
PHYSICAL REVIEW E 98, 042206 (2018)

Exploring quantum chaos with a single nuclear spin
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Most classical dynamical systems are chaotic. The trajectories of two identical systems prepared in in-
finitesimally different initial conditions diverge exponentially with time. Quantum systems, instead, exhibit
quasiperiodicity due to their discrete spectrum. Nonetheless, the dynamics of quantum systems whose classical
counterparts are chaotic are expected to show some features that resemble chaotic motion. Among the many
controversial aspects of the quantum-classical boundary, the emergence of chaos remains among the least
experimentally verified. Time-resolved observations of quantum chaotic dynamics are particularly rare, and as
yet unachieved in a single particle, where the subtle interplay between chaos and quantum measurement could
be explored at its deepest levels. We present here a realistic proposal to construct a chaotic driven top from the
nuclear spin of a single donor atom in silicon, in the presence of a nuclear quadrupole interaction. This system
is exquisitely measurable and controllable, and possesses extremely long intrinsic quantum coherence times,
allowing for the observation of subtle dynamical behavior over extended periods. We show that signatures of
chaos are expected to arise for experimentally realizable parameters of the system, allowing the study of the
relation between quantum decoherence and classical chaos, and the observation of dynamical tunneling.
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I. INTRODUCTION

A. Quantum chaos

The correspondence principle, as formulated by the Copen-
hagen school of quantum mechanics, states that the dynam-
ics of quantum systems should converge towards classical
dynamics, in the limit where the system becomes large.
Appealing (and, for simple cases, often correct) as it may
sound, this point of view is afflicted by a plethora of com-
plications and controversies around the precise nature of the
quantum-classical transition [1], such as decoherence [2] and
the quantum measurement problem [3]. Another key aspect
of the quantum-classical transition concerns reconciling the
chaotic dynamics of certain classical systems with the unitary
evolution of their quantum-mechanical counterparts.

Classical chaos is ubiquitous and well understood. It arises
from nonlinear terms in the equations of motion, and from the
lack of a sufficient number of constants of motion compared to
the number of degrees of freedom of the system [4]. The hall-
mark of chaotic dynamics is the extreme sensitivity to initial
conditions, whereby the trajectory of a system prepared in two
infinitesimally different states evolves along two trajectories
that diverge exponentially. Chaos plays a fundamental role in,

*These authors contributed equally.

for example, establishing the validity of classical statistical
mechanics and thermodynamics, and a practical role in a wide
range of applications, from weather forecasting to the design
of tokamaks for nuclear fusion.

The usual description of quantum systems, in terms of
state vectors that evolve according to the Schrödinger equa-
tion, can appear puzzling when examined in the context
of the chaotic behavior of the equivalent classical Hamilto-
nian. Consider for example two slightly different quantum
states at time t = 0, |ψ1(0)〉 and |ψ2(0)〉 having an initial
overlap �(0) = |〈ψ1(0)|ψ2(0)〉|2 = 1 − δ2, with δ � 1. As
time progresses, these states evolve according to the time
evolution operator U (t ). The overlap at later times is thus
�(t ) = |〈ψ1(0)|U†(t )U (t )|ψ2(0)〉|2. Since the time evolution
is unitary, U†(t ) = U−1(t ), we find that �(t ) = �(0) = 1 −
δ2; i.e., the overlap remains constant at all times. Since
the exponential divergence of trajectories typical of classical
systems appears ruled out, does this mean that there cannot be
chaos in quantum dynamics?

A more appropriate and illuminating comparison between
classical and quantum dynamics is obtained by describing
the classical system in terms of a density f in phase space,
and calculating its time evolution using the Liouville equa-
tion i

∂f (t )
∂t

= Lf (t ), where L is the Liouville operator [5].
One then finds that, given two initially overlapping densities
f1(0) and f2(0), the Liouville equation for a conservative
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Hamiltonian system ensures that their overlap remains con-
stant at all times [6]. This property mirrors the quantum be-
havior described earlier, so now the question may be reversed:
in what way, if at all, does classical chaos differ from the
dynamics of quantum systems?

The answer to this question can be rather subtle. At its
heart, quantum mechanics requires that the classical phase
space is coarse-grained into volumes of size h̄N (with N

the number of degrees of freedom), and forbids specifying
the state of the system to a precision finer than that. An
illuminating example of how this affects the dynamics of
chaotic systems was provided by Korsch and Berry [7], who
analyzed a classically chaotic iterative map while varying the
value of h̄. In the classical limit (h̄ → 0), the map “shreds”
the initially smooth distribution into thin chaotic-looking
“tendrils.” Conversely, when h̄ becomes sizable on the scale
of the map’s effect, one finds that the distribution remains
smooth and seems to lose its chaotic features, displaying
instead a slow spread from the initial shape. More generally,
since bounded quantum systems have a discrete spectrum,
their dynamics exhibit quasiperiodic features that are at odds
with the “true chaos” seen in classical systems [8]. Therefore,
it is often stated that “quantum chaos” constitutes a new
and unique type of dynamics [9]. Finally, quantum systems
allow for interference effects that result in peculiar dynamical
features, such as the development of structures in phase space
at a scale smaller than the Planck constant, which are reached
most quickly when the classical system is chaotic [10].

The issue of how to observe and interpret signatures of
chaos in quantum mechanics has profound repercussions on
many important topics in physics. For example, classical
chaos underpins the ergodic hypothesis in statistical mechan-
ics, and it is expected that its quantum equivalent plays a
fundamental role in the thermalization of isolated quantum
systems [11–14]. Chaos is also thought to be related to the
issue of decoherence [15], which is crucial in the modern
topic of quantum information science. There, one must an-
swer the delicate question of whether an onset of chaos may
harm the operation of a large-scale quantum computer [16–
18]. On the other hand, it has been suggested that the inherent
ability of chaotic systems to quickly explore a vast config-
uration space can be used for the purpose of demonstrating
“quantum supremacy” in multiqubit devices without error
correction [19].

B. Experimental tests of quantum chaos

Despite its broad and deep importance, experimental
progress in “quantum chaos” is rare. Early work focused on
the study of static and statistical properties of chaotic sys-
tems [20–22], such as the energy spectra of chaotic billiards
implemented in semiconductor quantum dots [23–25]. Even
more rare is the ability to experimentally observe dynami-
cal chaos, i.e., signatures of chaos in the time evolution of
quantum systems. Crudely speaking, this is because most
quantum systems decohere and randomize for trivial reasons
(noise, uncontrolled environments, etc.) over time scales that
are too short for signatures of chaotic behavior to reveal
themselves. Conversely, systems with long coherence times,
such as ensembles of nuclear spins in liquids, can show

signatures of chaos in the dynamics of their macroscopic
magnetization [26]. The experimental state of the art for truly
quantum chaotic dynamics is found in ensembles of cold gases
[27–30], whereas only very recently an experiment on three
superconducting qubits has provided experimental insight into
the link between chaos and thermalization in a small-scale
quantum system [31].

What is still missing is an experimental study of the
quantum signatures of chaos in an individual quantum system.
Such a study will be an important complement and extension
to experiments conducted on ensembles of particles, since an
individual quantum system allows a much broader choice of
measurement strategies. Although the chaotic dynamics we
will describe in this paper are the result of the Hamiltonian
evolution alone, the use of an individual quantum system
will allow us in the future to explore the interplay between
the emergence of chaos and the measurements performed
on the system. Theoretical studies [32,33] predict that the
measurement strength can be used as an additional experi-
mental knob to tune the chaoticity of the system’s dynamics.
The measurement strength on a single object can be tuned
continuously [34,35] from projective single-shot readout
[36–38] to arbitrarily weak measurements, partial wave func-
tion collapse [39], and even measurement reversal [40].
Strings of individual measurement outcomes could be ana-
lyzed with sophisticated statistical techniques to extract the
most accurate information on the trajectory of the quan-
tum object [41], providing unprecedented insights into the
chaotic dynamics of a monitored quantum system. Variable-
strength measurements have already been experimentally
demonstrated in the 31P donor system [42].

Moreover, in the realm of classical computation, it has
been recently shown that a network of individually chaotic
electronic components can solve computationally hard prob-
lems faster than one using nonchaotic elements [43]. The
construction of a single quantum chaotic system amenable to
networking and controlled interactions could provide insights
into how the equivalent quantum circuit would perform in
complex computational problems.

