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Properties of solitary waves in precompressed Hertzian chains of particles are studied in the long-wavelength
limit using a well-known continuum model. Several main results are obtained by parametrizing the solitary
waves in terms of their wave speed and their asymptotic amplitude. First, the asymptotic amplitude is shown
to be directly related to the continuum sound speed, and the ratio of asymptotic amplitude to peak amplitude is
shown to describe the degree of dynamical nonlinearity in the underlying discrete system. Second, an algebraic
relation is derived that determines the dynamical nonlinearity ratio in terms of the ratio of the solitary wave speed
to the sound speed. In particular, highly supersonic solitary waves correspond to highly nonlinear propagating
pulses in weakly compressed systems, and slightly supersonic solitary waves correspond to weakly nonlinear
propagating pulses in strongly compressed systems. Third, explicit formulas for the physical height, width,
impulse, and energy of the solitary waves are obtained in both the strongly nonlinear regime and the weakly
nonlinear regime. Asymptotic expansions are used to show that in the strongly nonlinear regime, solitary waves
are well approximated by Nesterenko’s compacton (having the same wave speed), while in the weakly nonlinear
regime, solitary waves coincide with solitons of the Korteweg–de Vries equation, with the same wave speed. All
of these results are illustrated by means of exact solitary wave solutions, including the physically important case
that models a chain of spherical particles.
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I. INTRODUCTION

There has been considerable interest in the study of one-
dimensional chains of discrete macroscopic particles that
interact by a power-law contact potential [1–44]. These po-
tentials have the form V = aδk+1H (δ) where H denotes the
Heaviside step function, δ is the dynamical overlap distance
between adjacent particles, a is a constant which depends
on their material properties, and k > 1 is determined by
the geometry of their contact surface [45–48]. In particular,
spherical particles have k = 3

2 [49], while k = 2 and k = 3
are Hertz exponents for more complicated contact geometries
[50,51].

One of the original motivations was the experimental
discovery [1–3] that the dynamical strain in these discrete
systems can exhibit solitary waves, which are propagating
nondispersive localized compressive pulses. The existence
of such waves makes these systems useful for a variety of
physical applications related to shock absorption [52–59] and
energy localization [60–65].

Experimental and numerical results [18,66,67] indicate
that the typical wavelength of solitary waves compared to
the size of the particles in the discrete system is large
enough to allow the use of a nonlinear continuum model
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for studying analytical properties of the solitary waves. The
strongest nonlinearity arises when the discrete system is either
uncompressed, with adjacent particles being just in contact,
or weakly compressed, with the dynamical overlap δ being
approximately at least the size of the initial overlap.

The nonlinear continuum model for arbitrary k > 1 is
given by a highly nonlinear, fourth-order wave equation
[3,18,29,32], which we will refer to as the long-wavelength
Hertzian continuum (LWHC) wave equation. In this model,
the spatial gradient of solutions of the LWHC wave equation
locally corresponds to the total strain exhibited by pulses
propagating in the discrete system. The total strain includes
a contribution from the precompression, which corresponds
to the asymptotic value of the spatial gradient. In particular,
solutions whose asymptotic spatial gradient is zero provide a
model for long-wavelength pulses in a discrete system with no
precompression, while solutions having a nonzero asymptotic
spatial gradient represent a model for long-wavelength pulses
in a discrete system with nonzero precompression.

The LWHC wave equation has a well-known explicit so-
lution [1–3] whose gradient is a periodic traveling wave. A
single arch of this periodic traveling wave can be cut off in
a sufficiently smooth fashion when 1 < k < 5

3 to yield an
exact compact nonlinear wave solution, called a compacton
[1,3,36]. For k > 5

3 , the cutoff is singular, which is sometimes
not emphasized in the literature. Since the spatial asymptotic
amplitude of the compacton is zero, this compacton describes
a compact solitary wave which models a propagating strictly
localized pulse in a discrete system with no precompression.
No explicit solitary wave solutions displaying a nonzero
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asymptotic spatial gradient were known until some recent
work [68] in which we obtained explicit exact solution ex-
pressions when k = 2, 3. (We also obtained explicit periodic
traveling wave solutions, some of which represent propagat-
ing nondispersive localized rarefactive pulses). These exact
solitary waves model propagating solitary wave pulses in a
discrete system that has an arbitrary nonzero precompression.

The main purpose of this paper is to investigate the quali-
tative and quantitative properties of solitary wave solutions of
the LWHC wave equation in different nonlinearity regimes,
and to illustrate these properties by using the known exact
solitary wave solutions in the cases k = 2, 3, as well as in the
physically important case k = 3

2 whose exact solution will be
derived here. Several interesting results are obtained.

First, the background strain given by the asymptotic spatial
gradient of solitary wave solutions is shown to be directly
related to sound speed as defined by the dispersion relation
for the linearized LWHC wave equation. This relationship is
used to show that all solitary waves are supersonic.

Second, the ratio of the background strain to the peak strain
in solitary wave solutions is shown to describe the degree of
dynamical nonlinearity in the underlying discrete system. An
algebraic relation is derived that determines this dynamical
nonlinearity ratio in terms of the ratio of the solitary wave
speed to the sound speed. Specifically, highly supersonic
solitary waves correspond to highly nonlinear propagating
localized pulses in weakly compressed discrete systems, while
slightly supersonic solitary waves correspond to weakly non-
linear propagating localized pulses in strongly compressed
discrete systems.

Third, expressions for the height, width, impulse, and
energy of solitary waves are derived and shown to depend
principally on the ratio of the wave speed to the sound speed.
The width expression, which comes from an asymptotic anal-
ysis of the tail of solitary waves, has not appeared previously
in the literature. It yields a width approximately equal to 5
particle diameters when k = 3

2 in the strongly nonlinear case,
which has been experimentally verified and reported many
times in the literature. Beyond this, the expressions for the
height, width, impulse, and energy yield scaling relations that
agree with ones known to hold in discrete systems.

Fourth, the properties of highly supersonic solitary waves
are shown to be close to the same properties of the compacton.
In particular, the height and width are approximately equal to
the compacton height and width. An approximate expression
for highly supersonic solitary waves is obtained, which gives
a good approximation of the peak and the tail of these waves.

Fifth, the profile of slightly supersonic solitary waves is
shown to be approximately a sech-squared profile which is the
same as solitons of the Korteweg–de Vries (KdV) equation.
In addition, a two-scale asymptotic expansion of the LWHC
equation around a fixed background strain is shown to yield
the KdV equation with a scaled time variable and a scaled
space variable in a reference frame moving with the sound
speed.

Finally, solitary waves with the same speed are compared
across different nonlinearity regimes. This type of comparison
has not been carried out previously.

The paper is organized as follows. In Sec. II, we give a full
derivation of the LWHC wave equation from the equations

of motion for a one-dimensional homogeneous chain of N �
1 discrete particles with arbitrary (nonzero) precompression.
We discuss the total strain and background strain for solutions
of the LWHC wave equation, and show how the regimes of
weak and strong nonlinearity can be formulated directly in
terms of these two strains. We also discuss linearized wave
solutions and derive their dispersion relation from which the
sound speed is obtained. Finally, we review the conservation
laws for impulse momentum, energy, and momentum in the
LWHC wave equation.

In Sec. III, we first review an exact quadrature expression
for all solitary wave solutions. In the two cases k = 2 and
3, we note that the solitary waves have explicit expressions
in terms of elementary functions, which were derived in our
previous work [68]. In the case k = 3

2 , we present an implicit
expression for the solitary waves in terms of elliptic functions.
This result has not appeared previously in the literature.

In Sec. IV, we give the expressions for the height, width,
impulse, and energy of the solitary waves. Using these ex-
pressions, we discuss physical properties of the solitary waves
and their dependence on the wave speed. We examine the
properties in more detail in the cases when the wave speed
is slightly supersonic and highly supersonic.

In Sec. V, we explain how slightly supersonic waves have a
weak nonlinearity, and highly supersonic waves have a strong
nonlinearity. In the strongly nonlinear case, we show that the
solitary waves and the compacton have similar features, and
we present a useful approximate expression for the profile of
the solitary waves. In the weakly nonlinear case, we show
that the solitary waves are scaled KdV solitons. Finally, we
present and discuss some scaling relations that hold among
the energy, impulse, height, and speed of solitary waves in
both nonlinearity regimes. We make some concluding remarks
in Sec. VI. Some analytical details of our results are given in
three appendices.

II. LONG-WAVELENGTH CONTINUUM WAVE EQUATION
AND ITS CONSERVATION LAWS

The equations of motion for a one-dimensional homo-
geneous chain of N � 1 discrete particles interacting by a
general power-law contact potential are given by

mÜi = (k + 1)a([δ0 − (Ui − Ui−1)]k−[δ0− (Ui+1 − Ui )]
k ),

i = 2, . . . , N − 1 (2.1)

in terms of the particle displacements Uj (t ), j = 1, . . . , N ,
relative to their initial (equilibrium) positions, where δ0 � 0
is the initial overlap between adjacent particles due to pre-
compression of the chain at t = 0, and k > 1 is determined by
the geometry of their contact surface. Here, m is the particle
mass, and a is a constant which depends on the particles’
material properties. The particles at each end of the chain
obey similar equations of motion with a different potential that
takes into account the boundary conditions. Since we will be
interested in the continuum limit, in which N → ∞, we will
only need to consider the equations of motion (2.1) for the
N − 2 interior particles.

In this system, the initial particle displacements are
Uj (0) = 0, j = 1, . . . , N (since the chain is initially in its
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equilibrium configuration), at t = 0. The system is initially
uncompressed if δ0 = 0, in which case the initial separation
between the center of mass of adjacent particles is 2R, where
R is the particle radius. Instead, if δ0 > 0, the system has a
precompression, in which case the initial separation between
the center of mass of adjacent particles is 2R − δ0. For t > 0,
the dynamical overlap between adjacent particles is given by

δ(t ; i) =
{
δ0 + Ui (t ) − Ui+1(t ) if Ui+1(t ) − Ui (t ) < δ0,

0 if Ui+1(t ) − Ui (t ) � δ0,

(2.2)

where the property

δ(t ; i) � 0 (2.3)

enforces the contact nature of the potential.
In typical experiments and numerical simulations, the ini-

tial particle velocities are U̇j (0) = 0 for the interior particles
j = 2, . . . , N − 1, while for the two end particles, the ve-
locities U̇1(0) and U̇N (0) correspond to imparting an initial
sharp (short duration) impulse at one end or both ends of
the chain. Such an impulse gives the chain a fixed amount
of energy 1

2m[U̇ 2
1 (0) + U̇ 2

N (0)] [2,26,27]. In this situation, a
propagating compressive pulse is produced at each end in
the system, where the wave amplitude is described by the
dynamical overlap variable (2.2), with

δ(0; i) = δ0 (2.4)

being the initial (background) amplitude. Since the pulse is
compressive, the moving particles in the pulse will satisfy
Ui+1 − Ui < 0.

Rarefactive pulses [41,68,69] can be produced by impart-
ing more complicated initial conditions to the discrete system.
The moving particles in these pulses will satisfy 0 � Ui+1 −
Ui < δ0. Note that Ui+1 − Ui = δ0 corresponds to a broken
contact between the particles.

For any type of pulse, if the dynamical overlap is recorded
for one (or a few) particle(s), it gives the wave amplitude
δ(t ; i) as a function of time t at one (or a few) fixed value(s) of
i. When traveling wave pulses are considered, the amplitude
profile δ(t ; i) in t will have the same shape (up to scaling) as
a snapshot of the amplitude δ(t0; i) as a function of particle
number i at a fixed time t = t0.

The dynamical state of a precompressed system is said to
be strongly compressed if the relative displacement between
adjacent moving particles is much smaller than the size of the
initial overlap:

|Ui+1(t ) − Ui (t )| = |δ(t ; i) − δ0| � δ0, t > 0. (2.5)

In this case the dynamical overlap will be approximately the
same magnitude as the initial overlap,

δ(t ; i) ≈ δ0, (2.6)

and the resulting motion of the particles in the system will be
weakly nonlinear.

Instead, if the dynamical overlap is large compared to the
initial overlap, then the dynamical state of a precompressed
system is said to be weakly compressed:

δ(t ; i) � δ0, t > 0. (2.7)

In this case, the relative displacement between adjacent mov-
ing particles will be at least the size of the initial overlap,

Ui (t ) − Ui+1(t ) � δ0, (2.8)

and the resulting motion of the particles in the system will be
strongly nonlinear.

