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Symmetry breaking in competing single-well linear-nonlinear potentials
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The combination of linear and nonlinear potentials, both shaped as a single well, enables competition between
the confinement and expulsion induced by the former and latter potentials, respectively. We demonstrate that
this setting leads to spontaneous symmetry breaking (SSB) of the ground state in the respective generalized
nonlinear Schrödinger (Gross–Pitaevskii) equation, through a spontaneous off-center shift of the trapped mode.
Two different SSB bifurcation scenarios are possible, depending on the shape of the nonlinearity-modulation
profile, which determines the nonlinear potential. If the profile is bounded (remaining finite at |x| → ∞), at a
critical value of the integral norm the spatially symmetric state loses its stability, giving rise to a pair of mutually
symmetric stable asymmetric ones via a direct pitchfork bifurcation. On the other hand, if the nonlinear potential
is unbounded, two unstable asymmetric modes merge into the symmetric metastable mode and destabilize it via
an inverted pitchfork bifurcation. Parallel to a systematic numerical investigation, basic results are obtained in
an analytical form. The settings can be realized in Bose–Einstein condensates and nonlinear optical waveguides.
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I. INTRODUCTION

External potentials, which steer the propagation and trap-
ping of electromagnetic fields in photonics and matter waves
in Bose–Einstein condensates (BECs), feature spatial symme-
try in many physically important settings, a commonly known
example being double-well potentials, which were explored
in diverse physical settings [1], often in a combination with
nonlinearity [2–20] (see also book [21]). It is well known,
too, that the symmetry of the ground state in models includ-
ing the self-focusing nonlinearity follows the symmetry of
the underlying potential structure, which is always true in
quantum mechanics [22] (and, more generally, in any linear
theory), only as long as the nonlinearity remains weak enough.
A generic effect, which sets in at a critical strength of the
nonlinearity, is spontaneous symmetry breaking (SSB). In
particular, in the framework of the nonlinear Schrödinger
equation (NLSE), which is a generic model for many settings
in optics and BEC, SSB was first considered in Ref. [23] (in
terms of a discretized version of the NLSE, the SSB concept
was introduced in another early work [24]). Generally, above
the SSB point, the ground state of the one-dimensional (1D)
NLSE model amounts to a soliton which is located at one
of the local minima of the underlying double- or multiwell
potential structure. Because the particular minimum is chosen
spontaneously among two or several available ones, the re-
spective ground state features double or multiple degeneracy,
which is possible in nonlinear systems, being forbidden in the
linear Schrödinger equation [22].

In addition to the usual linear (in particular, double-
well) potentials, NLSE-based models may include nonlinear

pseudopotentials [25], which are represented by a spatially
dependent coefficient in front of the nonlinear term (we stress
that the nonlinear interaction remains local, while its strength
may become a function of coordinates). Pseudopotentials
can be created in optics, by implanting nonlinearity-inducing
dopants into the host medium [26], as well as in BEC, making
use of a locally applied Feshbach resonance (FR), controlled
by tightly focused laser beams. Several examples of spatial
and spatiotemporal nonlinear pseudopotentials for BEC have
been created in the experiment by means of the latter tech-
nique [27–29]. Another possibility is the creation of an effec-
tive pseudopotential “painted” by a rapidly moving laser beam
[30]. Various soliton modes supported by pseudopotentials
have been studied in detail (thus far, in the theoretical form)
[31]. In particular, double-well pseudopotentials based on the
self-attractive nonlinearity give rise to specific SSB effects
[32–34].

In this work we aim to demonstrate that the SSB is possible
not only in double-well (pseudo)potentials, but also in a
combination of competing linear and nonlinear single-well
potentials, assuming that the former is confining, while the
nonlinear potential is expulsive. In terms of optics, this may
be considered as a combination of a linear waveguide and
nonlinear antiwaveguide. Previously, the opposite situation
was considered, viz., competition of linear antiwaveguiding
and nonlinear self-focusing, which produced not SSB effects,
but transient regimes for quasistable propagation of spatial
solitons [35]. To the best of our knowledge, the SSB in
the absence of a double-well structure was not demonstrated
previously. Here, we find that, depending on the shape of the
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nonlinear potential, the SSB proceeds according to one of the
two possible scenarios: in one case, the original symmetric
ground state loses its stability through a direct bifurcation
of a pitchfork type [36], which gives rise to a pair of stable
asymmetric states; in the other case, the pitchfork bifurcation
is inverted, leading to merger of two asymmetric states into a
metastable symmetric one, leading to its destabilization.