C. Quantum chaotic driven top

Here we present a detailed and quantitative proposal to
experimentally realize a single-atom version of one of the
best studied quantum chaotic systems, the “kicked top” [44].
For experimental convenience, we will focus on the case
where the top is periodically driven, instead of kicked with
δ functions. This system becomes chaotic in the presence of
a term in the Hamiltonian that is quadratic in the angular
momentum, and has a classical Hamiltonian of the form

Hclassical = αLz + βL2
x + γ cos (2πf t )Ly, (1)

with angular momentum L = (Lx Ly Lz)T (|L| = constant),
α, β, and γ proportionality constants, and f the frequency of
the drive. The size and shape of the regular and chaotic regions
in classical phase space are determined by the Hamiltonian pa-
rameters α, β, γ , and f (Fig. 1). A sizable region of chaos is
found with linear and quadratic interactions of similar strength
(β ≈ α), a sufficiently strong periodic drive (γ � 0.02α), and
a drive frequency close to the range of resonance frequencies
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FIG. 1. Chaotic dynamics of the classical driven top [Eq. (1)].
(a) Stroboscopic map of two trajectories of L corresponding to
initial conditions in a regular [blue (dark gray)] and chaotic [orange
(light gray)] region, with parameters shown to the left. (b)–(g) Same
as (a), but where a single parameter is varied. (b), (c) Modifying
the quadratic interaction strength β shrinks the chaotic region and
displaces the enclosed regular regions. (d), (e) Increasing (decreas-
ing) the periodic drive strength γ leads to an enlarged (reduced)
chaotic region. (f), (g) Shifting the drive frequency f away from
precession frequencies at the boundaries of regular regions results in
a reduced chaotic region. (h), (i) Chaotic percentage of total phase
space as a function of quadratic interaction strength and periodic
drive frequency for weak [(h), γ = 0.02α] and strong [(i), γ =
0.05α] periodic drive strength (see Appendix K for details of the
calculation). Dashed horizontal lines indicate β = α.

of the nonlinear system (f ≈ 1.4α). These are the conditions
we seek to reproduce in the quantum driven top.

The obvious quantum equivalent of a classical spinning top
is a spin. The challenge here is to find a spin system whose

Hamiltonian maps onto that of the chaotic driven top. This
requires in particular a quadratic term in the Hamiltonian,
which is only possible for a spin quantum number I > 1/2.
Moreover, a larger spin is crucial in comparing its dynamics
to the structure of the classical phase space, as its smaller
relative uncertainty spread allows for better localization of the
quantum state in a certain area of interest in classical phase
space (see Appendix E for further details). Using a single spin
with access to high-fidelity single-shot state readout and/or
variable strength weak measurements opens up the largely
unexplored area of the interplay between chaos and quantum
measurements. Lastly, it is of paramount importance that this
system does not lose coherence for trivial reasons, unrelated to
chaos, on timescales short compared to the chaotic dynamics.
This requires a long intrinsic quantum coherence time of the
system.

D. Experimental platform

Our proposed system meeting these requirements is the
nuclear spin of a heavy group-V substitutional donor in
isotopically enriched 28Si [45]. The lightest group-V donor
in silicon, 31P, has been extensively studied in the context
of quantum information processing [46], since it naturally
contains two quantum bits, the electron (with spin S = 1/2)
and the 31P nucleus (with spin I = 1/2). High-fidelity single-
shot readout [47,48], coherent operation [48,49], mutual en-
tanglement [50], and variable-strength measurements [42]
have been experimentally demonstrated. When implanted [51]
in isotopically enriched 28Si, these single-atom spins exhibit
outstanding coherence times [52] (up to 35 seconds for the
nuclear spin) and control fidelities [53,54]. This suggests that
donor spin systems would be ideal platforms to study the sub-
tle effects of dynamical chaos and its interplay with quantum
measurement, if it were possible to engineer a suitable spin
Hamiltonian. This is not the case with 31P, since its spin value
of 1/2 forbids the presence of quadratic terms in the Hamil-
tonian. Heavier donors, such as 75As, 121Sb, 123Sb, and 209Bi,
all have nuclear spins I > 1/2, which allows the existence of
a nuclear quadrupole interaction, scaling quadratically in the
spin operators. Below we show that, under realistic conditions
of quadrupole interaction and periodic drive, a heavy group-V
donor can become a single-atom solid-state implementation
of a chaotic driven top.

II. RESULTS

A. A large nuclear spin donor as quantum driven top

The spin Hamiltonian of group-V donors in silicon, in the
presence of a static magnetic field B0 in the z direction and an
oscillating magnetic field B1 at frequency f in the y direction,
reads

H = (γeSz − γnIz)B0 + A S · I + HQ

+ (γeSy − γnIy)B1 cos(2πf t ), (2)

where γe and γn are the electron and nuclear gyromag-
netic ratios (their magnetic moments have opposite sign),
the electron spin S = 1/2 is described by the vector of
operators S = (Sx Sy Sz)T, the nuclear spin I is described
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FIG. 2. Experimental implementation of the quantum driven top. (a) Scanning electron microscope image of a typical device. 123Sb donors
can be implanted in the 28Si epilayer at the indicated position. Their electrochemical potential is controlled by electrostatic gates (false colored
in purple), and a single-electron transistor (green) is fabricated in the vicinity of the donor implant area, to provide time-resolved electron
spin readout via spin-dependent tunneling. A broadband microwave antenna (yellow) provides oscillating magnetic fields to excite the electron
(ESR) and nuclear (NMR) resonances, and to periodically drive the nuclear spin. (b) The 16 energy levels of the 123Sb donor (spacings not to
scale), separated into the electron spin-down |↓〉 (blue) and spin-up |↑〉 (red) manifold. For electron spin readout, the donor electrochemical
potential is tuned such that only the |↑〉 state can tunnel out of the donor, while only the |↓〉 state can tunnel back onto it. The SET is biased
such that the current is nonzero when the donor is ionized. (c) Finite-elements model of the strain induced in silicon at low temperatures by a
30 × 30 nm2 aluminum gate, placed on top of a 5 nm thick SiO2 dielectric. The maximum strain approaches 0.1%, a value sufficient to generate
strong quadrupole interaction enabling implementation of the quantum driven top. (d) NMR spectrum versus quadrupole interaction strength
Q. Donor is ionized (A = 0), B0 = 1.4 T, and orthogonal to the direction of quadrupole interaction, η = 0. A nonzero quadrupole interaction
leads to a unique spectroscopic fingerprint. The long expected lifetime of the nuclear spin states allows for very precise measurement of the
spectral lines, which in turn enables accurate determination of the quadrupole interaction; see also Appendix I.

by I = (Ix Iy Iz)T, A is the hyperfine interaction between
electron and nuclear spin (assumed to be isotropic), and HQ

accounts for the nuclear quadrupole interaction (discussed
below).

Experimentally implemented via a broadband on-chip an-
tenna, the oscillating B1 field allows for coherent control of
the spins through electron spin resonance (ESR) and nuclear
magnetic resonance (NMR). This enables the application of
numerous techniques for tomography and characterization of
the spin system [55].

The hyperfine interaction A couples the electron and
the nuclear spins, and can be approximated by an ef-
fective interaction ASzIz in the device operating regime
where γeB0 	 A. This introduces a dependence of the
ESR frequency on the state of the nucleus. In turn,
this allows the measurement (and consequent initializa-
tion by measurement) of the nuclear spin state by ob-
serving at what frequency the electron spin responds to
a resonant microwave excitation using electron spin read-
out via a standard spin-to-charge conversion technique [48]
(Fig. 2).

The nuclear quadrupole moment is caused by the non-
spherical charge distribution of the nucleus. This quadrupole
interacts with electric field gradients to introduce a new
term in the spin Hamiltonian [56]. In general, the tensor
describing the electric field gradient can be diagonalized to

diag(Vx′x′ , Vy′y′ , Vz′z′ ) by an appropriate choice of coordinate
frame (x ′, y ′, z′), where Vij = ∂2V

∂i∂j
, (i, j ∈ x ′, y ′, z′) are the

partial second derivatives of the electrostatic potential V ,
and |Vx′x′ | � |Vy′y′ | � |Vz′z′ |. The expression for the nuclear
quadrupole interaction is then simplified to [57]

HQ = Q

(
I 2

z′ − I 2

3
+ η

3

(
I 2

x′ − I 2
y′
))

, (3)

where Q is the effective quadrupole interaction strength,
which scales linearly with both Vz′z′ and the nuclear
quadrupole moment Qn, and the asymmetry parameter η =
Vx′x′−Vy′y′

Vz′z′
quantifies the deviation from axial symmetry of the

electric field gradient (0 � η � 1, η = 0 corresponds to axial
symmetry; see Appendix H for further details on quadrupole
interaction).

The important features of the quadrupole interaction are
that it is quadratic in the spin operators and has a preferred
quantization axis. It is often the case that the electric field
gradient tensor has approximately axial symmetry (η = 0)
[57]. If, in addition, the static magnetic field B0 can be
oriented in an arbitrary direction (for example using a 3-
axis vector magnet), the linear and quadratic terms in the
spin Hamiltonian can be made orthogonal. Ignoring the static
energy offset QI 2/3, and assuming for simplicity that the
symmetry axis of the electric field gradient is orthogonal to
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TABLE I. Parameters of group-V donors in silicon. Ground 1s

state binding energies taken from Ref. [65]. Hyperfine interaction
A taken from Ref. [66]. Nuclear gyromagnetic ratio γn = μμn/I

is calculated from the nuclear magnetic moment μ given in units
of nuclear magneton μn = 7.62 MHz/T in Ref. [67]. Minimum and
maximum values of nuclear quadrupole moment Qn are given, based
on the range of values reported in Ref. [67].

1s binding energy A γn Qn

Donor I (meV) (MHz) (MHz/T) (10−28 m2)

31P 1/2 45.59 117.53 17.26
75As 3/2 53.76 198.35 7.31 0.314
121Sb 5/2 42.74 186.80 10.26 [−0.36, −0.54]
123Sb 7/2 42.74 101.52 5.55 [−0.49, −0.69]
209Bi 9/2 70.98 1475.4 6.96 [−0.37, −0.77]

the periodic driving field B1, the Hamiltonian of a donor with
nuclear spin I > 1/2 takes the form

Hquantum = (
γnB0 ± 1

2A
)
Iz + QI 2

x + γnB0 cos (2πf t )Iy.