To derive a continuum wave equation for long-wavelength
pulses in a discrete system with arbitrary precompression δ0 �
0, it is useful to begin with a change of variables

Ui = ui + iδ0, i = 1, . . . , N. (2.9)

Physically, ui is the displacement of the ith particle as
measured with respect to a reference system that has zero
precompression. In terms of this variable, the equations of
motion (2.1) of the precompressed system become

müi = (k + 1)a[(ui−1 − ui )
k − (ui − ui+1)k],

i = 2, . . . , N − 1. (2.10)

Then, the continuum limit for this system (2.10) is obtained
by putting

ui (t ) → u(t, x), ui±1(t ) → u(t, x ± 2R) = e±2R∂x u(t, x),

i = 2, . . . , N − 1 (2.11)

with ui−1 − ui → W− and ui − ui+1 → W+, where

±W± = u(t, x) − u(t, x ± 2R) = u − e±2R∂x u

= −
∞∑

n=1

(±2R)n

n!
∂n
x u. (2.12)

This yields

m

a(k + 1)
utt = Wk

− − Wk
+ (2.13)

which is a continuum wave equation for u(t, x).
The continuum limit of the wave amplitude (2.2) is

given by

δ(t ; i) = ui − ui+1 → W+ (2.14)

which is a nonlocal variable, while the continuum limit of the
displacement variable (2.9) is given by

Ui (t ) = ui (t ) + iδ0 → U (t, x) = u(t, x) + δ0

2R
x. (2.15)

It will be natural to suppose that the linear mass density of
the discrete system is preserved in the continuum limit. This
yields

ρ = m/(2R − δ0) (2.16)

for the continuum mass density.
The main step now consists of making a long-wavelength

expansion of the continuum wave equation (2.13) in terms
of u(t, x). Consider a pulse of wavelength �, where ux is
taken to be O(1) while the derivative of ux is O(1/�).
The condition for the wavelength to be long compared to
the particle size is that � � 2R. Then, the nonlinear terms
in the wave equation (2.13) can be expanded in terms
of the parameter ε = 2R/� � 1 by using the relation
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(2R)n∂n
x ux = O(εn). Thus, we have

Wk
± = (2R)k

(
−ux −

∞∑
n=1

(±2R)n

(n + 1)!
∂n
x ux

)k

= (2R)k
(
(−ux )k ± kR(−ux )k−1(−uxx )

+ kR2(−ux )k−2
[

2
3 (−ux )(−uxxx ) + 1

2 (k − 1)(−uxx )2
]

± kR3(−ux )k−3
[

1
3 (−ux )2(−uxxxx )

+ 2
3 (k − 1)(−ux )(−uxx )(−uxxx )

+ 1
6 (k − 1)(k − 2)(−uxx )3

] + O(ε4)
)
. (2.17)

This expansion yields

m

a(k + 1)
utt = Wk

− − Wk
+

= − k(2R)k+1
(
(−ux )k−1(−uxx )

+ 1
6R2[(k − 1)(k − 2)(−ux )k−3(−uxx )3

+ 4(k − 1)(−ux )k−2(−uxx )(−uxxx )

+ 2(−ux )k−1(−uxxxx )] + O(ε4)
)
. (2.18)

Truncating the expansion at this order produces the
well-known highly nonlinear fourth-order wave equation
[3,18,29,32] for u(t, x):

c−2utt = (−ux )k−1uxx + α(−ux )k−3u3
xx

− β(−ux )k−2uxxuxxx + γ (−ux )k−1uxxxx, (2.19)

where

α = 1
6R2(k − 1)(k − 2), β = 2

3R2(k − 1), γ = 1
3R2,

(2.20)

and

c2 = ak(k + 1)(2R)k+1/m. (2.21)

Note, in these expressions (2.20) and (2.21), the constant c has
units of speed, and the constants α, β, γ have units of length
squared, while u has units of length.

We will call Eq. (2.19) the long-wavelength Hertzian con-
tinuum (LWHC) wave equation. We emphasize that it is a
valid long-wavelength continuum limit of the discrete system
(2.1) with arbitrary precompression δ0 � 0. In the same limit,
the wave amplitude (2.14) corresponds to the O(1) term in the
expansion W+ = (2R)[ − ux + O(ε)]. This term, given by
W+ ≈ −(2R)ux , is proportional to the dimensionless strain
defined by

v = −ux. (2.22)

Note this expression (2.22) physically represents the total
strain (in the long-wavelength continuum limit) which in-
cludes a contribution from the precompression δ0. In particu-
lar, if we use the continuum limit of the particle displacement
(2.15) and define the corresponding strain variable V = −Ux ,
then we have the relation

V = v − δ0

2R
(2.23)

which has the physical meaning of the dynamical strain (in
the long-wavelength continuum limit).

In terms of the total strain (2.22), we see that the condition
(2.3) enforcing the contact nature of the underlying potential
is simply given by

v > 0. (2.24)

Note that we exclude the possibility v = 0 because it would
correspond to having no contact between adjacent particles
in the underlying discrete system. The initial precompression
(2.4) corresponds to the initial condition

v|t=0 = v0 = δ0

2R
(2.25)

which describes a background strain. On physical grounds,

0 < v0 < 1. (2.26)

Compressive pulses in the continuum limit are described
by the property V � 0 for the dynamical strain, whereas rar-
efactive pulses have the property 0 � V > −v0. The weakly
nonlinear regime [corresponding to strong compression (2.5)
in the discrete system] is characterized by the dynamical
condition |V | � v0; the strongly nonlinear regime [corre-
sponding to weak compression (2.7) in the discrete system]
is characterized by the dynamical condition V � v0. These
dynamical conditions can be expressed in terms of the total
strain by

|v − v0| � v0 (2.27)

for the weakly nonlinear regime, and

v � v0 (2.28)

for the strongly nonlinear regime.
Finally, we note that the total strain (2.22) satisfies a long-

wavelength wave equation given by the x derivative of the
LWHC wave equation:

c−2vtt = (
vk−1vx + αvk−3v3

x + βvk−2vxvxx + γ vk−1vxxx

)
x

(2.29)

with v satisfying the conditions (2.24) and (2.25).

A. Linearized (sound) waves

In the continuum limit, waves that have very small am-
plitude relative to the size of the precompression physically
describe the linearized sound waves of the continuum system.
Long-wavelength sound waves satisfy the linearized approxi-
mation of the long-wavelength wave equation (2.29), which is
given in terms of the dynamical strain (2.23) by

c−2Vtt = (
vk−1

0 Vx + γ vk−1
0 Vxxx

)
x
, (2.30)

where γ = 1
3R2. In this approximation, V is small compared

to the initial total strain v0:

0 < V � v0 = δ0

2R
. (2.31)

To obtain the dispersion relation, we substitute a harmonic
mode expression V = ei(κx−ωt ) into this wave equation,
yielding c−2ω2 = vk−1

0 κ2 − 1
3R2vk−1

0 κ4. Since the wave-
length is � = 2π/κ , which obeys 2R/� � 1, we see that
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c−2ω2 = vk−1
0 (2π/�)2[1 − π2

3 (2R/�)2] can be approximated
by c−2ω2 � vk−1

0 (2π/�)2. This yields a linear dispersion
relation

±ω � v
(k−1)/2
0 cκ. (2.32)

Hence, the sound speed is given by

c0 = ω/κ =
(

δ0

2R

)(k−1)/2

c. (2.33)

B. Conservation laws

A conservation law for the LWHC wave equation (2.19) is
a local continuity equation

DtT + DxX = 0 (2.34)

holding for all solutions u(t, x) of the wave equation, where
T is the conserved density and X is the spatial flux, which are
given by functions of t , x, u, ut , and x derivatives of u and ut .
As shown in Ref. [68], all conservation laws with conserved
densities of the first-order form T (t, x, u, ut , ux ) are given by
a linear combination of the following four conservation laws:

T1 = −utux,

X1 = 1

2
u2

t − c2

(
1

3
R2(−ux )kuxxx − k − 2

6
R2(−ux )k−1u2

xx − 1

k + 1
(−ux )k+1

)
; (2.35)

T2 = 1

2
u2

t − c2

(
1

6
R2(−ux )k−1u2

xx − 1

k(k + 1)
(−ux )k+1

)
,

X2 = −c2

(
1

3
R2(−ux )k−1(utuxxx − utxuxx ) − k − 1

6
R2(−ux )k−2utu

2
xx − 1

k
(−ux )kut

)
; (2.36)

T3 = ut ,

X3 = c2

(
− 1

3
R2(−ux )k−1uxxx + k − 1

6
R2(−ux )k−2u2

xx + 1

k
(−ux )k

)
; (2.37)

T4 = u − tut ,

X4 = c2t

(
1

3
R2(−ux )k−1uxxx − k − 1

6
R2(−ux )k−2u2

xx − 1

k
(−ux )k

)
. (2.38)

In each of these expressions, we have omitted an overall factor
consisting of the continuum mass density (2.16). When this
factor is restored, the conservation laws (2.35) and (2.36),
respectively, describe the total momentum and energy of
solutions u(t, x); the conservation law (2.37) describes the
total impulse, while the conservation law (2.38) is connected
with the mean value of u(t, x).

III. EXACT SOLITARY WAVES

We are interested in traveling wave solutions

u = f (ζ ), ζ = x − νt (3.1)

of the LWHC wave equation (2.19). Substitution of expression
(3.1) into (2.19) yields a fourth-order differential equation

(ν/c)2f ′′ = (−f ′)k−1f ′′ + α(−f ′)k−3(f ′′)3

− β(f ′)k−2f ′′f ′′′ + γ (−f ′)k−1f ′′′′, (3.2)

where ν is the (constant) wave velocity, and where c, α, β, γ

are given by expressions (2.20) and (2.21).
The physical variable that will support solitary waves is

the dynamical strain (2.23). For a traveling wave (3.1), this
variable has the form

V = −f ′(ζ ) − v0. (3.3)

Since a solitary wave has a localized profile in ζ , we want
solutions for which

lim
ζ→±∞

V = 0. (3.4)

In terms of the total strain (2.22), solitary waves are described
by

v = −f ′(ζ ) > 0 (3.5)

and

lim
ζ→±∞

v = v0 > 0. (3.6)

Here, v0 is related to the precompression through the initial
condition (2.25) and represents the asymptotic (background)
value of v.

It will be useful, mathematically, to work with dimension-
less scaled variables:

g = −f ′/λ, ξ = ζ/ l (3.7)

with

λ = [
1
2k(k + 1)(ν/c)2] 1

k−1 , l =
√

1
6k(k + 1)R. (3.8)

The inverse transformation from g(ξ ) to v(t, x) is given by

v(t, x) = λg((x − νt )/l). (3.9)
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In terms of these scaled variables (3.7), the traveling wave
equation (3.2) becomes a third-order differential equation

0 = 2gk−1g′′′ + 4(k − 1)gk−2g′g′′

+ (k − 1)(k − 2)gk−3g′3 + k(k + 1)gk−1g′ − 2g′,

(3.10)

and the asymptotic condition (3.6) on solutions g(ξ ) becomes

lim
ξ→±∞

g(ξ ) = g0 > 0, (3.11)

where

g0 = v0/λ = δ0

2R

(
1

2
k(k + 1)(ν/c)2

) 1
1−k

. (3.12)

The third-order differential equation (3.10) can be directly
reduced to a first-order separable differential equation by us-
ing first integrals that arise from the conservation laws (2.35)–
(2.37) (which do not contain t and x explicitly) admitted by
the LWHC wave equation (2.19), as explained in Ref. [68].
This yields the ordinary differential equation (ODE)

(g′)2 = g1−k (g2 + C1g + C2 − g1+k ), (3.13)

where C1 and C2 are dimensionless arbitrary constants which
correspond to scaled first integrals. The physical meanings
of the two first integrals are, respectively, the spatial flux
of the impulse in the rest frame of the traveling wave, and
the spatial flux of energy and momentum in the rest frame
of the traveling wave. Thus, for any solution g(ξ ), C2 = E

represents a dimensionless energy and C1 = I represents a
dimensionless impulse.

We now view the first-order ODE (3.13) as being analo-
gous to the energy integral for motion in a potential well

gk−1g′2 + V (g) = E, (3.14)

where gk−1g′2 plays the role of the kinetic energy, and where
the potential energy is given by

V (g) = g1+k − g(g + I ) (3.15)

which depends on a free parameter I . A comprehensive qual-
itative analysis has been carried out in Ref. [68] to determine
the values of (E, I ) that lead to solitary wave solutions for
g(ξ ) with the asymptotic boundary condition (3.11), and
also to single-arch traveling wave (compacton) solutions for
g(ξ ). This analysis, which we will summarize next, depends
crucially on the shape of the potential (3.15).

A. Quadrature formula for solitary waves

Solitary waves correspond to motion for g in which there
is one turning point g = g1 and one asymptotic equilibrium
point g = g0. These two points are roots of the effective
energy equation V (g) = E such that V ′(g0) = 0 and V ′(g1) >

0. The condition of positive precompression (3.6) combined
with the shape of the potential V (g) implies that g1 and g0

belong to the intervals

0 < g0 < g∗ < g1 < 1, (3.16)

where

g∗ =
(

2

k(k + 1)

) 1
k−1

(3.17)

is the inflection point of the potential V ′′(g∗) = 0. The rela-
tionship between the asymptotic equilibrium point g0 and the
parameters (E, I ) is given by

E = g2
0

(
1 − kgk−1

0

)
, I = (k + 1)gk

0 − 2g0 (3.18)

which leads to the corresponding parameter ranges

E > 0, 0 > I > I ∗, (3.19)

where

I ∗ = (1 + k)g∗k − 2g∗ = −2(k − 1)

k
g∗ < 0. (3.20)

Note g1 is a function of g0 as given by the positive root of the
algebraic equation

0 = V (g1) − E

= gk+1
1 − g2

1 + g0
[
2 − (k + 1)gk−1

0

]
g1 + g2

0

(
kgk−1

0 − 1
)

(3.21)

in the interval (3.16). As shown in Ref. [68], g1 is a decreasing
function of g0, with g1 → 1 when g0 → 0, and g1 → g∗ when
g0 → g∗.

