regularization of the gradient
catastrophe [41].

FIG. 9. Specifically designed (a) two-soliton and (b) three-
soliton collisions at the time of their maximal elevation t = 0, and
their fits with the Peregrine solution of the first (a) and the second
(b) orders. The colliding solitons have equal amplitudes an = A =
π/3.2, velocities v1,2 = ±0.1, and symmetric initial positions x01 =
−x02 in figure (a) and v1,3 = ±0.1, v2 = 0, x01 = −x03, x02 = 0 in
figure (b); the phases θ of all solitons are equal when they are far
away from each other. All the notations are the same as in Fig. 8.

V. CONCLUSIONS

In the present paper, for the first time to our knowledge,
we have studied statistically homogeneous soliton gas with es-
sential interaction between the solitons. As a model, we have
used one-dimensional NLS equation of the focusing type; we
believe that our methods can be extended straightforwardly to
other nonlinear integrable equations.

At the first step in our study, we created ensembles of
N -soliton solutions (N -SS) with N ∼ 100, by using the
Zakharov-Mikhailov variant of the dressing method applied
numerically with 100-digits precision. As far as we are aware,
N -SS containing so many solitons were not generated by
anyone else before. Then, we put these N -SS in a periodic
box L and simulated their evolution until the statistically
steady state is reached. We used this state as a model for
homogeneous soliton gas of density ρ ∝ N/L in an infinite
space; we confirmed that for sufficiently large N and L our
results depend on them only in the combination N/L. We
examined the major statistical characteristics of soliton gas, in
particular, the kinetic and potential energies, the kurtosis, the
wave-action spectrum and the PDF of relative wave intensity,
depending on soliton density and velocities.

We have shown that in the case of rarefied soliton gas ρ �1
the kinetic and potential energies, as well as the kurtosis, are
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very well described by analytical relations Eq. (25) derived
without taking into account soliton interactions. For larger
density ρ and characteristic soliton velocity V0, we observe
increasing next-order corrections leading to increased abso-
lute values for all these three characteristics. These next-order
corrections come from enhanced soliton interactions due to
decreased spacing and more frequent collisions, respectively.
The wave-action spectrum for soliton gas is smooth, decays
close to exponentially at large wave numbers and widens with
increasing ρ and V0.

The PDF of relative wave intensity has the form of a
composition of PDFs representing a singular soliton and
soliton interactions. Compared to the cnoidal wave initial
conditions, the PDF deviates from the exponential (Rayleigh)
distribution Eq. (1) much more pronouncedly, especially at the
region of soliton interactions where it exceeds the exponential
PDF by orders of magnitude. This excess is larger for soliton
gas with larger velocities, that corresponds to more frequent
soliton collisions. For rarefied soliton gas ρ � 1, the average
amplitude of the wavefield is much smaller than the soliton
amplitude and the PDF deviates from the exponential PDF
drastically. For larger densities, solitons interact stronger and
the PDF transforms closer to the exponential distribution. We
think that for dense soliton gas ρ � 1 the PDF may match
the exponential one, that is supported by the behavior of the
kurtosis approaching to 2 with increasing density. Soliton gas
containing solitons of different amplitudes demonstrate the
similar properties, except that the regions of soliton interac-
tions on the PDF are less pronounced.

Rogue waves emerging in soliton gas are collisions of
solitons, and some of these collisions have spatial profiles
very similar to those of the (scaled) Peregrine solutions of
different orders. In particular, we present specifically designed
examples of two- and three-soliton collisions, which have
almost the same spatial profiles as the Peregrine solutions of
the first and the second orders. In the case of the three-soliton
collision, even the temporal dependency of the maximal

amplitude is very well approximated by that of the Peregrine
solution of the second order. When soliton parameters are
far from the “ideal” sets, the emerging large waves differ
significantly from the rational breathers. In our opinion, these
results highlight that the similarity in spatial and/or temporal
behavior cannot be used to draw conclusions on rogue waves’
composition and origin.

For a statistical study, it is crucial to define the ensemble of
initial conditions. In this paper, we have used initial conditions
with fixed value of wave action (average intensity) and with
zero momentum, while the integrals of higher order were not
fixed; for instance, the total energy could change significantly
from one realization to another. To check the influence of this
effect, we examined soliton gas for which—in addition to the
wave action and the momentum—the value of the total energy
was also fixed, and came to the identical results.

We suggest that our methods for generation of initial
conditions from known scattering data can be used to ex-
amine turbulence governed by other integrable equations
and developing from other types of initial conditions, e.g.,
containing nonlinear dispersive waves and different types
of breathers [13,14]. We believe that, in general, our ap-
proach can be promising, as it allows to study turbulence
with controlled initial conditions, i.e., with exact knowledge
which nonlinear objects interact during the evolution. Our
methods can also be used in optical fibre communications,
where strongly interacting N -SS were recently proposed as
information carrier [13].
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