(4)

Therefore, Hquantum represents the quantum equivalent of
the Hamiltonian of a classical periodically driven top
[Eq. (1)].

B. Donor parameters and preferred operation regimes

1. Realizing a quantum driven top in the laboratory frame

We now estimate the parameters of the spin Hamiltonian
of the quantum driven top, in order to compare them to the
parameters that are known to lead to chaotic dynamics in the
equivalent classical case.

The key parameter values of the group-V donors are sum-
marized in Table I. The value of I increases with atomic
mass, while the hyperfine interaction A has a nonmonotonic
behavior, with a significant jump for the heavy 209Bi donor.
Large I values are desirable to reduce the relative quantum
uncertainty of the spin state (see Appendix E for details),
whereas from the analysis of the classical driven top we
know that interesting chaotic dynamics arises when linear and
quadratic terms in the spin Hamiltonian are of comparable
strength.

For operation in the neutral charge state, the linear term
has strength γnB0 ± A/2, which becomes very large in the
case of 209Bi, where A = 1475.4 MHz. The ±A/2 contribu-
tion can be removed by operating in the ionized state [48].
The nuclear Zeeman term is minimized by operating at low
B0, with the caveat that reducing B0 affects the electron
readout and initialization fidelity. Using a minimum attain-
able value of B0 = 0.5 T and ionized donors, the linear
term in the spin Hamiltonian thus takes values of order
3 MHz.

Next, we wish to obtain a comparable value for the
quadratic term, which is achieved by maximizing the strength
of the quadrupole interaction, and hence the electric field
gradient [Eq. (3)]. Recent experiments [58–60] found that
aluminum gates on top of a Si/SiO2 stack cause strain in
the silicon; finite-element models indicate that strain val-

ues approaching 0.1% can be expected [Fig. 2(c)]. This
strain-induced disruption of the cubic lattice symmetry under
the metal results in an electric field gradient at the donor
site. Such an electric field gradient is further enhanced at the
nucleus due to rearrangement of the closed electronic shells
of the donor (the Sternheimer antishielding effect [56,61]).
These effects are present in both the neutral and the ionized
charge state, albeit with different strengths.

Measurements of the quadrupole interaction strength of
group-V donors in strained silicon, especially near a nanos-
tructure interface, are limited and have only been conducted
very recently [62–64]. For ionized group-V donors, the avail-
able data only allow an order-of-magnitude estimate of Q in
the hundreds of kHz range (see Appendix H for an extensive
review).

Upon comparing the classical and quantum systems, the
coefficient β in the classical Hamiltonian must be compared
to QI in the quantum case (Appendix A). This makes the hun-
dreds of kHz range for Q rather promising, since for large I

the corresponding QI ∼ 1 MHz is within an order of magni-
tude of the linear interaction strength (γnB0 ∼ 3 MHz). If this
proves to be insufficient, strain engineering could be deployed
to further increase the electric field gradient to reach the target
value of QI ∼ 3 MHz. This can be achieved either in MOS-
FET structures [68] or in Si/SiGe devices, where the ability to
electrically detect a single dopant atom coupled to a quantum
dot has also been recently demonstrated [69]. All the above
options will deliver a fixed value of strain, set by the thermal
expansion of the metallic electrodes and/or the built-in strain
in the substrate. As a next step in experimental sophistication
and control, one could consider fabricating on-chip piezoac-
tuators to dynamically control the strain [70], allowing the
study of the chaotic dynamics of a nuclear spin as a function
of its Hamiltonian parameters. Finally, another option to tune
in situ the quadrupole splitting could be to distort the electron
wave function using strong voltages on gates placed above the
donor, to the point where the electron wave function is signif-
icantly displaced from the nuclear site, potentially generating
a substantial electric field gradient. This type of electron wave
function distortion has been discussed in numerous papers
[71–73], but no calculation of the resulting nuclear quadrupole
splitting in the case of a I > 1/2 nucleus has been performed
to date.

The broadband antenna near the donor can be used to
apply a radio-frequency periodic drive. Previous work has
been conducted with drive strengths up to B1 ∼ 2 mT [48],
which correspond to radio-frequency powers of order 0.5 mW
(at the chip). Those values were sufficient to achieve high-
fidelity coherent control of the 31P nuclear spin qubit. Here,
we wish to compare γnB1 to the classical parameter γ . Chaos
arises when γ ≈ 0.02α in the classical model. For B0 ∼ 0.5 T
and thus α ∼ 3 MHz, this implies B1 ∼ 10 mT. Assuming the
same setup and antenna as Ref. [48], this value would require
∼10 mW radio-frequency power at the chip. This is a very
high value for operation at millikelvin temperatures, but we
note that the broadband microwave antenna is terminated by
a short circuit, constituting (ideally) a fully reflective load.
Therefore, only a small fraction of the incident power is
actually dissipated on the chip, while the rest is reflected and
dissipated at stages of the setup with large cooling powers.
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Alternatively, high B1 values with low incident power could
be obtained by using LC resonators.

2. Realizing a quantum driven top in the rotating frame

The Hamiltonian of the periodically driven top described
so far was defined in the laboratory frame. An alternative
approach is to describe it in the rotating frame, defined
by the frequency of an oscillating field. This results in a
system “dressed” by a continuous radio-frequency field, at
a frequency that matches the nuclear Zeeman interaction
strength (fRF = γnB0). This is a well-established method that
originates from quantum optics [74] and has recently been
extended to microwave frequencies [75], including with the
electron spin of the 31P donor [76]. Here we analyze its appli-
cation to the higher-dimensional nuclear spin of the heavier
group-V donors. We consider a Hamiltonian for the ionized
nucleus (A = 0) of the form

Hquantum,RF = γnB0Iz + QI 2
x + [γnB1,I cos (2πfRFt )

+ γnB1,Q cos (2πf t ) sin (2πfRFt )]Iy. (5)

Here B1,I and B1,Q are the in-phase and quadrature ampli-
tudes of an IQ-modulated radio-frequency drive at frequency
fRF = γnB0, with an additional amplitude modulation applied
to the quadrature component of the drive, at a frequency f .
Switching the system to the rotating frame and applying the
rotating wave approximation (RWA) will effectively remove
the static Zeeman energy, while reintroducing a linear term
which scales with the strength of the continuous drive at
frequency fRF = γnB0 (see Appendix C for a derivation).
Now the Hamiltonian reads

Hquantum,RWA = − 1
2γnB1,IIy − 1

2QI 2
z

+ 1
2γnB1,Q cos (2πf t )Ix, (6)

which is, up to a trivial rotation, equivalent to the quantum
driven top [Eq. (4)].

Engineering a dressed system and considering this in the
rotating frame has several important benefits for the exper-
imental feasibility of our proposal. First, the linear term
in the new Hamiltonian, α = γnB1,I/2, is continuously (and
rapidly, if desired) tunable all the way to zero, and up to
a maximum set by the strongest attainable oscillating field
strength (B1 ∼ 10 mT as assumed earlier), corresponding to
α ∼ 30 kHz. This means that we can access a strongly chaotic
regime, where the quadratic term β = QI is comparable to
the linear term, with quadrupole interaction strengths of only
Q ∼ 10 kHz.

Second, IQ modulation combined with amplitude modula-
tion is a standard microwave control technique, which allows
full and independent control over the strength of the periodic
drive at frequency f between 0 and the maximum strength of
the linear interaction 1

2γnB1,I = 0 ∼ 30 kHz. This opens up
a new parameter regime of very strong periodic drive, with
increased size of classical chaotic regions (see Appendix C),
which would be challenging to obtain in the laboratory
frame.

Lastly, the constraint of orthogonality between axis of
quadrupole interaction and direction of periodic drive, as
imposed by the classical system [Eq. (1)], is relaxed in the
rotating frame under the RWA (see Appendix C). This is
important, since now the axis of the static Zeeman field
B0 only needs to be perpendicular to the plane defined by
the directions of quadrupole interaction and periodic drive,
regardless of the relative angle between the latter two. This
is easily achievable using a 3D vector magnet.

Overall, moving to the rotating frame can allow exploring
a wider parameter space, but the actual timescale of dy-
namical phenomena will be scaled down by a factor ∼100
(for 1

2γnB1,I ∼ 30 kHz vs γnB0 = 2.8 MHz at B0 = 0.5 T).
For example, the period of dynamical tunneling [Fig. 4(c)
for the case of the laboratory frame] will become ∼100 μs
for the same choice of relative parameter strengths. This
remains several orders of magnitude faster than the expected
intrinsic coherence time of the nuclear spin, noting also that
the technique of dressing a spin with a driving field often
yields an extra order of magnitude in coherence time [76].