It will be useful for mathematical purposes to note that E −
V (g) = (g − g0)2A(g, g0) holds, where

A(g, g0) = 1 − ∂g0

(
g0

gk − gk
0

g − g0

)
, (3.22)

which has the properties

A(g0, g0) = 1 − (g0/g
∗)k−1, A(g1, g0) = 0. (3.23)

All solitary wave solutions g(ξ ) are then given by the
quadrature of the ODE (3.14):∫ g1

g

√
gk−1

(g − g0)
√

A(g, g0)
dg = |ξ |, (3.24)

where g1 is determined by the algebraic equation (3.21) in
terms of g0, and where g0 obeys the inequality (3.16). From
Eq. (3.24), g(ξ ) has the following two main features.

First, g(ξ ) has a single peak g = g1 at ξ = 0 and an
asymptotic tail with g → g0 as |ξ | → ∞. To see why, note
that the extrema of g(ξ ) are determined by the roots of 0 =
E − V (g) = (g − g0)2A(g, g0) in the interval g0 � g � g1.
The roots consist of g = g0 and g1. From the ODE (3.14), note
that g′′ = − 1

2 (gV ′(g) + (k − 1)[E − V (g)])g−k . The proper-
ties of the potential V (g) then show g′′ < 0 when g = g1 and
g′′ = 0 when g = g0. Hence, g1 represents the peak value
of g(ξ ). When g = g0, it is straightforward to see that g′′ =
0, g′′′ = 0, and so on. Moreover, the integral (3.24) clearly
diverges as g → g0, whereby |ξ | → ∞. Hence, g0 represents
the asymptotic value of g(ξ ).

Second, the asymptotic tail of g(ξ ) exhibits exponential de-
cay g ∼ g0 + (g1 − g0)eξ0/χe−|ξ |/χ for |ξ | � ξ0 + χ , where
the dimensionless scale for the decay is given by

χ = 1√
g1−k

0 − g∗1−k

, (3.25)
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and the offset in ξ is given by

ξ0 =
∫ g1

g0

F (g, g0)

g − g0
dg (3.26)

with

F (g, g0) = g
k−1

2√
A(g, g0)

− g0
k−1

2√
A(g0, g0)

. (3.27)

To derive this asymptotic behavior, we split up the integral
(3.24) by extracting the leading-order term that involves g, a
subleading term that is constant, and a remainder term that
vanishes when g = g0:

∫ g1

g

g
k−1

2

(g − g0)
√

A(g, g0)
dg

= g0
k−1

2√
A(g0, g0)

∫ g1

g

dg

g − g0
+

∫ g1

g0

F (g, g0)

g − g0
dg

−
∫ g

g0

F (g, g0)

g − g0
dg.

The first and second integrals on the right-hand side yield,
respectively, χ ln [(g1 − g0)/(g − g0)] and ξ0, while the re-
maining integral is O(g − g0) because F (g, g0)/(g − g0) =
O(1) due to F (g0, g0) = 0. This gives

∫ g1

g

g
k−1

2

(g − g0)
√

A(g, g0)
dg � χ ln

(g1 − g0

g − g0

)
+ ξ0

for g � g0. The quadrature (3.24) then yields ξ0 − |ξ | �
χ ln [(g − g0)/(g1 − g0)], which establishes the leading-
order term in the asymptotic form for g − g0.

B. Explicit solitary wave expressions

We showed in Ref. [68] that the quadrature (3.24) can be
evaluated in terms of elementary functions when k = 2, 3 and
in terms of elliptic functions when k = 3

2 , 4, 5. All of these
cases lead to implicit algebraic expressions for g(ξ ).

For the cases k = 2 and 3, the respective solutions g(ξ ) are
given by

g0√
P (g0)

arctanh(Q(g)) + arctan

( √
P (g)

g + g0 − 1
2

)
= |ξ |,

(3.28)

with

P (g) = (g1 − g)g, g1 = 1 − 2g0, g∗ = 1/3, (3.29)

and

g0√
P (g0)

arctanh(Q(g)) + arctan

(√
P (g)

g + g0

)
= |ξ |, (3.30)

with

P (g) = (g1 − g)(g + g1 + 2g0), g1 =
√

1 − 2g2
0 − g0,

g∗ = 1/
√

6, (3.31)

where

Q(g) = 2
√

P (g)P (g0)

P (g) + P (g0) + (g − g0)2
. (3.32)

In both cases, g0 is a free parameter in the range 0 < g0 < g∗,
and g1 is given explicitly in terms of g0. (Note, here arctan
is defined to be continuous in the given range for g0.) See
Figs. 1(b) and 1(c) for the solution profiles for different g0.

For the case k = 3
2 , the solution g(ξ ) is given by

I (
√

g) + J (
√

g) = |ξ |, g = h2 (3.33)

where

I (h) = σ ln

(
2
√

�[Y (h)/Y0 + √
X(h)/X0][

√
X(h) + √

X0]
[
(h + h2)2 + h2

3

]
�(h − h0)[1 + Y (h)/Y0]

√
1 + �X(h)

)
+ arctan

(
2
√

X(h)

1 − X(h)

)
(3.34)

is a sum of elementary functions given in terms of the rational
functions

X(h) = h(h1 − h)

(h + h2)2 + h2
3

, Y (h) = h − h1/�+
h + h1/�−

, (3.35)

and where

J (h) = η((θ − φ)Z(h)+�[−μ; Z(h)|ψ]−θ�[ν; Z(h)|ψ])

(3.36)

is a sum of Jacobi elliptic functions (of the third kind) [70]

�[n; θ |l] = 1√
1 + j

∫ 1

cn(θ |l)

dz

(mz2 − 1)
√

(1 − z2)(1 + jz2)
,

l = j/(j + 1), n = m/(m − 1), j > 0
(3.37)

with

Z(h) = cn−1((�+/�−)Y (h)|ψ ) (3.38)

being given by the inverse of the cn elliptic function. The
constants in expressions (3.34)–(3.38) are given by

X0 = X(h0), Y0 = Y (h0), W0 = (h0 + h2)2 + h2
3,

W1 = (h1 + h2)2 + h2
3, (3.39)

σ = 2h2
0√

h0(h1 − h0)W0
, � = Y 2

0 �2
+

�2−
(1 − 1/�2), (3.40)

η = 2��+
�−

√
2(�+ + �−)

, φ = (1 − Y0)�, θ = h0Y0

h1 − h0
,

(3.41)
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FIG. 1. Solitary wave solutions (3.33), (3.28), and (3.30), for k = 3
2 , 2, and 3, respectively.

ψ = (�2 − 1)
�2

−
2(�+ + �−)

, μ = ψ

�2 − 1
,

ν = ψ�

2(�+ + �−)
, (3.42)

�± =
√

W1√
h2

2 + h2
3

± 1, � = h1

�−
√

h2
2 + h2

3

,

� = h0(h1 − h0)

(�−h0 + h1)2
, � =

√
h2

2 + h2
3√

W0
, (3.43)

with

h1 = 1
3 − 2

3h0 + r
1/3
− − r

1/3
+ , (3.44)

h2 = − 1
3 + 2

3h0 + 1
2 (r1/3

− − r
1/3
+ ), (3.45)

h2
2 + h2

3 = (
h0 − 2

3

)
h0 + r

2/3
− +r

2/3
+ +(

2
3h0 − 1

3

)
(r1/3

− − r
1/3
+ ),

(3.46)

r± = 5
12

√
h3

0

(
h0 − 2

3

)(
h2

0 − 2
5h0 − 4

25

)
± 5

108

(
h3

0 + 24
5 h2

0 − 12
5 h0 − 4

5

)
. (3.47)

In this solution, all of these constants depend only on h0

which is a free parameter in the range 0 < h0 < h∗ = 8
15 , cor-

responding to 0 < g0 < g∗ = 64
225 . Furthermore, the constants

(3.39)–(3.43) are positive. (Some details of the derivation of
the solution are shown in Appendix A.) See Fig. 1(a) for an
illustration of the solution profile for different values of g0.

The solutions for the other two cases k = 4 and 5 are
similar to the case k = 3

2 and will be omitted.

C. Single-arch traveling wave (compacton)

The compacton corresponds to motion for g in which
there is one turning point g = g1 = 1 and one equilibrium
point g = g0 = 0, with V ′(0) = V (0) = 0 and V ′(1) > 0. The
parameters (E, I ) are given by

E = I = 0 (3.48)

which are the limiting values of E and I in the case of solitary
waves when g0 approaches 0. For these values (3.48), the
solution g(ξ ) of the ODE (3.14) is given by the quadrature

∫ 1

g

√
gk−3√

1 − gk−1
dg = |ξ |. (3.49)

Here, the integral can be evaluated explicitly for all k > 1,
yielding

g(ξ ) = cos
(

1
2 (k − 1)

∣∣ξ − L
⌊

1
2 + ξ/L

⌋∣∣) 2
k−1 � 0,

L = 2

k − 1
π (3.50)

where �x denotes the floor function. The solution (3.50)
is a periodic function of ξ having a peak g = 1 at ξ = 0
mod L, and a node g = 0 at ξ = ±L/2 mod L. The node
is a minimum if 1 < k < 3, or a corner if k = 3, or a cusp
if k > 3. We remark that this solution (3.50) has appeared in
Refs. [18,32] but with the phase shift omitted. Without the
phase shift, the power 2

k−1 must be interpreted as the (k − 1)th
positive real root of the square of the cosine.
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Since the solution (3.50) has a node at ξ = ±L/2, we can
cut off the solution expression at these two points and take
g(ξ ) to vanish outside the domain −L/2 � ξ � L/2. This
yields a piecewise expression

g(ξ ) =
{

cos
[

1
2 (k − 1)ξ

] 2
k−1 , |ξ | � 1

k−1π

0, |ξ | � 1
k−1π

(3.51)

which is continuous at the nodal points ξ = ±L/2. However,
this piecewise expression needs to be three-times differen-
tiable for it to be an actual solution of the traveling wave
ODE (3.10). In particular, we must have 0 = gper(±L/2) =
g′

per(±L/2) = g′′
per(±L/2) = g′′′

per(±L/2), where gper(ξ ) de-
notes the periodic solution (3.50). These conditions are easily
verified to hold if and only if 1 < k < 5

3 . More specifically, at
the cutoff ξ = ±L/2, we see g′

per(ξ ) is discontinuous when
k � 3; g′′

per(ξ ) is discontinuous when k � 2; and g′′′
per(ξ ) is

discontinuous when k � 5
3 .

The resulting solution (3.51), which consists of a single
arch of the periodic solution (3.50), is a compacton. It exists
only for k in the range

1 < k < 5
3 . (3.52)

This condition on k is often overlooked in the literature.

IV. PHYSICAL PROPERTIES OF THE SOLITARY WAVES

We first express the quadrature formula (3.24) for solitary
waves in terms of the physical variables (3.9) representing
the total strain (2.22). All solitary waves v = v(x − νt ) are
determined implicitly by

c√
3|ν|

∫ v1

v

√
vk−1

(v − v0)
√

Â(v, v0; |ν|/c)
dv = |x − νt |

R
, (4.1)

where Â(v, v0; |ν|/c) = A(v/λ, v0/λ) is given by the func-
tion (3.22), and v1 is the positive root of the algebraic equation

Â(v1, v0; |ν|/c) = 0, (4.2)

such that

0 < v0 < v∗ < v1 < λ (4.3)

with

v∗ = (|ν|/c)
2

k−1 =
[

2

k(k + 1)

] 1
k−1

λ. (4.4)

The shape of the solitary waves consists of a single peak v =
v1 at x = νt and an asymptotic tail v → v0 as |x| → ∞, with
the value of v0 determined by the initial (background) pre-
compression (2.25). For v0 → 0, we have v1 → λ, while for
v0 → v∗, we have v1 → v∗.

A useful observation is that the background strain v0 is
related to the sound speed c0 through Eqs. (2.25) and (2.33):

c0/c = v0
k−1

2 . (4.5)

As a consequence, the inequality v0 < v∗ can be expressed as
the corresponding physical relation

|ν| > c0 (4.6)

between the solitary wave speed ν and the sound speed c0.
This shows that all solitary waves are supersonic, which
is a well-known statement in the literature in the case of
weak compression. Here, we see that it holds for arbitrary
compression.