The rest of the paper is organized as follows. In Sec. II, we
describe the physical model. In Sec. III, we present the main
numerical results concerning the SSB in the competing linear-
nonlinear potentials. Section IV offers the analytical treatment
that supports the numerical results. Finally, Sec. V concludes
the paper and provides an outlook on future research.

II. THE MODEL

We consider the 1D NLSE, written here as the Gross–
Pitaevskii equation (GPE) which governs the evolution of the
macroscopic BEC wave function �(x, t ) [37]:

i�t = −�xx + 1
2ω2x2� − P (x)�|�|2, (1)

with time t and coordinate x scaled so that h̄ = 1 and nor-
malized atomic mass is m = 1/2, whereas ω2 is the strength
of the linear harmonic-oscillator (HO) trapping potential, and
P (x) > 0 determines the nonlinear pseudopotential, induced
by the self-attractive nonlinearity, which we adopt in the form
of a simple single-well structure:

P (x) = 1 + A tanh2 x, (2)

with A > 0. In BEC, this pseudopotential profile can be easily
created by juxtaposing a local FR, induced by a focused
laser beam, with the uniform self-attraction controlled by
the uniform illumination, which can be readily implemented,
e.g., in the condensate of 174Yb atoms [28]. As for the linear
HO potential, it is a standard ingredient of any experimental
setting dealing with BECs. In optics, the local-nonlinearity
modulation profile defined by Eq. (2) can be made by uni-
formly doping the periphery of the waveguide with a resonant
nonlinearity-enhancing material [26], while leaving the core
area undoped.

As shown below, it is important that the function P (x)
is bounded, i.e., its maximum value, P (x = ±∞) = 1 + A,
is finite. Other profiles P (x) with shapes similar to one
defined by Eq. (2) have also been considered, to check that
the results reported below do not essentially depend on the
specific choice of the bounded pseudopotential. This conclu-
sion implies that the results are structurally stable, once they
are not affected by a variation of the particular shape of the
pseudopotential (obviously, in the actual experiment the shape
can be designed with a finite accuracy).

The Hamiltonian corresponding to Eq. (1) is

H =
∫ +∞

−∞

[
|�x |2 + 1

2
ω2x2|�|2 − 1

2
P (x)|�|4

]
dx. (3)

It follows from here that the structure defined by Eq. (2)
represents a repulsive nonlinear-potential barrier, because the
strength of the local self-attraction has a minimum at x = 0.
Accordingly, the equilibrium position of a soliton in the
present system is determined by the competition between the
trapping linear HO potential and expulsive pseudopotential

corresponding to Eq. (2). The subsequent analysis reveals
the main finding of this work: the competition of the lin-
ear and nonlinear spatially symmetric potentials creates an
asymmetric ground state, past the SSB point, in the absence of
any double-well potential. We also demonstrate that switching
from the bounded pseudopotential (2) to an unbounded one
leads to a significantly different SSB scenario, with neither
the symmetric state nor the asymmetric one being stable past
the bifurcation point.

We look for stationary states with real chemical potential
μ as �(x, t ) = e−iμtu(x), where u(x) is a localized real
stationary wave function which satisfies

uxx + μu − 1
2ω2x2u + P (x)u3 = 0 (4)

and can be characterized by its norm (proportional to the
number of atoms in the corresponding BEC),

N =
∫ +∞

−∞
u2(x)dx.

Symmetric (even) and antisymmetric (odd) solutions are de-
fined, respectively, by u(x) = u(−x) and u(x) = −u(−x),
whereas for asymmetric modes one has |u(x)| �= |u(−x)|.

III. NUMERICAL RESULTS

Symmetric and symmetry-broken states can be found nu-
merically, applying the standard iterative Newton’s method,
with a properly chosen initial guess, to Eq. (4). Since in this
work we are interested in fundamental nodeless solutions, we
used the initial guess in the form of Gaussian profiles, u0(x) =
a exp[−(x − x0)2], where a and x0 are the trial parameters
(x0 = 0 should be chosen if the target solution is symmetric,
and x0 �= 0 otherwise). If the Newton’s method converges
to a stationary solution for some μ, a family of nonlinear
modes can be found by means of the continuation in μ. To
characterize the SSB bifurcation, we introduce the center-of-
mass coordinate,

Xc = N−1
∫ +∞

−∞
xu2(x)dx, (5)

which is zero for symmetric and antisymmetric solutions, and
nonzero for asymmetric ones.