3. Summary

In summary, these estimates suggest that the 123Sb and
209Bi donors in silicon are suitable candidates to imple-
ment the quantum driven top, due to their high spin quan-
tum number (I = 7/2 and I = 9/2, respectively), low nu-
clear gyromagnetic ratio (γn = 5.55 MHz T−1 and γn =
6.96 MHz T−1), and, in the case of 123Sb, low hyperfine cou-
pling strength (A = 101.52 MHz). 123Sb has the additional
advantage that its suitability for ion implantation is well
documented [77]: after low-energy implantation and high-
temperature rapid thermal anneal, the Sb atoms are fully
activated, and the implantation damage to the silicon lattice
is thoroughly repaired. Recent work [78] suggests that the
implantation damage can be efficiently repaired also in the
case of 209Bi, although the electrical activation yield remains
lower than that of Sb. The attainable quadrupole interaction
is not well known, but recent work [62,63] indicates that it
can plausibly reach a comparable value to the nuclear Zeeman
term in low (B0 ∼ 0.5 T) static magnetic field. Furthermore,
dressing the system at the nuclear Zeeman frequency γnB0

replaces the linear interaction strength by the drive strength.
This lowers the linear interaction strength, and thereby the
minimum quadrupole strength, by two orders of magnitude,
which brings the parameter regime of similar strength linear
and quadratic interactions within reach using current device
technology only. When combined with a strong oscillating
magnetic field (B1 ∼ 10 mT), we conclude that the parame-
ter range where the equivalent classical driven top behaves
chaotic throughout sizable areas of its phase space is within
reach. In what follows, we will concentrate our discussion on
the use of 123Sb as the model system to study quantum chaos
in a single spin.

C. Quantum versus classical dynamics: A comparison

To illustrate the applicability of the 123Sb system to the
study of quantum chaos, we propose two types of experi-
ments: one aimed at finding a correspondence between the
classically chaotic driven top and its quantum counterpart,
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the other at demonstrating a violation of classical dynam-
ics, exposing the true quantum nature of the system. In
what follows, we focus on the system in the laboratory
frame, as this puts the most stringent conditions on size and
shape of the chaotic region in phase space of the classi-
cal equivalent system; however, the suggested experiments
are equally well applicable to the system in the rotating
frame.

1. Decoherence as a precursor of chaos

Classical chaos is characterized by an extreme sensitivity
to perturbations, and as a consequence, neighboring trajecto-
ries with slightly different initial coordinates rapidly diverge.
This is in stark contrast with quantum dynamics, where the
discrete nature of the energy spectrum results in quasiperiodic
behavior, leading to partial revivals of the initial quantum state
instead (see Appendix D for details). However, quantum states
evolving under slightly perturbed Hamiltonians do experience
divergence. Since a quantum system is never truly isolated, in-
teractions with its environment lead to unknown perturbations
of the Hamiltonian, effectively entangling the system with its
environment. The unknown nature of this process translates
to the quantum state losing its purity, thus decohering into a
mixed state.

Crucial to the quantum driven top, certain initial quantum
states are more prone to decoherence, while others remain
relatively unperturbed. This behavior appears related to the
high sensitivity of certain classical states to perturbations, but
is caused here by a varying sensitivity of the time-evolution
operator’s eigenstates to perturbations (see Appendix D for
details). States containing more of these high-sensitivity
eigenstates are therefore more susceptible to phase errors.
In line with this picture, Zurek and co-workers [15] predict
that the rate at which different initial quantum states decohere
provides a mapping to the chaotic or nonchaotic nature of the
corresponding classical system, with chaotic classical regions
corresponding to more rapidly decohering initial quantum
states.

The driven-top system can be used to verify this predic-
tion, both through simulations and experiments. By evolving
an initial state for a certain duration using the driven-top
Hamiltonian [Eq. (4)], the resulting density matrix ρ provides
information about the degree of decoherence through its pu-
rity Tr(ρ2). Decoherence is simulated by randomly varying
a Hamiltonian parameter during the state’s evolution, and
calculating the state purity from the ensemble average of
many final states, each obtained with a different randomized
evolution (see Appendix K for details). By sampling over all
spin coherent states, a “purity map” of the quantum driven
top is obtained, which we compare to its classical counterpart
(Fig. 3). The simulations highlight a correspondence between
the classically chaotic regions and quantum regions of strong
decoherence, and between classically regular regions and
quantum regions of weak decoherence. To experimentally
verify these predictions, we aim to prepare spin coherent
states (see Appendix E and Appendix J for details), evolve
the system under the driven-top Hamiltonian, and finally
reconstruct ρfinal using quantum state tomography. Repeat-
ing this for different initial spin coherent states allows for

0.7

0.8

0.9

Classical

Quantum

(a)

(b)

FIG. 3. Comparison between classical Poincaré map and quan-
tum state purity of a periodically driven top. The spherical sur-
faces of constant angular momentum are visualized by Hammer
projections. (a) Classical: Stroboscopic map of one chaotic trajec-
tory [orange (light gray)] and six regular trajectories [blue (dark
gray)] for N = 1000 sampling periods, with the same simulation
parameters as Fig. 1(a), i.e., β = α, γ = 0.02α, f = 1.4α. The
chaotic region divides the three regular regions and contains regular
trajectories within their respective regions. (b) Quantum: Purity
of spin coherent states |θ, φ〉 of an ionized 123Sb atom with I =
7/2, γn = 5.55 MHz T−1, B0 = 0.5 T, Q = 800 ± 4 kHz, B1 =
10 mT, f = 3.5 MHz. The state purity is extracted from the density
matrix ρ, which is obtained by evolving each spin coherent state for
N = 1000 drive periods while randomly perturbing Q once per drive
period, and averaging over 200 such evolutions (see Appendix K for
details of the calculation). Similar behavior is observed upon varying
B0 or B1 instead of Q (Appendix G). The maps show a correspon-
dence between the regular and chaotic regions of the classical phase
space, and the purity of evolved spin coherent quantum states.

experimental reconstruction of the “purity map,” which can
then be compared to the corresponding classical phase space.

2. Dynamical tunneling

In the absence of a periodic drive, trajectories of the
classical top are closed orbits confined to distinct regions
in a two-dimensional phase space (the surface of a sphere
due to |L| being a constant of motion). Upon addition of
a periodic drive, this behavior is largely kept intact, except
near boundaries between the regular regions, where a chaotic
behavior appears. The classically separated regions of regular
motion have an analog in the corresponding quantum system,
where they can be identified as regions of weak decoherence
(Fig. 3). However, there is a fundamental difference between
the quantum and the classical case. In the classical system,
the Kolmogorov, Arnol’d, and Moser (KAM) theorem ensures
that a system initially prepared within one of the regular
regions will remain on a periodic orbit within such a region.
The quantum system, however, cannot be precisely localized
within a certain region, due to the uncertainty principle. The
“leakage” of the quantum wave function into a different regu-
lar region results in the phenomenon of dynamical tunneling,
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FIG. 4. Time evolution of the quantum driven top. Two different initial spin coherent states are chosen in the directions of a classically
chaotic region [orange (light gray)] and a classically regular region [blue (dark gray)]. Implementation in a I = 7/2 nuclear spin of an ionized
123Sb donor in silicon with γn = 5.55 MHz T−1, B0 = 0.5 T, Q = 0.8 MHz, B1 = 10 mT, f = 5 MHz. The equivalent implementation in
the rotating frame, assuming γnB1,I/2 ∼ 30 kHz at a frequency fRF = γnB0, corresponds to a factor ∼100 smaller values for Q and f , i.e.,
Q ∼ 8 kHz and f ∼ 50 kHz. (a) Classical angular-momentum trajectories with initial states corresponding to orientations of spin coherent
states and parameters matching the quantum simulations (Table II). Trajectories are visualized by both a three-dimensional spherical plot (top)
and Hammer projection (bottom), with enlarged dots representing the two initial angular-momentum coordinates. (b) Husimi Q representation
of the two spin coherent states at different moments in their evolutions (see Appendix E for details); movies of these time evolutions are part
of the Supplemental Material [79]. Color scale is constant across all panels, and varies between 0 [dark blue (dark gray)] and 1/π [bright
yellow (light gray)]. Top (bottom) row corresponds to spin coherent state oriented in the direction of the classically chaotic (regular) region
in phase space, specified by orange (light gray) [blue (dark gray)]. In both rows, the first color map is a three-dimensional view of the initial
spin coherent state, equal to the first Hammer projection. The subsequent Hammer projections show the evolution of the quantum state at
later times. The spin coherent state prepared in the classically chaotic region (top) displays a rapid dispersion over the phase space, while
the classically regular spin coherent state (bottom) transfers back and forth between two classically regular regions. This property is known
as dynamical tunneling, and is in stark contrast with classical dynamics, where trajectories cannot cross closed regions. (c) Overlap of the
time-evolved state |ψ (t )〉 with its initial state |ψ (0)〉 for spin coherent states in classically chaotic [orange (light gray)] and regular [blue (dark
gray)] regions. Dynamical tunneling [blue (dark gray)] is revealed by a near-sinusoidal evolution of the overlap, returning to near unity. This
is in contrast to the evolution of the classically chaotic spin coherent state, where the overlap quickly decreases and shows no revival. Note
that the rotating frame equivalent implementation will effectively multiply the time axis by a factor ∼100 for the suggested parameters. As
both in the laboratory and in the rotating frame implementation of the quantum driven top the dynamical tunneling time is multiple orders of
magnitude smaller compared to the expected coherence time of order 1 s, no decoherence effects are included in this simulation.

i.e., the tunneling of the quantum state between separate
regular regions, in violation of the KAM theorem.