A. Height and width

Solitary waves describe physical compression waves mea-
sured by the total strain, where v1 is the maximum (peak)
strain of the wave and v0 is the asymptotic background strain
on which the wave is propagating. The amplitude v of a
solitary wave away from the peak exhibits a spatial decay
to the background amplitude v0. As shown by the results in
Sec. III, this decay is exponential

v − v0 ∼ (v1 − v0)eζ0/lse−|x−νt |/ls , |x − νt | � ζ0 + ls

(4.7)

with respect to the length scale ls = lχ and the offset ζ0 = ξ0l,
given in terms of expressions (3.8), (3.25), and (3.26). Explicit
expressions for the length scale and the offset are given by

ls = R√
3
[
(ν2/c2)v1−k

0 − 1
] (4.8)

and

ζ0 =
√

k(k + 1)

6
R

∫ v1

v0

F̂ (v, v0; |ν|/c)

v − v0
dv, (4.9)

where F̂ (v, v0; |ν|/c) = F (v/λ, v0/λ) is given by the func-
tion (3.27).

In terms of the dynamical strain (2.23), solitary waves have
a peak amplitude

hs = v1 − v0 (4.10)

which defines the height of the solitary wave. For a fixed wave
speed ν, this height has the properties hs → 0 as v0 → v∗, and
hs → λ as v0 → 0, where λ = [ k(k+1)

2 ν2/c2]
1

k−1 .
The physical width of a solitary wave can be defined

by �s = 2|ζ | such that [v(ζ ) − v0]/hs = e−S � 1, for some
choice of S > 0. We will choose S = 3, which captures all
of the hump-shaped part of the solitary waves. From the
asymptotic tail (4.7) of v(ζ ), this yields

�s = 2(ζ0 + 3ls) = 2√
3
R�̂(|ν|/c, v0), (4.11)

where

�̂(|ν|/c, v0) =
√

k(k + 1)

2

∫ v1

v0

F̂ (v, v0; |ν|/c)

v − v0
dv

+ 3
/√

(ν2/c2)v1−k
0 − 1 (4.12)

is an explicit dimensionless scale depending on v0 and ν. Note
that for |x − νt | � �s/2 the amplitude of the solitary wave
decays exponentially with respect to the physical length scale
(4.8).

For a fixed wave speed ν, the physical width has the

properties �s → ∞ as v0 → v∗, and �s →
√

2
3

√
k(k+1)
k−1 πR
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as v0 → 0. The first property is an immediate conse-
quence of the limit 3/

√
(v0/v∗)1−k − 1 → ∞ for the al-

gebraic term in expression (4.12), while the integral term
goes to 0 due to v1 → v∗. To derive the second prop-
erty, we note first that the algebraic term in expres-
sion (4.12) goes to 0, and the integral term reduces
to

∫ λ

0 (F̂ (v, 0; |ν|/c)/v) dv, where F̂ (v, 0; |ν|/c) = (v/λ)
k−1

2 /√
Â(v, 0; |ν|/c) with Â(v, 0; |ν|/c) = 1 − (v/λ)k−1. We can

directly evaluate this integral to get π
k−1 , which gives �̂ →√

k(k+1)
2

π
k−1 .

Since the LWHC wave equation (2.19) is valid only for
long-wavelength waves, we must have �s � 2R, which yields
the condition

√
k(k+1)
k−1 � √

6/π . If we impose a lower bound

�s � 4R, then this implies
√

k(k+1)
k−1 � 2

√
6/π , which holds for

all 1 < k � 3.6.

B. Impulse and energy

In experiments on precompressed chains, compressive
waves are generated by striking an end particle in the chain.
This corresponds to imparting a specified total impulse and
total energy to the discrete system. For the continuum sys-
tem, described by the LWHC wave equation (2.19), the total
impulse and the total energy of traveling waves v = v(ζ ) for
the total strain (2.22) in terms of ζ = x − νt are given by the
respective conserved integrals

I =
∫ ∞

−∞
ρνv dζ (4.13)

and

E =
∫ ∞

−∞
ρ

[
1

2
ν2v2 + c2

(
1

k(k + 1)
vk+1− 1

6
R2vk−1v′2

)]
dζ

(4.14)

which arise directly from the conservation laws (2.37) and
(2.36). Here, ρ is the continuum mass density (2.16). Both of
these integrals are divergent for solitary waves because v(ζ )
has a nonzero asymptotic tail v → v0 > 0 as |ζ | → ∞. How-
ever, we can remove the divergent contribution by subtracting
the respective impulse density and energy density obtained for
v = v0. This yields the regularized impulse integral

Is =
∫ ∞

−∞
ρν(v − v0) dζ (4.15)

and the regularized energy integral

Es =
∫ ∞

−∞
ρ

[
1

2
ν2

(
v2 − v2

0

) + c2

(
1

k(k + 1)

(
vk+1 − vk+1

0

)

− 1

6
R2vk−1v′2

)]
dζ, (4.16)

both of which will be finite for all solitary waves. These
regularized integrals can be simplified by using the method
explained in Ref. [68]. We obtain

Is = 2√
3
ρRc sgn(ν)Î (|ν|/c, v0) (4.17)

and

Es = 1√
3
ρRc|ν|Ê (|ν|/c, v0), (4.18)

where

Î(|ν|/c, v0) =
∫ v1

v0

√
vk−1√

Â(v, v0; |ν|/c)
dv, (4.19)

Ê (|ν|/c, v0)

=
∫ v1

v0

√
vk−1

(
v2 − v2

0 + 2
k(k+1) (c/ν)2

(
vk+1 − vk+1

0

)
(v − v0)

√
Â(v, v0; |ν|/c)

− (v − v0)
√

Â(v, v0; |ν|/c)

)
dv (4.20)

are explicit dimensionless integrals depending on v0 and
|ν|/c.

C. Speed dependence of height, width, impulse, and energy

When the background strain v0 > 0 is fixed, all solitary
waves comprise a one-parameter family given in terms of
the wave speed ν in the range (4.6). Note that fixing v0

corresponds to fixing the sound speed (2.33) (where k is taken
to be fixed). Then, the impulse, energy, height, and width of a
solitary wave will depend solely on the ratio |ν|/c0.

To understand the specific dependence of these physical
properties on |ν|/c0, we first need to determine the peak strain
v1 in terms of c0 and ν. The algebraic equation (4.2) for v1 can
be expressed in the explicit form

0 = k(k + 1)

2
(ν2/c2)(v1 − v0)2 − vk+1

1

+ (k + 1)vk
0v1 − kvk+1

0 . (4.21)

For convenience, we will write

r = v0/v1, (4.22)

which has the range

0 < r < 1 (4.23)

given by the intervals (4.3). In terms of this strain ratio (4.22),
the algebraic equation (4.21) is given by

0 = k(r − 1)rk−1

[
k + 1

2

(
ν2/c2

0

)
(r − 1) − r

]
+ rk − 1

(4.24)

by use of relation (4.5). Hence, for a given value of k, r is a
function only of the speed ratio |ν|/c0. This function is shown
in Fig. 2.

It is useful to observe that scaling c → s
k−1

2 c (with s �= 0)
implies v0 → sv0 and v1 → sv1, and thus

F̂ (sv, sv0; |ν|/c) = s
k−1

2 F̂
(
v, v0; s

1−k
2 |ν|/c

)
, (4.25)

Î(|ν|/c, sv0) = s
k+1

2 Î
(
s

1−k
2 |ν|/c, v0

)
, (4.26)

Ê (|ν|/c, sv0) = s
k+3

2 Ê
(
s

1−k
2 |ν|/c, v0

)
. (4.27)
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FIG. 2. Strain ratio r , defined by Eq. (4.24), as a function of the
speed ratio |ν|/c0 and the exponent k in the Hertz potential.

Then, using these scaling properties combined with relation
(4.5), we have the following properties of solitary waves
expressed in terms of the strain ratio (4.22).

The height (4.10) is given by

hs = (c0/c)
2

k−1 (1/r − 1), (4.28)

while the width (4.11), impulse (4.17), and energy (4.18) are
given in terms of the integrals

�̂ =
√

k(k + 1)

2

∫ 1/r

1

F̂ (z, 1; |ν|/c0)

z − 1
dz + 3/

√
ν2/c2

0 − 1,

(4.29)

Î =
(

c0

c

) k+1
k−1

∫ 1/r

1

√
zk−1√

Â(z, 1; |ν|/c0)
dz, (4.30)

Ê =
(

c0

c

) k+3
k−1

∫ 1/r

1

√
zk−1

(
z2 − 1 + 2

k(k+1) (c0/ν)2(zk+1 − 1)

(z − 1)
√

Â(z, 1; |ν|/c0)

− (z − 1)
√

Â(z, 1; |ν|/c0)

)
dz. (4.31)

Here,√
k(k + 1)

2
F̂ (z, 1; |ν|/c0)

= (c0/|ν|)
( √

zk−1√
Â(z, 1; |ν|/c0)

− 1√
Â(1, 1; |ν|/c0)

)
,

(4.32)

and

Â(z, 1; |ν|/c0) = 1 − 2

k(k + 1)
(c0/ν)2(k − z∂z)

(
zk − 1

z − 1

)
,

Â(1, 1; |ν|/c0) = 1 − (c0/ν)2. (4.33)

The height, width, impulse, and energy are shown in Fig. 3
for the explicit solitary wave solutions presented in Sec. III A,

where the background strain v0 has been fixed to be a typical
value considered in experiments. It is evident from Fig. 3(a)
that the physical height hs of a solitary wave increases with
increasing |ν|/c0 (i.e., with decreasing r). Moreover, for a
given speed ratio |ν|/c0, hs decreases with increasing k. In
contrast, for a given value of k, the width �s of a solitary
wave increases with decreasing |ν|/c0, implying that the width
becomes larger when the initial precompression is increased.

From Fig. 3(b), we see that, when |ν|/c0 � 1.5, the width
�s decreases with increasing k for a given |ν|/c0. In contrast,
when |ν|/c0 � 1.5, this trend is inverted, with �s increasing
as k increases. This means that solitary waves are wider for
a larger values of k when the wave speed |ν| is less than 1.5
times the sound speed c0.

Similarly to the properties of the height and width, both
the impulse and energy [Figs. 3(c) and 3(d)] increase with
increasing |ν|/c0 for a given value of k. When k and |ν|/c0 are
fixed, the impulse, and energy each increase if the background
strain v0 is increased, which can be inferred from expressions
(4.30) and (4.31). Physically, this means that a larger impulse
and energy are needed to obtain waves with the same speed
ratio when the initial precompression is increased.

We will now consider in more detail two interesting cases:
wave speeds |ν| close to the sound speed (2.33); wave speeds
|ν| much larger than the sound speed (2.33). Note, since the
background strain v0 is fixed, specifying the speed ratio |ν|/c0

corresponds to specifying v∗ through the relation |ν|/c0 =
(v∗/v0)(k−1)/2.

D. Slightly supersonic solitary waves

When |ν| is close to c0, a solitary wave is slightly super-
sonic. To examine its properties, we first observe that v∗ will
be close to v0, whereby the strain ratio r will be close to 1 as
seen from Fig. 2. By expanding Eq. (4.24) for r in a series in
|ν|/c0 − 1 around r = 1, we obtain the asymptotic expression

r � 1 − 6

k − 1
(|ν|/c0 − 1) (4.34)

valid for |ν|/c0 − 1 � 1.
A similar asymptotic expansion of the height expres-

sion (4.28) and the width integral (4.29) yields hs �
6

k−1 (c0/c)
2

k−1 (|ν|/c0 − 1) and �̂ � 3√
2
/
√|ν|/c0 − 1 (see Ap-

pendix B for details). Thus, we see that the width (4.11) of a
slightly supersonic solitary wave becomes large in comparison
to the particle size 2R,

�s/(2R) � 3√
6(|ν|/c0 − 1)

� 1, (4.35)

while the height becomes small compared to the background
strain v0,

hs/v0 � 6

k − 1
(|ν|/c0 − 1) � 6

k − 1
. (4.36)

In particular, the height and width satisfy the proportionality
relationship

hs ∝ 1/�2
s . (4.37)

The impulse integral (4.30) and the energy integral
(4.31) have the respective asymptotic expansions Î �
3
√

2
k−1 ( c0

c
)

k+1
k−1

√|ν|/c0 − 1 and Ê � 6
√

2(k+1)
k(k−1) ( c0

c
)

k+3
k−1

√|ν|/c0 − 1
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FIG. 3. Properties of the solitary wave solutions presented in Sec. III A, using a fixed background strain v0 = 0.02. (a) Solitary wave
height, Eq. (4.28); (b) solitary wave width, Eq. (4.29); (c) impulse carried by solitary waves, Eq. (4.30); (d) energy carried by solitary waves,
Eq. (4.31).

(see Appendix B for details). Thus, the impulse (4.17) and the
energy (4.18) of a slightly supersonic solitary wave are given
by

Is � 2
√

6

k − 1
ρRc0(c0/c)

2
k−1 sgn(ν)

√
|ν|/c0 − 1 (4.38)

and

Es � 2
√

6(k + 1)

k(k − 1)
ρRc2

0(c0/c)
4

k−1

√
|ν|/c0 − 1. (4.39)

In particular, these two quantities are related by Es/Is �
(1 + 1

k
)(c0/c)

2
k−1 c0 sgn(ν), which depends only on the sound

speed c0 and the direction of the solitary wave (in addition
to the constant c). As a limiting case, for |ν| → c0, we have
�s/(2R) → ∞, hs/v0 → 0, Is → 0, and Es → 0.