The resulting bifurcation diagrams for the bounded pseu-
dopotential (2) are displayed in Fig. 1. As follows from
Figs. 1(a) and 1(b), a direct bifurcation of the pitchfork type
[36] occurs, with the increase of N , at the critical point,
N = Ncr, as shown in Fig. 1(c): two asymmetric states, with
Xc > 0 and Xc < 0, branch off from the symmetric one,
with Xc = 0, at N > Ncr. Because the governing equation (1)
keeps the global symmetry, i.e., it is invariant with respect to
the space reflection, x → −x, asymmetric solutions always
emerge in two mutually mirrored copies, i.e., u(x) and u(−x)
with identical norms, therefore states u(x) and u(−x) are
indistinguishable in the (N,μ) diagram plotted in Fig. 1(b).
The SSB bifurcation generates asymmetric states above a
critical value of the norm, N > Ncr. At μ → 1, the norm
N is vanishing, and the symmetric mode transforms into the
harmonically trapped linear mode with an infinitely small
amplitude. Another visualization of the SSB bifurcation is
presented in Fig. 1(c), in the (Xc,N ) plane.

042209-2



SYMMETRY BREAKING IN COMPETING SINGLE-WELL … PHYSICAL REVIEW E 98, 042209 (2018)

FIG. 1. (a)–(c) Three renditions of the SSB bifurcation for
bounded pseudopotential (2) with A = 2. Stable and unstable solu-
tions correspond to thick blue and thin red segments of the lines,
respectively. The dotted line in panel (c) represents the analytical
approximation given by Eq. (13). (d) The critical norm (thick green
line) at which the SSB takes place in the presence of bounded pseu-
dopotential (2) vs depth A of its profile. At N < Ncr , no asymmetric
modes exist, and symmetric ones are stable. At N > Ncr there exist
stable asymmetric modes, while symmetric ones are unstable. The
thin dashed and dotted lines depict analytical predictions (6) and
(12), which are valid for large A and large Ncr, respectively. The
indefinite coefficient in Eq. (6) is chosen as const ≈ 7 to provide for
the best fit. (e), (f) Typical examples of symmetric and asymmetric
modes at A = 2 and μ = −2. The thin dotted lines depict the
parabolic potential and pseudopotential P (x ). For all panels, the
strength of the HO trapping is ω = √

2.

Dependence of critical norm Ncr at the SSB point on depth
A of the modulation of pseudopotential (2) is the most impor-
tant characteristic of the setting under the consideration. The
numerically found dependence is plotted in Fig. 1(d), where
one observes that Ncr slowly decays at A → ∞, and Ncr

diverges as A decreases, in agreement with the well-known
fact that SSB does not occur in the model combining the linear
HO potential and spatially uniform self-attractive nonlinearity
[10,13,38]. These asymptotic features can be easily explained
analytically. Indeed, in the case of very large A, term 1 in
definition (2) for P (x) may be neglected, which allows one to
remove A by rescaling, leading to an asymptotic relation valid
for A → ∞:

(Ncr )A→∞ = const × A−1. (6)

Profiles of symmetric and asymmetric modes coexisting
at the same value of chemical potential μ are plotted in
Figs. 1(e) and 1(f), respectively. Both solutions have the node-
less single-peak shape, but the maximum of the symmetric
mode is located exactly at x = 0, whereas the maximum of the

FIG. 2. Evolution |�(x, t )|2 of an unstable symmetric mode in
bounded pseudopotential (2) with A = 2, μ = −2, and N ≈ 4.90.

asymmetric one is shifted to x > 0, the mirrored asymmetric
solution having its maximum shifted to x < 0.

Next, we address the linear stability of the found symmet-
ric and asymmetric solutions. First, Fig. 1(b) clearly shows
that both the symmetric and asymmetric branches satisfy the
necessary stability condition in the form of the Vakhitov–
Kolokolov (VK) criterion, dN/dμ < 0 [39–41]. Then, fol-
lowing the standard procedure, the stability problem amounts
to the evaluation of eigenvalues of the linearization operator
L = L+L−, where (see, e.g., book [21] for details)

L± = d2

dx2
+ μ − 1

2
ω2x2 + (2 ± 1)P (x)u2. (7)

Mode u(x) is linearly stable if all eigenvalues of L are real
and positive. If a negative or complex eigenvalue � is found
in the spectrum of L, then u(x) is unstable, with instability
growth rate |Im √

�|. Numerically computing the eigenvalues
for the symmetric and asymmetric states, we observe that the
symmetric branch is stable at μ > μcr (in other words, at N <

Ncr), where (μcr, Ncr ) are coordinates of the SSB bifurcation
point in Fig. 1. At μ < μcr (N > Ncr), the symmetric mode
is destabilized by a single negative eigenvalue in the spectrum
of L , while the emerging asymmetric modes are stable.