Dynamical tunneling manifests itself in the quantum driven
top as a periodic oscillation of a spin coherent state be-
tween the two classically regular regions associated with the
quadratic interaction [Fig. 4(a)]. In contrast, a spin coherent
state prepared within a classically chaotic region rapidly
spreads out and shows no apparent revival to a spin coherent
state [Figs. 4(b), 4(c) and movies in Supplemental Material
[79]].

Numerical simulations, conducted using Hamiltonian pa-
rameters appropriate for 123Sb, clearly show the appearance
of dynamical tunneling for spin coherent states prepared ini-
tially within the regions of classically regular periodic orbits
[Figs. 4(b), 4(c)]. The predicted period of dynamical tunneling
is ∼3 μs (see Appendix F for dependence of tunnel rate on
system parameters); this will increase by a factor ∼100 to
∼300 μs upon considering the system in the rotating frame
(assuming γnB1,I/2 ∼ 30 kHz and Q is reduced by a factor
100 to ∼8 kHz). This is a crucial result, since this period
is orders of magnitude shorter than the dephasing time of a

nuclear spin in 28Si [52], ensuring that the coherent dynamical
tunneling oscillations can be observed in an experiment over
unprecedented timescales.

III. CONCLUSION AND OUTLOOK

In this paper, we have quantitatively described a proposal
for the realization of a single quantum chaotic system, based
upon the nuclear spin of a substitutional group-V donor in
silicon. In particular, we have shown that, with realistically
achievable parameters, the I = 7/2 nucleus of a 123Sb donor
can exhibit the whole spectrum of features of interest in the
study of experimental quantum chaos, from state-dependent
decoherence to dynamical tunneling. The experimental verifi-
cation of these predictions would constitute the first observa-
tion of quantum chaos in an individual physical system. Such
an achievement would reinvigorate the fundamental study of
quantum-classical boundaries by providing a well-defined and
exquisitely controllable experimental test bed.

In terms of applications, one could envisage laying out
and operating individually chaotic 123Sb nuclei in the same
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types of multispin architectures that are being extensively
studied in the context of quantum information processing with
31P donors [73,80–82]. Substituting a simple I = 1/2 spin
with a multilevel system like 123Sb could allow the study
of quantum information processing where the information is
encoded in an intrinsically chaotic system. This would be
a different and complementary approach to the one taken,
e.g., in superconducting systems, where it is the nature of
the interaction between multiple qubits that produces chaotic
dynamics [19,31]. Rather, it could constitute the quantum
version of a type of analog computation that has started to
show promise in the context of classical neural networks,
where having individually chaotic elements can speed up the
solution of complex problems [43].

The supporting data for this work are available at Research
Data Australia [83].
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APPENDIX A: CLASSICAL AND QUANTUM
HAMILTONIAN PARAMETERS

The classical simulation results shown in Fig. 1 use di-
mensionless parameters which eases a direct comparison to
corresponding dimensionless parameters in the quantum case.
Here, their relation to the parameters in the original Hamilto-
nian [Eq. (1)] and to the corresponding quantum parameters is
given.

1. Rescaling of classical Hamiltonian parameters

Both the variables (L, t ) and the parameters (α, β, γ, f )
need a dimensionless equivalent. Dividing the classical
Hamiltonian Hc by |L| (including a factor 2π to convert from
rad s−1 to Hz) we obtain

Hc

2π |L| = α

2π

Lz

|L| + β

2π

L2
x

|L| + γ

2π
cos (2πf t )

Ly

|L|
= α

2π
L′

z + β

2π
|L|L′

x
2 + γ

2π
cos (2πf t )L′

y, (A1)

where the normalized angular momentum variable L′ =
L/|L| is introduced. Next we divide by α/2π and time t ′ =
(α/2π )t is introduced:

H′
c = Hc

α|L| = L′
z + β|L|

α
L′

x
2 + γ

α
cos

(
2π

2πf

α
t ′
)

L′
y

= L′
z + β ′L′

x
2 + γ ′ cos

(
2πf ′t ′

)
L′

y. (A2)

TABLE II. Comparison of equivalent classical and quantum
Hamiltonian parameters.

Classical Quantum

Original Dimensionless Original Dimensionless

L L′ = L
|L| I I′ = I

I

α

2π
1 γnB0 1

β

2π
β ′ = β|L|

α
Q Q′ = QI

γnB0

γ

2π
γ ′ = γ

α
γnB1 B ′

1 = B1
B0

f f ′ = 2πf

α
f f ′ = f

γnB0

t t ′ = α

2π
t t t ′ = γnB0t

This makes the parameters β ′, γ ′, and f ′ dimensionless and
relative to α. α itself has units of rad s−1 and time variable t ′
has units of 2π/α.

2. Correspondence between classical
and quantum Hamiltonian parameters

The above implies that the same convention of a normal-
ized angular momentum has to be followed quantum mechan-
ically. Hence the quantum Hamiltonian Hq is divided by h and
transformed with I′ = I/I , thus converting to frequency units
and normalizing the spin operators:

Hq

hI
= γnB0I

′
z + QII ′

x
2 + γnB1 cos (2πf t )I ′

y. (A3)

This assumes units of Hz T−1 for γn, units of Hz for Q, and
dimensionless spin operators I. Note that after introducing I′
an additional factor I appears in the second term due to its
quadratic nature.

Next, as in the classical case, dividing by γnB0 and intro-
ducing time variable t ′ = γnB0t results in the dimensionless
Hamiltonian

H′
q = Hq

hIγnB0
= I ′

z + QI

γnB0
I ′

x
2 + B1

B0
cos

(
2πf

γnB0
t ′
)

I ′
y

= I ′
z + Q′I ′

x
2 + B ′

1 cos(2πf ′t ′)I ′
y. (A4)

Table II gives an overview of the different parameters used
throughout the classical and quantum simulations.

APPENDIX B: DERIVATION OF CLASSICAL EQUATIONS
OF MOTION

The general expressions for the equations of motion of the
driven top are given here. The starting point is Hamilton’s
equation of motion in Poisson bracket formulation:

dL
dt

= {L,H} + ∂L
∂t

(B1)

with L = (Lx Ly Lz)T the angular momentum vector, H
the Hamiltonian, and {L,H} the Poisson bracket relation
between L and H. Angular momentum conservation im-
plies ∂L/∂t = 0. Introducing L̇i ≡ dLi/dt , the equations of
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motion are

L̇x = {Lx,H},
L̇y = {Ly,H}, (B2)

L̇z = {Lz,H}.

Equations of motion for the classical driven top

The equations of motion given above can be applied to
the classical driven top Hamiltonian of the main text. As an
example, we derive an expression for L̇y:

L̇y = {
Ly, αLz + βL2

x + γLy cos(2πf t )
}

= α {Ly, Lz}︸ ︷︷ ︸
=Lx

+β
{
Ly, L

2
x

} + γ cos (2πf t ) {Ly, Ly}︸ ︷︷ ︸
=0

= αLx − β {Lx, Ly}︸ ︷︷ ︸
=Lz

Lx − βLx {Lx, Ly}︸ ︷︷ ︸
=Lz

= αLx − 2βLxLz, (B3)

where the product rule for Poisson brackets is used in the third
line and whenever Poisson brackets are computed, the relation
{Li, Lj} = εijkLk, with εijk the Levi-Civita symbol, is used.
Similarly, equations for Lx and Lz can be derived, resulting in
the system of equations

L̇x = −αLy + γLz cos (2πf t ),

L̇y = αLx − 2βLxLz, (B4)

L̇z = −2βLxLy − γLx cos (2πf t ).

APPENDIX C: QUANTUM SYSTEM IN THE ROTATING
FRAME AND ROTATING WAVE APPROXIMATION

The technique of “dressing” a quantum spin state relies
on applying a microwave tone with a frequency matching the
dominant linear Zeeman interaction term in the system. Upon
transforming the system to the rotating frame, and applying
the rotating wave approximation (RWA), the original linear
Zeeman interaction term disappears, and an effective linear
interaction with a strength set by the microwave amplitude
appears. We derive the effective ionized nuclear spin Hamil-
tonian of a donor in silicon using this approach; the starting
point is the Hamiltonian proposed in Eq. (5),

Hquantum,RF = γnB0Iz + QI 2
x + [γnB1,I cos (2πfRFt )

+ γnB1,Q cos (2πf t ) sin (2πfRFt )]Iy. (C1)

1. Transforming spin operators to the rotating frame

The transformation of Hquantum,RF to a frame rotating with
angular velocity ωRF = 2πfRF is given by

H′
quantum,RF = R(−ωRFt )Hquantum,RFR(ωRFt ) − fRFIz, (C2)

where R is the rotation operator corresponding to a basis
rotation over an angle φ around the z axis:

R(φ) = e−iφIz = e−iωRF tIz . (C3)

The remaining task is to transform the (squared) spin opera-
tors of the original Hamiltonian to the rotating frame. Using
the series expansion of the matrix exponent, commutator rules

of spin operators, and recognizing sine or cosine series in the
expansion, one can derive the following identities for rotated
spin operators:

R(−φ)IzR(φ) = Iz,

R(−φ)IyR(φ) = sin φIx + cos φIy, (C4)

R(−φ)IxR(φ) = cos φIx − sin φIy.