E. Highly supersonic solitary waves

When |ν| is much larger than c0, a solitary wave is highly
supersonic. This implies v∗ will be much greater than v0,
whereby the strain ratio r will be much less than 1 as seen
from Fig. 2. Consequently, by expanding Eq. (4.24) for r in a
series in (c0/|ν|) 2

k−1 around r = 0, we obtain the asymptotic
expression

r �
(

2

k(k + 1)
c2

0/ν
2

) 1
k−1

(4.40)

valid for |ν|/c0 � 1.
The properties of highly supersonic solitary waves can be

determined using this asymptotic form of the strain ratio. First,

we asymptotically expand the height (4.28), which yields

hs �
(

k(k + 1)

2

) 1
k−1

(|ν|/c)
2

k−1 . (4.41)

Hence, compared to the background strain v0, the height
becomes large,

hs/v0 �
(

k(k + 1)

2

) 1
k−1

(|ν|/c0)
2

k−1 �
(

k(k + 1)

2

) 1
k−1

.

(4.42)

Next, an asymptotic expansion of the width integral (4.29)
yields

�̂ �
√

k(k + 1)√
2(k − 1)

π (4.43)

(as shown in Appendix B). Thus, the asymptotic expression

for the width (4.11) is given by �s �
√

2
3

√
k(k+1)
k−1 πR. In com-

parison to the particle size 2R, the width is a finite multiple

�s/(2R) � 1√
6

√
k(k + 1)

k − 1
π, (4.44)

which depends only on k. This multiple is a decreasing func-
tion of k, such that �s/(2R) → 1√

6
π (� 1.28) as k → ∞ and

�s/(2R) → ∞ as k → 1. The trend for large k is in agreement
with previous experimental findings [30] for discrete systems,
where it has been reported that �s/(2R) tended to 1.
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In the physically important case k = 3
2 , the width is

�s/(2R) �
√

5√
2
π (� 4.97). This agrees with the experimen-

tally measured value [66] of approximately 10R for the phys-
ical width of solitary waves in weakly compressed granular
chains when the contact geometry of the particles is elliptical,
corresponding to k = 3

2 .
Similarly, we find that the impulse integral (4.30) and

the energy integral (4.31) have the respective asymp-
totic expansions Î � λ

k+1
2

√
π�( 1

2 + 1
k−1 )/�( 1

k−1 ) and Ê �
λ

k+3
2

1
4

√
π k+3

k+1�( 1
2 + 2

k−1 )/�( 2
k−1 ) (derived in Appendix B).

Thus, the impulse (4.17) and the energy (4.18) of a highly
supersonic solitary wave are given by

Is � 2√
3

√
πK1ρν(|ν|/c)

2
k−1 R,

K1 =
√

k(k + 1)

2

k+1
k−1 �

(
1
2 + 1

k−1

)
�

(
1

k−1

) (4.45)

and

Es � 1

4
√

3

√
πK2ρν2(|ν|/c)

4
k−1 R,

K2 = k + 3

k + 1

√
k(k + 1)

2

k+3
k−1 �

(
1
2 + 2

k−1

)
�

(
2

k−1

) . (4.46)

In particular, these two quantities are related by Es/Is �
1
8 (1 + 2

k+1 )K̂νhs in terms of the height and the speed, with

K̂ = �( 1
k−1 )�( 1

2 + 2
k−1 )/[�( 2

k−1 )�( 1
2 + 1

k−1 )].

V. COMPARISON OF SOLITARY WAVES ACROSS
DIFFERENT NONLINEAR REGIMES

In discrete systems of precompressed particles, the features
of compressive and rarefactive pulses are very dependent on
the size of the dynamical overlap of adjacent particles com-
pared to the size of the precompression. This dependence is
measured in the continuum limit by the ratio of the dynamical
strain (2.23) to the background strain (2.25). Specifically,
the dynamics of compressive long-wavelength pulses (in the
continuum limit) is weakly nonlinear when the strain ratio
satisfies the condition (2.27), or strongly nonlinear when the
strain ratio satisfies the condition (2.28).

We will now explore how the main features of solitary
waves described by the LWHC wave equation (2.19) differ
across these two different nonlinearity regimes. To begin, we
note that the peak total strain v1 in a solitary wave (4.1) is a
function of the background strain v0 and the wave speed ν,
as given by Eq. (4.2), where v0 > 0 and ν > c0. Since the
degree of dynamical nonlinearity is essentially determined
by the ratio 1/r = v1/v0, which has the range (4.23), we
can regard solitary waves as being determined by r and ν as
two independent parameters. Specifically, from the algebraic
equation (4.24) for r , combined with relation (4.5) for v0, we
have

v0 =
[
k(k + 1)

2

(ν2/c2)(1 − r )2

r1−k − k(1 − r )r − r

] 1
k−1

, v1 = v0/r,

(5.1)

which explicitly expresses the background strain and the peak
strain as functions of r and ν. Since v0 determines the sound
speed c0 through relation (4.5), note that expression (5.1)
yields

c0 =
√

k(k + 1)

2

|ν|(1 − r )√
r1−k − k(1 − r )r − r

(5.2)

as a function of r and |ν|. Consequently, weak nonlinearity
arises when solitary waves are slightly supersonic, whereas
strong nonlinearity occurs when solitary waves are highly
supersonic, which we will show explicitly from the sound
speed equation (5.2) later.

There are two ways in which we can compare different
solitary waves: one way is to look at all solitary waves that
have the same physical speed, namely, a family of waves
parametrized by r with ν being fixed; another way is to
consider all solitary waves that have the same impulse Is since
fixing the impulse will determine ν in terms of v0, which gives
a family of waves parametrized by r with Is being fixed.

For comparisons of solitary waves, a useful quantity to
study is the scaled wave profile (v − v0)/hs as a function of
the scaled traveling wave variable ζ/�s = (x − νt )/�s, where
hs is the peak height of the wave and �s is the width of the
wave. The scaled profile has a range 0 to 1, while the scaled
traveling wave variable can be taken in the interval (− 1

2 , 1
2 ) to

exclude the asymptotic tail of a solitary wave.

A. Strongly nonlinear regime

In the strongly nonlinear regime (2.28), the peak total strain
v1 in a solitary wave satisfies v1 � v0. In terms of the strain
ratio (4.22), this regime is characterized by 1/r � 1, namely,
r = v0/v1 is small. Using the sound speed equation (5.2), we

then have c0/|ν| �
√

k(k+1)
2 r

k−1
2 . Hence, this regime coincides

with the case of solitary waves that are highly supersonic:

|ν| �
√

2

k(k + 1)
r

1−k
2 c0 � c0, (5.3)

where r � 1. It will be useful to note

v1 �
[
k(k + 1)

2

] 1
k−1

(|ν|/c)
2

k−1 (5.4)

holds in this regime, as shown by combining the relations (5.3)
and (4.5).

The main properties of strongly nonlinear solitary waves in
terms of r and ν are given by the expressions (4.41), (4.44),
(4.45), and (4.46) for the height, width, impulse, and energy
in the highly supersonic case. To leading order in r , these
properties are asymptotically independent of r . In particular,
the width (4.44) is a constant (which depends on k), and
thus strongly nonlinear solitary waves of different speeds have
approximately the same width. In contrast, the height (4.41),
impulse (4.45), and energy (4.46) are functions of ν.

The expressions for the height (4.41) and width (4.44) of
strongly nonlinear solitary waves are the same as the height
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and width of the compact solution (3.51):

vc =
[
k(k + 1)

2

] 1
k−1

(|ν|/c)
2

k−1 cos[(x − νt )π/lc]
2

k−1

× �

[
π

(
1

2
− |x − νt |/lc

)]
(5.5)

which exists in the limiting case r = 0. Here, �(z) denotes
the Heaviside step function, and

lc =
√

2k(k + 1)√
3(k − 1)

πR (5.6)

is a constant (which depends on k and R). The presence of the
step function causes v to vanish for |x − νt | � 1

2 lc, whereby
v is compactly supported as a function of the traveling wave
variable x − νt .

At any fixed value of r , the width (4.44) and height (4.41)
decrease with increasing k. Specifically, the width �s � �c ap-
proaches a limiting size 2√

6
πR (� 2.56R) which corresponds

to a multiple 1.28 of a particle diameter, while the height hs

approaches the limit 1.
As discussed in Sec. III A, the compacton (5.5) is an actual

solution of the LWHC wave equation (2.19) only for 1 < k <
5
3 since the cutoff imposed by the step function lacks sufficient
differentiability when k � 5

3 . Moreover, this solution holds
only in the case when the background strain (2.25) is zero,
which describes a continuum system with no precompression,
v0 = 0.

In contrast, strongly nonlinear solitary waves have nonzero
tails for all 0 < r � 1. We will now show that the shape of
strongly nonlinear solitary waves near their peak is approxi-
mated by the upper part of the compacton profile:

v/v0 �
[
k(k + 1)

2

] 1
k−1

(|ν|/c0)
2

k−1 cos[(x − νt )π/lc]
2

k−1

(5.7)

for

|x − νt | � 1
2 lc, (5.8)

where lc � ls. In particular, the scaled wave profile as a func-
tion of the scaled traveling wave variable |ζ |/�s is approxi-
mately given by (v − v0)/hs � cos(|ζ |π/�s)

2
k−1 in the interval

0 � |ζ |/�s � 1
2 , where the cosine function is not close to 0.

This approximation (5.7) holds only for the part of the
solitary wave where the amplitude is v/v0 � 1. When instead
the amplitude is v/v0 � 1, the tail of the solitary wave is
given by the decaying exponential (4.7) with ζ0 � 1√

3
R�̂. For

the part of the wave profile where v/v0 is neither large nor
close to 1, no explicit approximation appears to be possible
because of the strong nonlinearity. A comparison of the exact
solitary wave solution with r � 1 and the compacton solution
for r = 0 is shown in Fig. 4 for k = 3

2 , 2, 3.
It is clear from Fig. 4 that the compacton well approximates

a solitary wave when r � 1, and that the approximation
becomes worse with increasing r . For a given value of r ,
the approximation is better for larger values of k. While the
compacton is a good approximation for k = 2 and 3 solitary
waves when r � 1, it should be noted that the compacton is

not an actual solution to the LWHC when k > 5
3 , as explained

in Sec. III C. Contact geometries with k > 5
3 occur in several

physically interesting discrete systems, particularly when the
macroscopic particles in the system have rough contact sur-
faces [45,48,50].

Interestingly, for any k > 1, we can use the exact quadra-
ture formula (4.1) for solitary waves to derive an approximate
quadrature that describes the entire solitary wave profile and
that can be evaluated explicitly when v/v0 � 1 to obtain the
approximation (5.7) near the peak, as well as when v/v0 � 1
to obtain the approximation (4.7) for the tail.

We start by writing out the full form of the quadra-
ture (4.1), specifically the square-root term in the integrand.
This term is given by Â(v, v0; |ν|/c) = 1 − λ1−k∂v0 [v0(vk −
vk

0 )/(v − v0)], which has the approximation Â(v, v0; |ν|/c) �
1 − λ1−kvk−1 to leading order in v0/v, with λ given by the
relation (4.4). Hence, the quadrature can be approximated by∫ v1

v

√
vk−1 dv

(v − v0)
√

1 − λvk−1
�

√
3(|ν|/c)|ζ |/R, (5.9)

where we keep the exact pole term v − v0 in the integrand
because it yields the tail of the solitary wave to leading order
in v0/v. This quadrature (5.9) provides a useful approximation
that encompasses the entire wave profile. It reduces to the
exact compacton solution if we set v0 = 0. Moreover, for
v0 > 0, if we restrict v so that v/v0 � 1, which holds near the
peak of the wave profile, then we obtain the approximation
(5.7) given by the upper part of the arch of the compacton
solution.

Unfortunately, the approximate quadrature (5.9) cannot be
evaluated explicitly for arbitrary k > 1 when v0 > 0. But, we
can evaluate it for the same special values of k for which the
exact quadrature was evaluated in Sec. III A.

Specifically, when k = 2, we have

arccos(2v/λ − 1) +
√

v0/λ ln

[
v0 + v + 2

√
v0

√
v(1 − v/λ)

v − v0

]

� 2π

k − 1
|ζ |/lc, (5.10)

where we have used relation (5.4) for v1, and where we have
dropped all terms that are small due to c0/|ν| � 1, which
holds in the strongly nonlinear regime. When k = 3, we obtain

1

2
arccos(2v2/λ2 − 1) + (v0/λ)

× ln

(
1 − v0v/λ2 +

√
1 − v2/λ2

v − v0

)
� 2π

k − 1
|ζ |/lc. (5.11)

Likewise, when k = 3
2 , we have

2 arccos(2
√

v/λ − 1) − 4
√

v0/λ

×
[

ln

(√
v0 + √

v + 2 4
√

v0v
√

1 − √
v/λ

v − v0

)

− arctan

(
2 4
√

v0v
√

1 − √
v/λ

v − v0

)]
� 2π

k − 1
|ζ |/lc. (5.12)

These explicit approximations (5.10)–(5.12) along with the
corresponding exact solitary wave solutions given by (4.1)
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FIG. 4. Comparison between the compacton solution (5.5) and the solitary wave (SW) solutions given by the quadrature (4.1) for various
values of r � 1. (a) k = 3

2 ; (b) k = 2; (c) k = 3. Here, hc is the compacton height, given by Eq. (4.41) [see Eq. (5.5)], which is equivalent to
Eq. (3.8).

for r � 1 are shown in Fig. 5. The plots indicate a good
agreement between the exact solitary wave solutions and the
approximate solitary wave solutions when r is very small,
while the approximation gradually worsens with increasing
r , particularly near the peak of the wave. Similar to the
compacton solution (5.5), at fixed r the approximate solutions
(5.10)–(5.12) agree better with the exact solitary wave solu-
tions for larger values of k. The compacton solution is shown
for comparison in row (iv) of Fig. 5. As illustrated by the plots,
for all values of r , the shape of the peak of the approximate
solution is nearly identical to the compacton; however, the tail
of the approximate solution agrees much better with the exact
solitary wave solution.