Direct simulations of the evolution of symmetric and asym-
metric modes in the framework of the time-dependent GPE
(1) confirm the predictions of the linear-stability analysis. As a
representative example, in Fig. 2 we display the behavior of an
unstable symmetric mode. The input was chosen in the form
of the unstable mode, u(x), with a small initial perturbation
added to it [in particular, an appropriate perturbation can be
introduced merely by multiplying u(x) by 1.001]. Even this
mild (and symmetric) perturbation rapidly triggers strong dy-
namical instability, which spontaneously breaks the symmetry
of the initial mode, shifting sideward (to the left, in Fig. 2),
thus creating an asymmetric state with irregular internal oscil-
lations, which do not destroy the emerging asymmetric mode.

Now we aim to demonstrate that the SSB scenario can be
essentially altered by taking another pseudopotential, which
is also expulsive, but with an unbounded shape, unlike the
bounded one in Eq. (2):

P (x) = 1 + Ax2. (8)
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FIG. 3. The SSB bifurcation for the unbounded pseudopotential
(8), with A = 1 and ω = √

2. Panels (a)–(d) are organized as in
Fig. 1. Dotted line in panel (c) is the analytical prediction (14). For
the analytical approximation (6), valid for large A [the dashed line in
panel (d)], const ≈ 5 is chosen to provide for the best fit.

Strictly speaking, the indefinite growth of the local nonlinear-
ity strength at |x| → ∞ , which is implied by Eq. (8), is not
possible, but in practical terms it may be truncated at values
of |x| which are much larger than the size of the trapped
mode [42]. In the physical settings, this pseudopotential can
be implemented by means of the same approach as the one
defined by Eq. (2).

Contrary to the case of pseudopotential (2), the symmetric
state undergoes the inverted pitchfork SSB bifurcation with
the increase of N . The corresponding SSB diagrams are
displayed in Figs. 3(a)–3(c), where the panels with different
renditions of the SSB bifurcation are organized in the same
way as in Fig. 1. In particular, we observe that the slope
dN/dμ of the asymmetric branch is positive in this case,
so the VK criterion implies that the branch is unstable. This
prediction agrees with the numerical computation of the linear
stability eigenvalues, which produces a single negative (unsta-
ble) eigenvalue in the spectrum of the linearization operator
L for this branch. As above, the symmetric state is destabi-
lized by the bifurcation (again, with one negative eigenvalue
emerging in the spectrum of L), when the pair of the unstable
asymmetric states merge into the symmetric one, at N = Ncr.
Furthermore, at N < Ncr the symmetric state is not a ground
state, but only a metastable one, which is made clear by
both numerical simulations and analytical results presented
below. The observed change of the slope of N (μ) dependence
and the destabilization of the symmetric and asymmetric
modes is consistent with the rigorous treatment developed
in Ref. [17]. Spatial shapes of solutions in the unbounded
potential are qualitatively similar to those in the bounded one
[see Figs. 1(e) and 1(f)], therefore they are not shown in Fig. 3.

Dynamics of unstable asymmetric states in the unbounded
pseudopotential is sensitive to the choice of initial perturba-
tions. In particular, multiplying an unstable asymmetric mode
u(x) with Xc < 0 by eikx , with right-directed kick 0 < k � 1,
one triggers oscillations of the solution’s center between
Xc and −Xc, as shown in Fig. 4(a). On the other hand, the
application of small k < 0 naturally initiates a drift of the

FIG. 4. Different dynamics for the same unstable asymmetric
mode, with μ = −2, subjected to different initial perturbations,
under the action of unbounded pseudopotential (8) with A = 1.

quasisoliton further to the left, where the growing attractive
nonlinearity makes the solution very narrow, driving the
growth of its amplitude; see Fig. 4(b). A similar scenario, i.e.,
spontaneous sideward drift, is typical for unstable symmetric
modes.