With the same strategy, albeit less trivially, one can derive for
the squared spin operators the following identities:

R(−φ)I 2
z R(φ) = I 2

z ,

R(−φ)I 2
y R(φ) = − 1

2I 2
z + 1

2 sin 2φ{Ix, Iy}
− 1

2 cos 2φ
(
I 2

x − I 2
y

) + 1
2I (I + 1),

R(−φ)I 2
x R(φ) = − 1

2I 2
z − 1

2 sin 2φ{Ix, Iy}
+ 1

2 cos 2φ
(
I 2

x − I 2
y

) + 1
2I (I + 1),

(C5)

where {Ix, Iy} denotes the anticommutator of Ix and Iy.

2. Hamiltonian under the rotating wave approximation

Using the results of the previous section, it is straightfor-
ward to arrive at the rotating frame version of Eq. (5), which
is given by

H′
quantum,RF

= − 1
2QI 2

z − 1
2Q sin 2ωRFt{Ix, Iy} + 1

2Q cos 2ωRFt

× (
I 2

x − I 2
y

) + 1
2QI (I + 1) + 1

2 [γnB1,I sin 2ωRFt

+ γnB1,Q cos ωt (1 + cos 2ωRFt )]Ix − 1
2 [γnB1,I

× (1 − cos 2ωRFt ) + γnB1,Q cos ωt sin 2ωRFt]Iy, (C6)

with ω = 2πf the drive frequency to create the quantum
driven top, and ωRF = 2πfRF, with fRF = γnB0 the drive
frequency of the rotating frame (exactly canceling the Zeeman
interaction term γnB0Iz). Applying the RWA now reduces to
neglecting all terms involving oscillatory factors at frequency
2ωRF. Further ignoring the irrelevant static energy offset
1
2QI (I + 1), the Hamiltonian reduces to Eq. (6):

Hquantum,RWA = − 1
2γnB1,IIy

− 1
2QI 2

z + 1
2γnB1,Q cos (2πf t )Ix. (C7)

Upon applying two trivial rotations, first by an angle π/2
around the y axis, followed by an angle π/2 around the x

axis, the original quantum driven top Hamiltonian of Eq. (4) is
recovered, demonstrating equivalence between the laboratory
and rotating frame approach to creating a quantum driven top.

3. Relative angle between quadrupole
interaction and periodic drive

The Hamiltonian of Eq. (C1) still contains strong con-
straints on the relative directions of the different terms, as
the linear Zeeman interaction, quadratic quadrupole inter-
action, and periodic drive are all orthogonal to each other.
In a realistic experiment, the angle θ between the principal
axis of the quadrupole interaction and the direction of the
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periodic driving field will be an intrinsic and uncontrollable
device property. Under the RWA, however, the constraint of
orthogonality between quadrupole interaction and periodic
drive may be relaxed. Defining the x, y plane as the one
containing the principal axis of the quadrupole coupling and
the periodic driving field, the periodic drive term in Eq. (C1)
may be rewritten as

[γnB1,I sin (2πfRFt − ϕ) + γnB1,Q cos (2πf t )

× cos (2πfRFt − ϕ)](cos θIx + sin θIy), (C8)

where a phase shift by an angle ϕ is included in the drive.
Upon choosing ϕ to be equal to the angle θ , in the rotating
frame, the only oscillatory factors containing the phase θ
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FIG. 5. Classical chaos for large quadratic interaction strength
and strong periodic drive. These regimes are particularly relevant to
the rotating-frame implementation of the quantum driven top. (a),
(b) Quadratic interaction strength β = 1.5α, a regime very similar
to Fig. 1(c). In (a) the periodic drive strength γ = 0.05α is very
similar to the drive strength in Fig. 1(e). In (b), strong periodic drive
γ = 0.24α is considered, showing very large chaotic phase space
fractions. For even larger strengths of γ , the whole phase space is
chaotic. (c), (d) Dominant quadratic interaction strength β = 20α.
In (c), γ = 0.05α, and a small chaotic area is present in the phase
space. In (d), γ = 0.5α, and a sizable fraction of the phase space
is chaotic. (e), (f) show the chaotic fraction of the total phase space
as a function of β and f , for two different periodic drive strengths
γ = 0.1α (e) and γ = 0.24α (f). This clearly demonstrates how large
chaotic fractions of the phase space are still attainable even with β

large compared to α.

are all terms in 2ωRF, which are neglected under the RWA.
One then recovers as the remaining terms the desired combi-
nation − 1

2γnB1,IIy + 1
2γnB1,Q cos (2πf )Ix. This implies that

one may correct for the angle θ between quadrupole interac-
tion and drive axis straightforwardly by including this angle
as a phase shift in the periodic drive.

4. Classical chaos for rotating frame parameters

As mentioned in the main text, by working in the rotat-
ing frame new parameter regimes may be explored that are
difficult to reach in the laboratory frame. In particular, the
regime of quadrupolar interaction strength much larger than
effective linear interaction strength may now be explored.
Similarly, the regime of large periodic drive may be explored,
as the technique introduced here allows for any periodic drive
strength up to the effective linear interaction strength. We
extended our analysis of the classical dynamics presented in
the main text to explore these regimes as well. Not surpris-
ingly, we find that the regime of large periodic drive strength
allows for very large chaotic fractions of the classical phase
space. Even in regimes where the linear interaction strength
is an order of magnitude smaller compared to the quadratic
interaction strength, we still find significant chaotic fractions.
These findings are summarized in Fig. 5.

APPENDIX D: QUANTUM DYNAMICS
AND FLOQUET FORMALISM

The evolution of time-dependent periodic Hamiltonians,
such as the quantum driven top, can be transformed to time-
independent evolutions using the Floquet formalism. The
Floquet operator F is equal to the time evolution operator U
over one full period τ :

F ≡ U (τ, 0) = 1 − i/h̄

∫ τ

0
H(t ′)U (t ′, 0)dt ′. (D1)

As a result, the Floquet operator F has the property
|ψ (τ )〉 = F |ψ (0)〉, irrespective of the state |ψ (0)〉. A con-
sequence is that |ψ (Nτ )〉 = FN |ψ (0)〉, and so once F is
known, any state can be straightforwardly evolved over a
discrete number of periods by repeated application of F .

The Floquet operator can be decomposed into eigenstates
|�i〉 and corresponding eigenvalues λi , which all satisfy
|λi | = 1 (F is unitary). All eigenvalues are therefore of the
form λi = exp (−iεiτ/h̄), where the angular frequency εi is
known as the quasienergy of the corresponding eigenstate.
This enables decomposition of any initial state |ψ (0)〉 into
the Floquet eigenstates, and straightforward calculation of its
state after evolution of N periods:

|ψ (Nτ )〉 = FN |ψ (0)〉
=

∑
i

〈�i |ψ (0)〉FN |�i〉

=
∑

i

〈�i |ψ (0)〉 exp (−iεiNτ/h̄)|�i〉. (D2)

Each Floquet eigenstate accumulates a phase determined
by its respective quasienergy, and so superpositions of
eigenstates will lead to interference effects. This offers an
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explanation for the evolution of spin coherent states (Fig. 4);
whereas the spin coherent state with many Floquet compo-
nents [orange (light gray)] has many interfering frequencies,
the state that exhibits dynamical tunneling [blue (dark gray)]
primarily consists of only two Floquet components. In the lat-
ter case, there are two main interfering frequencies, and their
difference determines the dynamical tunneling frequency. The
Floquet formalism also connects to the varying dephasing
rates for different initial states (Fig. 3), as the individual
Floquet quasienergies have a different degree of sensitivity to
perturbations. More generally, the Floquet formalism clearly
emphasizes the discrete nature of quantum mechanics, leading
to quasiperiodicity that causes partial revivals of initially
localized states, as opposed to the exponential divergence of
trajectories in the case of classical chaos.

APPENDIX E: SPIN I > 1/2: SOME PROPERTIES
AND DEFINITIONS

1. Spin coherent states

Spin coherent states, also known as Bloch states, form a
subset of the possible states of a spin-I system. The formula-
tion and some relevant properties of the spin coherent states
are reviewed here.

For a spin with spin quantum number I and magnetic
quantum number m ∈ [−I,−I + 1, . . . , I − 1, I ], states can
be described by the basis states |I,m〉, which are eigenstates
of the Iz spin operator with corresponding eigenvalue m.

We introduce spherical angles φ (azimuthal) and θ (polar),
and an operator Rθ,φ corresponding to a rotation over an angle
θ about an axis (sin φ,− cos φ, 0), given by

Rθ,φ = e−iθ (Ix sin φ−Iy cos φ). (E1)

The spin coherent states |θ, φ〉 are now defined as the state
|I, I 〉 rotated by Rθ,φ [84]:

|θ, φ〉 = Rθ,φ|I, I 〉

=
I∑

m=−I

(
2I

I + m

)1/2

eiφ(I−m) × . . .

. . . × (
cos 1

2θ
)I+m(

sin 1
2θ

)I−m|I,m〉. (E2)

All spin coherent states share the property

|I| =
√

〈Ix〉2 + 〈Iy〉2 + 〈Iz〉2 = I. (E3)

Furthermore, the spin coherent states form an overcomplete
normalized basis, having nonzero overlap with each other.
Only opposite spin coherent states with a π difference in polar
angle θ are orthogonal and have zero overlap, analogous to the
orthogonality of |I,−I 〉 and |I, I 〉.