B. Weakly nonlinear regime

In the weakly nonlinear regime (2.27), the peak total strain
v1 in a solitary wave satisfies v1 − v0 � v0. This regime is
characterized in terms of the strain ratio (4.22) by 1/r − 1 �
1, namely, r = v0/v1 is close to 1. From the sound speed
Eq. (5.2), we then see c0/|ν| � 1 − k−1

6 (1 − r ), showing that
this regime coincides with the case of solitary waves that are
slightly supersonic:

|ν| �
[

1 + k − 1

6
(1 − r )

]
c0 � c0, (5.13)

where 1 − r � 1.
We can now obtain the main properties of weakly nonlinear

solitary waves from the expressions (4.35), (4.36), (4.38), and
(4.39) for the width, relative height, impulse, and energy in

the slightly supersonic case. In terms of r and ν, this yields

Is � 2√
k − 1

ρRν(|ν|/c)
2

k−1
√

1 − r, (5.14)

Es � 2(k + 1)

k
√

k − 1
ρRν2(|ν|/c)

4
k−1

√
1 − r (5.15)

for the impulse and the energy, respectively. Note both of these
quantities scale like

√
1 − r when the wave speed is fixed.

The width and the height of weakly nonlinear solitary
waves are given in terms of r and ν by

�s � 6R√
(k − 1)(1 − r )

, (5.16)

hs � (|ν|/c)
2

k−1 (1 − r ). (5.17)

At any fixed value of r , the width and height have an inter-
esting dependence on the Hertz exponent k. Specifically, the
width �s decreases with increasing k and goes to 0, while the
height hs also decreases and approaches the limit 1 − r �= 0.

More importantly, at any fixed wave speed |ν|, the width
scales like 1/

√
1 − r in comparison to the particle size 2R,

while the height scales like 1 − r in comparison to the back-
ground strain v0. The same scaling proportionality between
width and height is well known to occur for solitons of the
KdV equation, which have a sech-squared profile. In fact, the
KdV equation emerges in general for evolution systems that
exhibit weak nonlinearity and dispersion [71].

Following the detailed analysis proposed by
Nesterenko [18], we will now show that solitary waves
(4.1) in the weakly nonlinear regime approximately have the
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FIG. 5. Comparison of solutions of the approximate (approx.) quadrature (5.9) with solitary wave (SW) solutions of (4.1) for various values
of r � 1. (a) k = 3

2 , Eq. (5.12); (b) k = 2, Eq. (5.10); (c) k = 3, Eq. (5.11). The solitary wave width is indicated by dashed vertical lines in
the row (i). The compacton solution (5.5) is shown for comparison in row (iv). Here, hc is the compacton height, given by Eq. (4.41).

form of KdV solitons:

v/v0 − 1 � 6

k − 1
(|ν|/c0 − 1)

× sech2

(√
3

2

√
|ν|/c0 − 1 (x − νt )/R

)
, (5.18)

where

|ν|/c0 − 1 � k − 1

6
(1 − r ) � 1. (5.19)

Thus, the scaled wave profile as function of the scaled trav-
eling wave variable is simply (v − v0)/hs � sech2(3|ζ |/�s)
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FIG. 6. Comparison between KdV solitons (5.18) and exact solitary wave (SW) solutions (4.1) for 1 − r � 1. (a) k = 3
2 ; (b) k = 2; (c)

k = 3. The solitary wave width is indicated by dashed vertical lines in row (i). Equation (5.20) for the height hKdV is used to normalize both
the KdV solitons and the exact solitary wave solutions.

where

hs � hKdV = 6

k − 1
(|ν|/c0 − 1) (5.20)

is the height of the KdV soliton. The approximation here holds
to leading order in 1 − r uniformly in v.

Figure 6 shows the KdV soliton approximation, along
with the corresponding exact solitary wave solutions from
Sec. III A for 1 − r � 1. It is evident that when r is very
close to 1, the KdV soliton well approximates the exact
solitary wave solution for each value of k. The approximation
worsens, particularly near the peak of the wave, as r deviates
further from 1. In contrast to the quality of the approximations
for strongly nonlinear solitary waves, which worsened with
decreasing k (cf. Figs. 4 and 5), the quality of the normalized
KdV approximation is roughly independent of k, for a given
value of r .

This approximation result is a continuum counterpart of
what occurs [69,72] in the weak nonlinearity limit for pre-
compressed discrete chains (2.1). It is known that a two-
scale expansion of the discrete equations of motion yields a
discrete version of the KdV equation. We show in Appendix C
that the same expansion can be applied to the LWHC wave
equation (2.19) to obtain the continuum KdV equation.

To derive expression (5.18), we asymptotically expand the
quadrature (4.1) for solitary waves

v = v(ζ ) = v0[1 + w(ζ )] (5.21)

such that 0 < w � 1 in the weakly nonlinear regime 1 − r �
1. In terms of w, this quadrature is given by

∫ 1/r−1

w

√
(1 + w)k−1 dw

w
√

Â(1 + w, 1; |ν|/c0)
=

√
6√

k(k + 1)
|ζ |/R,

(5.22)
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where

Â(1 + w, 1; |ν|/c0) = 1 − 2

k(k + 1)
(c0/ν)2[k − (1 + w)∂w]

×
[

(1 + w)k − 1

w

]
(5.23)

from expression (4.33). Expanding in powers of w to leading
nontrivial order, we get (1 + w)k−1/Â(1 + w, 1; |ν|/c0) �
1/(B0 − B1w) where B0 = k(k+1)

2 [(|ν|/c0)2 − 1] and B1 =
k(k2−1)

6 [(|ν|/c0)2 − 2
3 ]. Then, we use the asymptotic expansion

(5.13) of the speed ratio |ν|/c0 in terms of 1 − r , which yields
B0 − B1w � k(k2−1)

6 (1 − r − w) and hence

(1 + w)k−1

Â(1 + w, 1; |ν|/c0)
� 6

k(k2 − 1)
(1 − r − w)−1. (5.24)

Thus, the asymptotic expansion of the quadrature (5.22) to
leading order is given by∫ 1−r

w

dw

w
√

1 − r − w
� √

k − 1|ζ |/R. (5.25)

This integral yields 2√
1−r

arctanh(
√

1 − r − w/
√

1 − r ), and
thus we obtain

w � (1 − r ) sech2( 1
2

√
1 − r

√
k − 1|ζ |/R)

(5.26)

which is valid for 1 − r � 1. The resulting solitary wave

v = v0
[
1 + (1 − r ) sech2

(
1
2

√
1 − r

√
k − 1|ζ |/R)]

(5.27)

yields expression (5.18) when 1 − r is expressed back in
terms of the speed ratio (5.13).

C. Comparisons and scaling relations

The dependence of the width, height, impulse, and energy
of solitary waves on the wave speed ν is the same in both
nonlinearity regimes. Specifically, when r is fixed in each
regime, the width is independent of the speed, whereas the
height scales like hs ∝ |ν| 2

k−1 while the impulse and energy
scale like Is ∝ |ν| k+1

k−1 and Es ∝ |ν| 2k+2
k−1 . Consequently, the lat-

ter three quantities satisfy the proportionality relationships:

Is ∝ hsν, Es ∝ h2
s ν

2 (5.28)

and thus

Es/Is ∝ hsν ∝ sgn(ν)|ν| k+1
k−1 , Es ∝ I2

s . (5.29)

The same proportionality between energy and impulse
holds for precompressed discrete chains (2.1) when compres-
sive waves are generated by sharply striking an end particle
in the chain, as noted in Sec. II. Moreover, the two scaling
relations hs ∝ |ν| 2

k−1 and Is ∝ |ν| k+1
k−1 agree with the ones

reported in the literature [18,25,29,30] for weakly precom-
pressed discrete chains.

Finally, we note that the proportionality Is ∝ |ν| k+1
k−1 in-

dicates that all of the results on the properties of solitary
waves in the weakly nonlinear and strongly nonlinear regimes
can be expressed by replacing ν in terms of Is, using the
respective impulse expressions (5.14) and (4.45). From a
physical viewpoint, if we impart a specified sharp impulse

to a precompressed continuum system, then in either the
weakly or strongly nonlinear regimes this impulse determines
a unique solitary wave whose speed and height are given by
|ν| ∝ |Is| k−1

k+1 , hs ∝ |Is| 2
k+1 .

It is more difficult to study solitary waves in the interme-
diate regime, where r is neither close to 0 nor close to 1. By
using expression (5.2) for the sound speed in terms of ν and r ,
combined with expressions (4.10), (4.11), (4.17), and (4.18)
for the height hs, width �s, impulse Is, and energy Es, we
obtain exact formulas that hold in any nonlinearity regime:

�s = 2R

[√
k(k + 1)

6

∫ 1/r

1

F̂ (z, 1; μ(r ))
z − 1

dz+
√

3√
μ(r )2 − 1

]
,

(5.30)

hs =
( |ν|

c
μ(r )

) 2
k−1

(1/r − 1), (5.31)

Is = 2√
3
ρRc sgn(ν)

[( |ν|
c

μ(r )

) k+1
k−1

×
∫ 1/r

1

√
zk−1√

Â(z, 1; μ(r ))
dz

]
, (5.32)

Es = 1√
3
ρRc|ν|

[( |ν|
c

μ(r )

) k+3
k−1

∫ 1/r

1

√
zk−1

×
(

z2 − 1 + 2
k(k+1) (1/μ(r ))2(zk+1 − 1)

(z − 1)
√

Â(z, 1; μ(r ))

− (z − 1)
√

Â(z, 1; μ(r ))
)

dz

]
, (5.33)

where

μ(r ) =
√

2

k(k + 1)

√
r1−k − k(1 − r )r − r

1 − r
. (5.34)

These formulas do not exhibit any general scaling relations.
Nevertheless, they can be evaluated straightforwardly for any
0 < r < 1. Likewise, from the quadrature (4.1) for solitary
waves, we have the exact integral formula for v(x − νt ):∫ 1/r

v/v0

√
zk−1

(z − 1)
√

Â(z, 1; μ(r ))
dz =

√
3μ(r )

R
|ζ |,

ζ = x − νt, (5.35)

where

v0 =
( |ν|/c

μ(r )

) 2
k−1

(5.36)

is the background strain. The transition between regimes of
weak nonlinearity and strong nonlinearity can be seen in
Fig. 1, using the explicit evaluation of this integral (5.35)
for k = 3

2 , 2, 3 presented in Sec. III A, where r = g0/g1 with
g1 given by the peak value of the scaled amplitude g(ξ ) =
(g0/v0)v(ζ ).

We see how the (scaled) profile of the solitary waves makes
a continuous transition from a compactonlike shape when r =
0.001 (g0 = 0.001, g1 = 0.999) is small, to a KdV-soliton-
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like shape when r = 0.5 (g0 = 0.25, g1 = 0.5 for k = 2;
g0 = 0.3, g1 = 0.6 for k = 3) and r = 0.43 (g0 = 0.2, g1 =
0.47 for k = 3

2 ).
An analysis of the continuous transition from weak non-

linearity to strong nonlinearity for solitary waves has not
previously appeared in the literature. We remark that the
nonlinearity transition for shock waves in discrete systems has
been studied in Ref. [73,74].

VI. CONCLUDING REMARKS

In this paper, we have presented a physical analysis of the
properties of long-wavelength solitary waves in the continuum
model of Hertzian chains with arbitrary precompression. We
find that the ratio of the background strain to the peak strain
in solitary wave solutions describes the degree of dynamical
nonlinearity in the underlying discrete chain. This dynamical
nonlinearity ratio is determined by a nonlinear algebraic rela-
tion given in terms of the ratio of the solitary wave speed to the
sound speed. In particular, highly supersonic solitary waves
correspond to highly nonlinear propagating localized pulses in
weakly compressed discrete chains, while slightly supersonic
solitary waves correspond to weakly nonlinear propagating
localized pulses in strongly compressed discrete chains.