IV. THE ANALYTICAL APPROACH

In addition to the simple analytical result given by Eq. (6),
which is relevant for small N , an analytical approximation can
be developed for large N . In this case, strong nonlinearity
makes the soliton, with its center located at a point with
coordinate X, very narrow, hence Eq. (4) gives rise to the
approximate solution,

u0(x) =
√

− 2μ

P (X)
sech[

√−μ(x − X)], N = 4
√−μ

P (X)
. (9)

Then, the substitution of this into Eq. (3) yields an effective
soliton’s potential energy,

U (X) = −(N3/48)[P (X)]2 + (ω2N/2)X2, (10)

which predicts equilibria, X = Xc [see Eq. (5)], at points with
U ′(Xc ) = 0.

First, for vanishingly small X, the expansion of potential
(10) yields, for both forms of P (A) defined by Eqs. (2)
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and (8),

U (X) = −(N3/48)+(N/2)[ω2 − (AN2/12)]X2+O(X4).

(11)

From here it follows that the SSB bifurcations, which implies
a transition from the stable to unstable equilibrium at X = 0,
occurs at

Ncr = 2ω
√

3/A. (12)

Furthermore, at N > Ncr the substitution of the
bounded nonlinearity-modulation profile (2) in equation
dU/dX|X=Xc

= 0, which follows from Eq. (10), yields
an equation predicting a mutually symmetric pair of the
asymmetric equilibrium points,

(1 + A tanh2 Xc )
tanh Xc

cosh2 Xc

= 12ω2

AN2
Xc. (13)

Then, straightforward analysis demonstrates that the asym-
metric equilibria are always local minima of potential (10),
with d2U/dX2|X=Xc

> 0, hence this pair of the equilibrium
points are stable, in accordance with the numerical findings
presented above.

The validity of approximations (12) and (13) for the
bounded pseudopotential is illustrated in Figs. 1(d) and 1(c),
respectively. For sufficiently large N , the analytical predic-
tions (dotted lines) are practically identical to their numerical
counterparts.

For the unbounded modulation profile (8), the equilibrium
condition predicts the existence of unstable asymmetric equi-
libria [local potential maxima, with d2U/dX2|X=Xc

< 0] in
the subcritical region, at N < Ncr:

X2
c = A−1

(
N2

cr/N
2 − 1

)
, (14)

which explains the numerical findings reported above; see the
comparison with numerical results in Figs. 3(c) and 3(d). Fur-
thermore, effective potential (10) is always globally expulsive
in the present case, with term −(N3/48)A2X4 dominating at
large |X|. This fact implies that the model with the unbounded
nonlinear potential does not have a ground state, the symmet-
ric one being metastable at N < Ncr, as mentioned above.

V. CONCLUSION

We have demonstrated that the competition between
single-well linear and nonlinear potentials enables the effect

of the SSB (spontaneous symmetry breaking) of nonlinear
modes. The reported SSB bifurcation scenario is rather un-
usual since, contrary to most of the previously reported set-
tings where the symmetry breaking has been encountered, our
system does not require any double- or multiwell potential.
With the increase of the solution’s norm N , the bifurcation
occurs at the critical value, N = Ncr. There are two different
bifurcation scenarios, depending on the form of the nonlinear
pseudopotential. If it is bounded, the bifurcation is direct,
destabilizing the symmetric ground state and producing the
pair of asymmetric ground states. On the other hand, the
bifurcation is inverted, leading to the merger of the pair
of unstable asymmetric states into the symmetric state, for
unbounded pseudopotentials. Parallel to the systematically
collected numerical results, basic results are accurately ex-
plained by the simple analytical approximation, which repre-
sents the self-trapped modes as narrow solitons. The settings
explored in this work may be realized in BEC and nonlinear
optics.

As an extension of the present analysis, it may be relevant
to consider a setting with the competition between a confining
nonlinear potential and expulsive linear one, as a generaliza-
tion of the antiwaveguiding settings in the self-focusing me-
dia; in particular, the analytical approximation developed here
may be relevant in that case, too. A challenging possibility is
to consider a two-dimensional version of the present model,
which, as well as the one-dimensional system, can be realized
in BEC and nonlinear optics (using bulk waveguides, in the
latter case). Finally, while the present work is focused on the
symmetry breaking of the nodeless ground states, it is also
relevant to extend the analysis for the excited states, in which
SSB effects may be expected, too.
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