Rotated spin operators can be obtained by applying Rθ,φ to
the original spin operators:

Ix′ = Rθ,φIxR
−1
θ,φ,

Iy′ = Rθ,φIyR
−1
θ,φ, (E4)

Iz′ = Rθ,φIzR
−1
θ,φ,

in which case the spin coherent state |θ, φ〉 is an eigenstate of
Iz′ with eigenvalue I . Spin coherent states are the only states

FIG. 6. Husimi representation of Iz eigenstates. Colors on the
sphere surface correspond to the Husimi Q function [Eq. (E5)] eval-
uated at those spherical coordinates. Color-scale limits are constant
over all panels, varying between 0 [dark blue (dark gray)] and 1/π

[bright yellow (light gray)]. Three eigenstates of Iz are visualized for
I = 7/2. Whereas the state |7/2〉 is a spin coherent state oriented
along +z with minimum uncertainty, as can be seen by its small
spread over the spherical surface, the other two eigenstates are
uniform bands with a larger spread since these are not minimum-
uncertainty states.

for which the uncertainty relation (σ 2
Ix′ σ

2
Iy′ � h̄2

4 〈Iz′ 〉2) be-
comes an equality, and are therefore also known as minimum-
uncertainty states.

For I = 1/2, all pure spin states are spin coherent states,
leaving the concept unnecessary. However, this concept is
very useful for I > 1/2, since now the spin coherent states
form a distinct subset of pure states for which the spin
is maximally aligned in a certain direction (θ, φ), with a
minimum-uncertainty spread around it. As such, these states
are the closest analog to classical angular momentum, and
are therefore used in the quantum driven-top experiments as
corresponding initial quantum states.

2. Husimi Q distribution

The Husimi Q distribution [85] is a quasiprobability
distribution that is used to represent quantum states. It is
particularly useful here to provide a visualization of high-
dimensional quantum states (Fig. 6). For a given density
matrix ρ, the Husimi Q function is defined as

Q(θ, φ) = 1

π
〈θ, φ|ρ|θ, φ〉, (E5)

where |θ, φ〉 is a spin coherent state. In the case of a pure
state (ρ = |ψ〉〈ψ |), the Husimi Q distribution simplifies to
Q(θ, φ) = 1

π
|〈ψ |θ, φ〉|2, the overlap-squared between |ψ〉

and |θ, φ〉.
The Husimi Q distribution satisfies certain properties re-

quired for a joint probability distribution, because the dis-
tribution is normalized and non-negative with values rang-
ing between 0 � Q(θ, φ) � 1/π . However, since different
spin coherent states are nonorthogonal, different coordinates
(θ, φ) do not represent distinct physical contingencies, and
different values of Q are not the probability of mutually
exclusive states, a requirement for a joint probability distri-
bution. This reflects the fact that quantum mechanics lacks a
clear phase-space description, as opposed to classical mechan-
ics. Although not providing a true phase-space description,
quasiprobability distributions such as the Husimi Q distribu-
tion provide the closest quantum-mechanical proxy to it as
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FIG. 7. Localization of a spin-coherent state within regions of
classical phase space. Colors of the sphere surface correspond to
the Husimi Q function [Eq. (E5)] of the coherent state |θ, φ〉 =
|0.675π, 0.475π〉 evaluated at those spherical coordinates. Color-
scale limits are constant over all panels, varying between 0 [dark
blue (dark gray)] and 1/π [bright yellow (light gray)]. Stroboscopic
maps of two trajectories of the classical driven top are superimposed
on the same spherical surface, with the same parameters as chosen in
Fig. 2(a). The chaotic trajectory [orange (light gray) dots] encloses
an island of stability in which the regular trajectory [blue (dark gray)
dots] resides. As I is increased from 3/2 (left panel, e.g., an 75As
nuclear spin) to 7/2 (middle panel, e.g., an 123Sb nuclear spin) and
beyond (right panel, 31/2, shown for pedagogical reasons only, not
corresponding to an actual nuclear spin), the relative uncertainty of
the coherent state decreases, effectively localizing the state within
the different regions of the corresponding classical phase space. This
underlines the importance of choosing a donor with a large nuclear
spin for a meaningful comparison between the dynamics of quantum
states and the classically regular or chaotic counterpart.

an alternative and complete representation of a quantum state
(invertible to the original density matrix representation).

The Husimi Q distribution is preferred here over the
Wigner distribution as the phase space representation of
quantum states because classical effects are emphasized. For
instance, application of the Husimi Q function to a spin coher-
ent state closely matches a classical point in phase space with
the addition of an uncertainty spread (Fig. 7). A downside is
that typical quantum phenomena such as interference are not
clearly visible. To visualize these effects, other distributions
such as the Wigner distribution are more attractive candidates.

3. Uncertainty and size of I

Spin coherent states are the set of minimum uncertainty
states (σ 2

Ix′ σ
2
Iy′ = h̄2

4 〈Iz′ 〉2 = h̄2

4 I 2). Its uncertainty defines a
typical area over which a coherent state spreads in phase
space, and should be compared to the total surface of the
phase space (4πI 2). This leads to a concept of relative uncer-
tainty σIx′ σIy′ /4πI 2 ∝ 1/I , which is a measure of how well
a quantum state is localized in phase space. This underlines
the importance of having large enough I , as illustrated by
comparing the Husimi Q function of spin coherent states for
different I (Fig. 7).

APPENDIX F: DEPENDENCE OF DYNAMICAL
TUNNELING RATE ON SYSTEM PARAMETERS

We investigate how the dynamical tunneling rate is influ-
enced by different system parameters. Dynamical tunneling
arises naturally in the quantum system, since the uncertainty
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FIG. 8. Dynamical tunneling frequency for varying system pa-
rameters. (a) Dynamical tunneling frequency versus spin quantum
number I . The static magnetic field B0 = 0.5 T is kept constant and
the drive is turned off (B1 = 0 T), while the quadrupole strength is
scaled such that QI = 2.8 MHz to ensure equal linear and quadratic
contribution (see Appendix A). The dynamical tunneling frequency
decreases exponentially with increasing I . (b) Dynamical tunneling
frequency for varying quadrupole interaction strength [blue (dark
gray)] and Zeeman interaction strength [orange (light gray)]. The
spin quantum number is fixed at I = 7/2, B1 = 0 T, and −γnB0 =
2.8 MHz for varying quadrupole interaction QI [blue (dark gray)],
and QI = 2.8 MHz for varying Zeeman interaction −γnB0 [orange
(light gray)].

spread of a quantum state prevents it from being truly local-
ized within a classical region of phase space. Therefore, a state
prepared within one of the classically stable regions of the
driven top will have a finite overlap of its wave function with
the other classically stable region, and may tunnel back and
forth between these two regions. Qualitatively, the dynamical
tunneling rate can be understood as determined by the amount
of such a wave function overlap.

To get a better understanding of the tunneling rate we
have numerically studied its dependence on different system
parameters. First, as the spin quantum number I grows, the
relative uncertainty spread of a spin coherent state on the
sphere of radius I shrinks, and the dynamical tunneling rate
decreases accordingly [Fig. 8(a)]. Second, the parameters
B0 and Q define the relative distance of the corresponding
classically stable regions. Upon increasing B0, the two sta-
ble regions come together, and the tunneling rate increases
[Fig. 8(b)], whereas increasing Q has the opposite effect.

APPENDIX G: QUANTUM STATE PURITY
VERSUS FLUCTUATIONS IN B0 AND B1

In addition to Fig. 3, where fluctuations in the parameter Q

are considered, fluctuations in the parameters B0 and B1 are
studied here (Fig. 9). The approach used to obtain the results
shown in Fig. 3 is repeated for this study and details of these
simulations may be found in Appendix K. Similar behavior is
found compared to considering fluctuations in Q. We note that
in all cases the correspondence between classical phase space
being regular or chaotic and quantum state purity decaying
slow or fast is not exact. Rather the general structure of the
underlying classical phase space is recovered; i.e., classically
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FIG. 9. Quantum state purity of coherent states for fluctuating
parameters B0 and B1. The static magnetic field B0 (a) and os-
cillating magnetic field B1 (b) are varied once per period, keep-
ing all other parameters fixed (Q = 800 kHz, B0 = 0.5 T, B1 =
0.01 T, A = 0 MHz, f = 3.5 MHz). Simulation details are identical
to those in Fig. 3(b), where the purity is shown for varying Q (see
Appendix K for details). The number of drive periods has been varied
to account for varying sensitivity to perturbations (N = 2000 periods
for B0, N = 10 000 periods for B1). In all cases, the resulting purity
is qualitatively similar: the classical regular islands have a relatively
high purity, and the classically chaotic areas surrounding these have
a lower purity after the same evolution time.

stable points correspond to quantum states being less sensitive
to fluctuations.

APPENDIX H: NUCLEAR QUADRUPOLE INTERACTION

As pointed out in the main text, nuclei with a spin I > 1/2
have a quadrupole moment Qn due to a nonspherical charge
distribution [56]. This charge distribution has an axis of
symmetry that aligns with the nuclear angular momentum and
interacts with an electric field gradient (EFG). We estimate the
strength of quadrupole interaction due to such an EFG for the
different donors in silicon.