We have obtained explicit analytical expressions for the
height, width, impulse, and energy of solitary waves. The
width expression comes from an asymptotic analysis of the
tail of solitary waves. Using this expression, we have shown
that the width of all solitary waves decreases with k at any
fixed value of the nonlinearity ratio, and increases with the
nonlinearity ratio, at any fixed value of k > 1. In the physi-
cally interesting case when k = 3

2 (corresponding to spherical
particles), the minimum width is approximately five times
the particle size. This confirms the validity of the continuum
model for studying solitary waves.

We have used the height, width, impulse, and energy
expressions to show that the main physical features of solitary
waves depend principally on the ratio of the wave speed
to the sound speed at any fixed k > 1. Moreover, highly
supersonic solitary waves are shown to be well approximated
by Nesterenko’s compacton, while slightly supersonic solitary

waves are shown to coincide approximately with KdV solitons
which have a well-known sech-squared profile. We further
have shown that the KdV equation itself arises directly from
the LWHC equation through a two-scale asymptotic expan-
sion combined with a Galilean transformation to a reference
frame moving with the sound speed.

Exact solitary wave solutions have been used to compare
the features of solitary waves across different nonlinearity
regimes. Specifically, we have derived an exact expression for
the solitary waves that arise in the continuum model with a
Hertz exponent k = 3

2 , corresponding to solitary wave pulses
in a chain of spherical discrete particles. The shape of these
solitary waves is highly sensitive to their speed.

Our results establish that a continuum system supports
solitary waves having the same impulse momentum yet dis-
playing marked different shapes and speeds, especially in
comparison to a compacton. The same conclusion will hold
for physical discrete chains when the long-wavelength regime
is considered.

Our long wavelength continuum analysis can be extended
to models of heterogeneous chains, in particular dimer chains
consisting of alternating particles with different masses. There
are several further interesting directions for future work. One
direction would be to study the properties of solitary waves
in a finite-size continuum model with physical boundary
conditions. This will yield analytical results concerning the re-
flection of solitary waves at the end point boundaries, which is
important for understanding physical discrete chains. Another
direction would be to investigate the statistical properties
of a dilute (rarified) ensemble of interacting solitary waves,
known as a soliton gas. This is relevant for the dynamics
of discrete chains after transients have decayed such that
the chain contains propagating solitary waves with a wide
spectrum of energies. Of notable interest here is the recent
observation that rogue waves can form in such circumstances
[75–77].

ACKNOWLEDGMENTS

S.C.A. is supported by an NSERC research grant. The
work of M.P. was financially supported by a Vanier Canada
Graduate Scholarship.

APPENDIX A: DERIVATION OF k = 3
2 SOLITARY WAVE SOLUTION

Here, we outline the main steps in the derivation of the solitary wave solution (3.33) for k = 3
2 , starting from the quadrature

(3.24), which is given by

±
∫ g1

g

g1/4√
(g − g0)2 + 3

2g
3/2
0 (g − g0) − g

(
g3/2 − g

3/2
0

) dg = |ξ |. (A1)

As shown in Ref. [68], the change of variable g = h2 brings this integral (A1) to the form of an elliptic integral

±2
∫ h1

h

h2

(h − h0)
√

B(h)
dh = |ξ |, (A2)

where

B(h) = h
[(

1 − 3
2h0

)
h2

0 + (2 − 3h0)h0h + (1 − 2h0)h2 − h3
]

(A3)
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is a quartic polynomial. It is straightforward to show that this polynomial has the factorization B(h) = B1(h)B2(h) with B1(h) =
h(h1 − h) and B2(h) = (h + h2)2 + h2

3, where h1, h2, h3 are given by expressions (3.44)–(3.46). Standard methods [70,78] can
now be used to evaluate the elliptic integral (A2) explicitly.

The first step is to change variables by applying a linear fractional transformation

y = (h − y+)/(h − y−), (A4)

with y± being defined by the condition B1(h) − λ±B2(h) = −(1 + λ±)(h − y±)2, where λ± are the roots of the discriminant of
B1(h) − λB2(h). This leads to the expressions

(y − 1)2RB1(h) =
√

PQY1(y), (y − 1)2RB2(h) =
√

PQY2(y) (A5)

given in terms of the quadratic polynomials

Y1(y) = K2
− − K2

+y2, Y2(y) = (K2
+ − R)y2 + R − K2

−, (A6)

where

K± =
√

Q ±
√

P (A7)

and

P = h2
2 + h2

3 = B2(0), Q = (h1 + h2)2 + h2
3 = B2(h1), R = (h1 + 2h2)2. (A8)

Carrying out the change of variable (A4), and splitting up the integral into terms with even and odd parity under y → −y, we
get ∫ h1

h

h2 dh

(h − h0)
√

B(h)
= c1I1 + c2I2 + c0J0 + c1J1 + c2y0J2, (A9)

where

I1 =
∫ y1

y

y dy

(y2 − 1)
√

Y1(y)Y2(y)
, I2 =

∫ y1

y

y dy(
y2 − y2

0

)√
Y1(y)Y2(y)

, (A10)

J0 =
∫ y1

y

dy√
Y1(y)Y2(y)

, J1 =
∫ y1

y

dy

(y2 − 1)
√

Y1(y)Y2(y)
, J2 =

∫ y1

y

dy(
y2 − y2

0

)√
Y1(y)Y2(y)

, (A11)

and

c0 = y2
−(y0 − 1)R√

PQ
, c1 = − (y+ − y−)2R√

PQ
, c2 = h2

0(y0 − 1)2R√
PQ

, (A12)

with

y± =
√

P (±
√

Q −
√

P )/
√

R (A13)

and

y1 = (h1 − y+)/(h1 − y−) = K−/K+, (A14)

y0 = (h0 − y+)/(h0 − y−) = h0

√
R − K−

√
P

h0

√
R + K+

√
P

. (A15)

We note that the integral (A9) must diverge to ∞ when h → h0 since this limit corresponds to the tail of the solitary wave
|ξ | → ∞. In terms of the variable y, this divergence occurs for y → y0.

The five separate integrals (A10) and (A11) can be simplified by a further change of variables. We introduce

z = y/y1, (A16)

and let

τ = K−
√

R − K2−, (A17)

k = y2
1 (K2

+ − R)/(R − K2
−), n = (y1/y0)2, m = y2

1 . (A18)

Note y → y0 now corresponds to z → y0/y1 = 1/
√

n.
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The first two integrals (A10) can be evaluated directly in terms of elementary functions:

τ

y2
1

I1 =
∫ 1

z

z dz(
y2

1z2 − 1
)√

(1 − z2)(1 + kz2)

= −1

2
√

(1 − m)(k + m)

[
π

2
+ arctan

(
(m − 1)(1 + kz2) + (k + m)(1 − z2)

2
√

(k + m)(1 − m)
√

(1 − z2)(1 + kz2)

)]
(A19)

and

y2
0τ

y2
1

I2 =
∫ 1

z

z dz

[(y1/y0)2z2 − 1]
√

(1 − z2)(1 + kz2)

= 1

2
√

(n − 1)(k + n)
ln

((√
n − 1

√
1 + kz2 + √

k + n
√

1 − z2
)2

(k + 1)(nz2 − 1)

)
. (A20)

For z → y0/y1 = 1/
√

n, the integral I1 is finite, while the integral I2 has a logarithmic singularity (y0/y1)2τI2 →
−1

2
√

(n−1)(k+n)
ln(nz2 − 1) → +∞.

The remaining three integrals (A11) can be evaluated in terms of Jacobi elliptic functions:

τ

y1
J0 =

∫ 1

z

dz√
(1 − z2)(1 + kz2)

= 1√
1 + k

cn−1(z|l), (A21)

τ

y1
J1 =

∫ 1

z

dz(
y2

1z2 − 1
)√

(1 − z2)(1 + kz2)
= 1

(m − 1)
√

1 + k
�

(
m

m − 1
; cn−1(z|l)|l

)
, (A22)

τy2
0

y1
J2 =

∫ 1

z

dz

[(y1/y0)2z2 − 1]
√

(1 − z2)(1 + kz2)
= 1

(n − 1)
√

k + 1
�

(
n

n − 1
; cn−1(z|l)|l

)
, (A23)

with

l = k/(1 + k). (A24)

For z → y0/y1 = 1/
√

n, the integrals J0 and J1 are finite, while the integral J2 can be shown to have a logarithmic singularity.
The next step consists of extracting the singular part of J2 by using the elliptic function identity [78]

�(N ; θ |l) = −�(l/N ; θ |l) + θ + 1

2
ψ ln

(
ψ + sn(θ |l)/( cn(θ |l) dn(θ |l))
ψ − sn(θ |l)/( cn(θ |l) dn(θ |l))

)
, N > 1 (A25)

where ψ = 1√
(N−1)(1−l/N )

. This gives

�(n/(n − 1); cn−1(z|l)|l) = cn−1(z|l) − �(l(n − 1)/n; cn−1(z|l)|l) + 1

2
ψ ln

(
ψ̃ + √

1 − z2/(z
√

1 + kz2)

ψ̃ − √
1 − z2/(z

√
1 + kz2)

)
(A26)

with ψ̃ = ψ√
k+1

=
√

1−1/n

(1/
√

n)
√

1+k/n
. In the logarithm term in expression (A26), the denominator vanishes at z2 = 1/n, and so we

can factorize

ψ̃ + √
1 − z2/(z

√
1 + kz2)

ψ̃ − √
1 − z2/(z

√
1 + kz2)

= (n − 1)[z
√

1 + kz2 + (1/ψ̃ )
√

1 − z2]2

(nz2 − 1)[1 + kz2 + (k/n)(1 − z2)]
. (A27)

Thus, we can write

J2 = J2,0 + J2,1 + I3, (A28)

where

τy2
0

y1
J2,0 = 1

(n − 1)
√

k + 1
cn−1(z|l), τy2

0

y1
J2,1 = −1

(n − 1)
√

k + 1
�(l(n − 1)/n; cn−1(z|l)|l), (A29)

are finite for z → y0/y1 = 1/
√

n, and where

τy2
0

y1
I3 =

√
n

2
√

k + n
ln

(
(n − 1)[z

√
1 + kz2 + (1/ψ̃ )

√
1 − z2]2

(nz2 − 1)[1 + kz2 + (k/n)(1 − z2)]

)
(A30)

has the logarithmic singularity (y2
0/y1)τI3 → −√

n

2
√

k+n
ln(nz2 − 1) → +∞.
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All of the integrals (A19)–(A22), (A29), and (A30) can be written explicitly in terms of h through the relations

z = y/y1 = K+h − √
Ph1

K−h + √
Ph1

, Y1(y)/Y2(y) = B1(h)/B2(h) (A31)

obtained by inverting the change of variables (A4) and (A16) and by using Eqs. (A4), (A5), and (A13),
For the final step, the combined elementary integrals c1I1 + c2(I2 + y0I3) = I (h) can be expressed in the form (3.34) after

some simplifications using the following identities: First, from relation (A5) evaluated at y = y0 and y = y1, we have

K2
− − K2

+y2
0 = (y0 − 1)2h0(h1 − h0)R√

PQ
, (A32)

(K2
+ − R)y2

0 + R − K2
− = (y0 − 1)2RS√

PQ
, (A33)

(K2
+ − R)y2

1 + R − K2
− = (y1 − 1)2R

√
Q√

P
. (A34)

Next, we find

K+K− = h1

√
R, K+ + K− = 2

√
Q, K+ − K− = 2

√
P , (A35)

and

y+ − y− = 2
√

PQ√
R

, 1 − y1 = 2
√

P

K+
. (A36)

Last, we can derive

1 − m = 4
√

PQ

K2+
, k + m = 4

√
PQK2

−
R

(
K2+ − h2

1

) , k + 1 =
√

PQ

K2+ − h2
1

, (A37)

n − 1 = Rh0(h1 − h0)(1 − 1/y0)2

K2+
√

PQ
, k + n = SK2

−(
K2+ − h2

1

)√
PQ

(A38)

which yields

1 − z2

1 + kz2
= K2

+ − h2
1

h2
1

Y1(y)

Y2(y)
,

k + m

1 − m
= h2

1

K2+ − h2
1

,
k + n

n − 1
= h2

1S(
K2+ − h2

1

)
h0(h1 − h0)

. (A39)

Similarly, the combined elliptic integrals c0J0 + c1J1 + c2y0(J2,0 + J2,1) = J (h) can be expressed in the form (3.38) by using
the relations

l = k

k + 1
= h2

1 − K2
−

4
√

PQ
,

m

1 − m
= K2

−
4
√

PQ
, (A40)

n

n − 1
= K2

−
√

PQ

Rh0(h1 − h0)(1 − y0)2
,

l(n − 1)

n
= (K2

+ − R)h0(h1 − h0)(1 − y0)2

4PQ
. (A41)

APPENDIX B: ASYMPTOTIC EXPANSIONS OF WIDTH, IMPULSE, AND ENERGY

Here, we explain the steps for asymptotically expanding the width integral (4.29), impulse integral (4.30), and energy integral
(4.31) in the slightly supersonic (weakly nonlinear) and highly supersonic (strongly nonlinear) cases.

As a first step, it is very helpful to make a change of integration variable z = g/g0, where g0 = v0/λ is expression (3.12). By
combining this expression and the sound speed expression (2.33), we have the useful relations

|ν|/c0 = (g∗/g0)
k−1

2 = (g∗λ)
k−1

2 c/c0, (B1)

where g∗ is expression (3.21) which involves only k. Then, the integrals (4.29), (4.30), and (4.31) are, respectively, given by

�̂ =
√

k(k + 1)

2

∫ g1

g0

F (g, g0)

g − g0
dg + 3/

√
(g0/g∗)1−k − 1, (B2)

Î = λ
k+1

2

∫ g1

g0

√
gk−1

√
A(g, g0)

dg, (B3)

Ê = λ
k+3

2

∫ g1

g0

√
gk−1

[
g2 − g2

0 + gk+1 − gk+1
0

(g − g0)
√

A(g, g0)
− (g − g0)

√
A(g, g0)

]
dg. (B4)
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1. Slightly supersonic (weakly nonlinear) case

This case |ν|/c0 − 1 � 1 corresponds to (g∗/g0)
k−1

2 − 1 = ε � 1 from the first relation (B1). Hence, we have g0 � (1 −
2

k−1ε)g∗, and g1 = g0/r � (1 + 4
k−1ε)g∗ from the strain ratio (4.34). In particular, note (g1 − g0)/g∗ � 6

k−1ε. To asymptotically
expand the integrals (B2)–(B4) in terms of ε, we first take the leading-order term in the integrand, which is given by substitution
of g = g∗, and then we multiply this term by the end point difference g1 − g0 � 6

k−1g∗ε.
For the width integral (B2), this expansion yields

�̂ − 3/
√

(g0/g∗)1−k − 1 �
√

k(k + 1)

2
(g1 − g0)

F (g∗, g0)

g∗ − g0
� 3

√
k(k + 1)

2
F (g∗, g0) (B5)

which is O(ε) since F (g0, g0) = 0. But, since 1/
√

(g0/g∗)1−k − 1 � 1/
√

2ε, the leading-order term in the width integral is
given by �̂ � 3/

√
2ε.

Expansion of the impulse integral (B3) directly yields

Î � λ
k+1

2 (g1 − g0)
√

g∗k−1/A(g∗, g0) � 6

k − 1

[
(g∗λ)

k+1
2 /

√
A(g0, g0)

]
ε, (B6)

where, from expression (3.23), A(g0, g0) � 2ε. Moreover, we note g∗λ � (c0/c)
2

k−1 from the relations (B1). Hence, the leading-
order term in the impulse integral is given by Î � 3

√
2

k−1 (c0/c)
k+1
k−1

√
ε.

Similarly, the energy integral (B4) has the expansion

Ê � λ
k+3

2 (g1 − g0)
√

g∗k−1

[
g∗2 − g2

0 + g∗k+1 − gk+1
0

(g∗ − g0)
√

A(g∗, g0)
− (g∗ − g0)

√
A(g∗, g0)

]

� 6

k − 1
λ

k+3
2

√
g∗k+3/A(g∗, g0)[2 + (k + 1)g∗k−1]ε

� 12

k − 1

(
1 + 1

k

)[
(g∗λ)

k+3
2

/√
A(g0, g0)

]
ε. (B7)

Hence, the leading-order term is given by Ê � 6
√

2(k+1)
k(k−1) (c0/c)

k+3
k−1

√
ε.

2. Highly supersonic (strongly nonlinear) case

This case |ν|/c0 � 1 corresponds to (g0/g
∗)

k−1
2 = ε � 1 from the first relation (B1). Hence, we have g0 = ε

2
k−1 g∗ and g1 =

g0/r � 1 from the strain ratio (4.40). For the subsequent steps, it will be helpful to note

1 − g1 � 2

k − 1
g0. (B8)

This is obtained by solving Eq. (4.24) to second order in powers of ε
2

k−1 .
To asymptotically expand the impulse integral (B3) and energy integral (B4), we use a Taylor series in g0 and explicitly

evaluate the first two terms

Î = Î|g0=0 + g0∂g0 Î|g0=0 + O
(
g2

0

)
, (B9)

Ê = Ê |g0=0 + g0∂g0 Ê |g0=0 + O
(
g2

0

)
. (B10)

Since g0 = O(ε
2

k−1 ), the first term in the Taylor series gives the leading-order term for the asymptotic expansions, while the
second term gives the subleading term.

The leading-order term in each expansion is given by evaluating

λ− k+1
2 Î|g0=0 =

∫ 1

0

√
gk−1

√
A(g, 0)

dg =
∫ 1

0

dg√
g1−k − 1

(B11)

and

λ− k+3
2 Ê |g0=0 =

∫ 1

0

√
gk+1

[
1 + gk−1

√
A(g, 0)

−
√

A(g, 0)

]
dg = 2

∫ 1

0

gk dg√
g1−k − 1

, (B12)

where A(g, 0) = 1 − gk−1 from expression (3.22). This yields

Î = λ
k+1

2
√

π�

(
k + 1

2k − 2

)/
�

(
1

k − 1

)
+ O

(
ε

2
k−1

)
, (B13)
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Ê = λ
k+3

2
√

π
k + 3

4k + 4
�

(
k + 3

2k − 2

)/
�

(
2

k − 1

)
+ O

(
ε

2
k−1

)
. (B14)

For the width integral (B2), we separately consider the algebraic term and the integral term. The algebraic term can be
expanded in a Taylor series in (g0/g

∗)
k−1

2 = ε, which yields

3/
√

(g0/g∗)1−k − 1 = 3ε + O(ε2). (B15)

In contrast, the integral term is more complicated to analyze, and compared to the impulse integral and the energy integral, it
does not possess a Taylor series in g0 beyond the leading-order term. To obtain an asymptotic expansion, we will first split up
the integrand into a term given by the limit g0 → 0 and a remainder term given by subtracting off this limit term.

The limit g0 → 0 of the integrand F (g, g0)/(g − g0) yields F (g, 0)/g =
√

gk−3/(1 − gk−1) through expression (3.27).
Hence, we split up the integral∫ g1

g0

F (g, g0)

g − g0
dg =

∫ g1

g0

F1(g)

g
dg +

∫ g1

g0

g0F1(g) + gF2(g, g0)

g(g − g0)
dg, (B16)

where

F1(g) = F (g, 0), F2(g, g0) = F (g, g0) − F1(g). (B17)

The first integral term on the right-hand side of Eq. (B16) can be evaluated explicitly:∫ g1

g0

F (g, 0)

g
dg =

∫ g1

g0

√
gk−3√

1 − gk−1
dg = 2

k−1

[
arcsin

(
g1

k−1
2

) − arcsin
(
g0

k−1
2

)]
, (B18)

which gives ∫ g1

g0

F (g, 0)

g
dg � π

k−1 + O
(
ε

1
k−1 , ε

)
. (B19)

To analyze the remaining integral term on the right-hand side of Eq. (B16), we need to take into account that the integrand has a
square-root singularity because

A(g, g0) = (g1 − g)B(g, g0), B(g1, g0) = (k + 1)
(
gk

1 − gk
0

)
(g1 − g0)2

�= 0, (B20)

and we also need to note that, through relation (B8), F1(g1) � g1
k−1

2 /
√

2g0 is singular when g0 → 0. Consequently, we first
combine these singular terms by expressing

g0F1(g) + gF2(g, g0) = (g − g0)C(g, g0)
√

g1 − g
√

B(g, g0)
[
g0

k−1
2 g

√
A(g, g0) + g0

√
A(g0, g0)g

k−1
2

]
+ g

k−1
2 (g − g0)H (g, g0)

√
g1 − g

√
B(g, g0)[

√
1 − gk−1 + √

A(g, g0)]
, (B21)

where

H (g, g0) =
√

1 − gk−1 − A(g, g0)√
1 − gk−1

(B22)

and

C(g, g0) = gk−1
0

(g + g0)A(g, g0)√
A(g0, g0)

− g2
0

√
A(g0, g0)

[
gk−1 − gk−1

0

g − g0
+ gk−1

0

1 − A(g, g0)/A(g0, g0)

g − g0

]
. (B23)

Hence, we have

g0F1(g) + gF2(g, g0)

g(g − g0)
= 1√

g1 − g
√

B(g, g0)

[
g

k−3
2 H (g, g0)√

1 − gk−1 + √
A(g, g0)

+ C(g, g0)

g0
[
g0

k−3
2 g

√
A(g, g0) + √

A(g0, g0)g
k−1

2
]
g

]
.

(B24)
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We will now use this expression to estimate the size of the corresponding integral term on the right-hand side of Eq. (B16),
which is given by the sum of the integrals

∫ g1

g0

g
k−3

2 H (g, g0)
√

g1 − g
√

B(g, g0)
[√

1 − gk−1 + √
A(g, g0)

] dg, (B25)

∫ g1

g0

C(g, g0)

g0
√

g1 − g
√

B(g, g0)
[
g0

k−3
2 g

√
A(g, g0) + √

A(g0, g0)g
k−1

2
]
g

. (B26)

It is hard to obtain a good estimate that holds for arbitrary k > 1, so we will examine two special cases k = 2, 3 for which both
of the integrals can be evaluated explicitly in terms of elementary functions, with g0/g

∗ = ε
2

k−1 � 1 and g1 � 1 − 2
k−1g∗ε

2
k−1 .

(The case k = 3
2 can be be evaluated in terms of elliptic functions.)

For k = 2 and 3, we get∫ g1

g0

[g0F1(g) + gF2(g, g0)] dg

g(g − g0)
� √

g0[ln(g0) + 2 ln 2] + arccos(1 − 4g0) � √
g0 ln(g0) + O(

√
g0) (B27)

and ∫ g1

g0

[g0F1(g) + gF2(g, g0)] dg

g(g − g0)
� g0[ln(1 − 2g0) + ln 2] + arccos(1 − g0) �

√
2g0 + O(g0). (B28)

In these two cases, we see that the sum of the two remainder integrals (B25) and (B26) vanishes as g0 → 0.
Finally, combining the asymptotic expansion of the integral part of the width integral (B2) and the algebraic part of the width

integral (B2), we have

�̂ �
√

k(k + 1)

2

π

k − 1
+ o(ε). (B29)

APPENDIX C: DERIVATION OF KdV EQUATION IN THE
WEAKLY NONLINEAR REGIME

Starting from the LWHC wave equation (2.19) and using
the relation between the amplitude u(t, x) and the continuum
limit U (t, x) of the particle displacement (2.15), we introduce
a scaled amplitude by putting

U (t, x) = εv0Z(τ, ξ ) (C1)

with ε � 1 being an expansion parameter, where v0 is the
background strain (2.25), and where

τ = ε2t, ξ = ε1(x − c0t ) (C2)

are a scaled time variable and a scaled space variable with
respect to a reference frame moving with the sound speed
(4.5). Here, ε1 and ε2 are parameters that will be subsequently
related to ε. Note that the amplitude u(t, x) is given by

u(t, x)/v0 = εZ(τ, ξ ) − x. (C3)

Building on the work of Nesterenko [18], we will now show
that an expansion of the LWHC wave equation (2.19) leads
to the KdV equation in potential form for Z(τ, ξ ) with an
appropriate choice of ε1 and ε2 in powers of ε.

To proceed, we substitute expression (C3) into the LWHC
wave equation (2.19) and use the relations

ux/v0 = εε1Zξ − 1, uxx/v0 = εε1
2Zξξ ,

uxxx/v0 = εε1
3Zξξξ , uxxxx/v0 = εε1

3Zξξξξ ,

ut/v0 = ε(ε2Zτ − ε1c0Zξ ),

utt /v0 = ε
(
ε2

2Zττ − 2ε1ε2c0Zτξ + ε1
2c0

2Zξξ

)
. (C4)

Next, we expand the resulting terms in a series in ε, yielding

0 = εε1ε2(2v0/c
2)Zτξ +ε2ε3

1 (1 − k)vk
0ZξZξξ + εε4

1γ vk
0Zξξξξ

− εε2
2(v0/c

2)Zττ − ε2ε5
1βvk

0ZξξZξξξ + ε3ε6
1αvk

0Z
3
ξξ

+ higher order terms (C5)

after we use expression (4.5) for the sound speed c0. The three
terms in the first line of Eq. (C5) correspond to the terms in
the KdV equation in potential form for Z. Hence, we balance
these terms by putting εε1ε2 = ε2ε3

1 = εε4
1 , which determines

ε1 = ε, ε2 = ε3. (C6)

Then, we see that Eq. (C5) becomes

0 = (2v0/c
2)Zτξ + (1 − k)vk

0ZξZξξ + γ vk
0Zξξξξ + O(ε2).

(C7)

Hence, in the limit ε → 0, we obtain

(2v0/c
2)Zτξ + (1 − k)vk

0ZξZξξ + γ vk
0Zξξξξ � 0 (C8)

which is the KdV equation for Zξ .
The scaled amplitude Z(τ, ξ ) can be directly expressed in

terms of the strain variable (2.22) by v/v0 = 1 − ε2Zξ , and
hence

ε2Zξ = 1 − v/v0 = −w, (C9)

where w is the variable introduced in the expansion (5.21)
for solitary waves in the weakly nonlinear regime with
0 < w � 1.
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