For group-V donors in silicon, the EFG is produced by
external charges, such as the donor-bound electron or the
crystal lattice. In a sample of unperturbed bulk silicon, the
tetrahedral donor symmetry results in canceling EFG compo-
nents and consequently a vanishing quadrupole interaction in
the ground state. In a realistic micro- or nanoelectronic device,
strain and/or electric fields can break the bulk symmetry of
the donor wave functions [57]. Strain is typically present
in devices as a result of the mismatch of the coefficient of
thermal expansion of different materials, for example between
the metal electrodes and semiconductor substrate [58,60].
The subsequent rearrangement of the multivalley electron
state generates electric field gradients which can couple
to the electric quadrupole moment of the donor [60,63].
Strain also acts on the silicon crystal to produce an EFG
through the gradient elastic tensor S [86], which results in a

quadrupole interaction even in the absence of the donor-bound
electron [62].

Estimates of nuclear quadrupole interaction

We define the quadrupole interaction strength as the factor
that precedes the quadratic Iz′ term in Eq. (3) of the main text,

Q = 3(1 − γs)eQnVz′z′

4I (2I − 1)h
. (H1)

Here γs is the Sternheimer antishielding factor, e is the
elementary charge, Qn is the nuclear quadrupole moment,
Vij = ∂2V

∂i∂j
, (i, j ∈ x ′, y ′, z′), are the partial second derivatives

of electric potential V , and h is Planck’s constant. This dif-
fers from the more conventional definition of the quadrupole
interaction [by including multiplication factor 3/4I (2I − 1)],
as this allows a direct comparison to the equivalent classical
parameter β. Accurate calculation of Q for donors is compli-
cated by the multiplicative term γs. This factor relates to the
Sternheimer antishielding effect, a phenomenon that describes
the rearrangement of the inner electron shells in response to
an external EFG, effectively enhancing the EFG experienced
by the nucleus [56]. The Sternheimer antishielding factor γs

can be considerable; theoretical calculations [61] for isolated
As and Bi ions show an enhancement of about one order of
magnitude for As and up to three orders of magnitude for
Bi. To the best of our knowledge, no such calculations have
been completed for Sb. Furthermore, it is unknown how the
covalent bonding of the donor to the silicon lattice affects γs.
As a result of the uncertainty in γs, it is difficult to make purely
theoretical predictions of Q for donors in silicon.

Recent experiments [60,62–64] on quadrupole effects in
silicon devices have produced some quantitative results that
can be used to estimate Q for As, Sb, and Bi donors in
Si. We will present an analysis for each of the donors in
sections below, predicting the quadrupole coupling in the
ionized charge state D+, where the EFG is produced by the
crystal lattice alone.

a. Arsenic

While arsenic has the lowest nuclear spin of the donors
considered here—making it less suitable for comparison with
classical dynamics—it is a relatively well-studied donor for
its quadrupole properties. In Refs. [62,63], spectroscopy of
As donors in a strained silicon sample has been performed
(uniaxial strain ε⊥ ≈ 3 × 10−4). For an ionized donor, the
EFG is generated through the gradient elastic tensor V = S · ε

(where ε is the strain tensor in Voigt notation), implying a
linear relationship between the applied strain and quadrupole
interaction. Measurement of the quadrupole shifts in two sam-
ples of different surface planes [(100) and (111)] enabled the
extraction of the nontrivial gradient elastic tensor components,
S11 = 1.5 × 1022 V m−2 and S44 = 6.8 × 1022 V m−2. These
components (which include the Sternheimer antishielding
factor γs ≈ −7 for As [61]) can be used to provide a rough
estimation of the D+ quadrupole coupling for Bi and Sb (see
below). In a nanodevice, strains of order 10−3 are expected
directly underneath the metallic surface electrodes [58] due
to the mismatch in thermal expansion coefficients, similar
in magnitude to those observed in the prestrained devices
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in Refs. [62,63]. This allows us to estimate the quadrupole
interaction strength in a device: Q ≈ 210 kHz for a (111)
surface and Q = 60 kHz for a (100) surface.

b. Bismuth

In order to estimate Q in the D+ state for Bi, we require
the antishielding factor γs. We take an order-of-magnitude
estimate, only serving as a rough guide, of γs ≈ 100 for
the antishielding factor of Bi. This value is based on the
simulations of measured data reported in Ref. [64].

Using the estimated magnitude of γs for Bi, the measured
gradient elastic tensor components S11 and S44 of As (con-
verted to strain using the theoretical magnitude of |γs | ≈ 7 for
As), we estimate the quadrupole interaction strength achiev-
able in a nanodevice for the D+ state to be Q ≈ 240 kHz for
a (111) silicon surface and Q = 45 kHz for a (100) surface.

c. Antimony

Antimony is the least understood of the group-V donors for
its quadrupole properties. There are no theoretical calculations
for the Sternheimer antishielding factor, and no experimental
data on the interplay between strain and quadrupole interac-
tion. In the EDMR experiments of Ref. [64], Q was found for
the neutral 121Sb donor to be approximately half that of the
measured value for 209B, with the caveat that the implantation
conditions were different for the Sb and Bi samples, and
no estimate was given for the likely separation between the
donors and the readout centers (which strongly influences the
EFG) in the Sb sample.

APPENDIX I: SYSTEM CHARACTERIZATION
VIA NMR SPECTROSCOPY

High-precision measurements of the nuclear-spin Hamilto-
nian parameters are needed to achieve an accurate comparison
between the quantum system and its classical equivalent.
Furthermore, this is a crucial requirement in enabling arbitrary
state preparation as discussed later (Appendix J). This sec-
tion describes how the different parameters can be extracted
through NMR spectroscopy of the ionized nucleus.

1. NMR spectroscopy

Starting from a system where none of the NMR transition
frequencies are known, the first step is to find the ESR
frequency, which uniquely depends on the (unknown) nuclear
spin state through the hyperfine coupling. To this end, the
electron spin is initialized in the down state through spin-
dependent tunneling from the SET island onto the ionized
donor, after which a voltage is applied to ensure that the elec-
tron is unable to tunnel back. A pulse with linearly increasing
frequency is applied that adiabatically inverts the electron
state if its resonance frequency lies within the frequency
range [87]. The bias voltage is then modified to ensure that
the electron can only tunnel back onto the SET island if its
spin state has successfully been flipped, which is measured as
a finite SET current.

Once the first ESR frequency is known, an NMR frequency
of the nuclear spin state can be found. The measurement
sequence is nearly identical, with the exception that before

loading an electron, a voltage is applied to force the donor
into the ionized state, followed by another pulse with linearly
increasing frequency in the expected NMR frequency range.
If this pulse sweeps over one of the active NMR frequen-
cies (which have an unique value due to the quadrupole
interaction), this will adiabatically invert the nuclear spin
state. As a result, the ESR frequency will change, and so
no subsequent adiabatic inversion of the electron spin state
will occur. Repeating the measurement flips the nuclear spin
state, resulting in an alternating electron spin flip probability,
allowing determination of the NMR frequency. The previous
two steps can then be repeated to iteratively determine all ESR
and NMR frequencies.

The above scheme assumes that loading or unloading an
electron leaves the nuclear-spin eigenstates intact, which may
require an adiabatic electron-loading scheme (Appendix J).

2. Extraction of Hamiltonian parameters

Combining NMR spectroscopy with full control of both the
direction and strength of B0 allows extraction of all Hamil-
tonian parameters. This relies on the underlying assumption
that each of the NMR transitions is individually addressable,
a condition that can be satisfied by assuming a Q larger than
the NMR transition linewidth [Fig. 10(a)]. It eases analysis to
operate in the large magnetic field limit (Q � γnB0), where
the quadrupole interaction can be treated as a perturbation to
Eq. (2) of the main text [Fig. 10(b)].

The first goal is to determine the orientation of the
quadrupole coordinate system (x̂ ′, ŷ ′, ẑ′) [Eq. (3) main text].
Once known, aligning the B0 axis with ẑ′ provides the strength
of Q, since successive NMR transitions have a constant sepa-
ration of 2Q [Fig. 10(c)]. This equidistant spacing is lifted by
a nonzero asymmetry parameter (η > 0), but is recovered in
the high magnetic field limit [Fig. 10(d)].

The quadrupole’s primary axis ẑ′ can be found through suc-
cessive spectroscopy measurements while rotating B0. With-
out prior knowledge of the quadrupole’s coordinate system,
B0 is initially rotated around an arbitrary axis. It is guaranteed
that such a spectroscopy will reveal two symmetry axes, one
of which is perpendicular to ẑ′. A second rotation of B0

around this particular symmetry axis will align B0 with ẑ′ at
some specific angle. This point has maximum and (nearly)
equidistant separation of the spectral lines, thereby revealing
the quadrupole’s primary axis ẑ′ [Fig. 10(e)].

The two remaining unknown parameters of the quadrupole
interaction, the asymmetry η and its orientation, can be found
through a final rotation of B0 around the ẑ′ axis. If η =
0, spectral lines will be independent of this rotation, while
for η > 0 again two symmetry axes will be revealed. The
symmetry axes with the largest separation of spectral lines
corresponds to B0 being parallel to the secondary ŷ ′ axis, and
the strength of spectral line variation is determined by the size
of η.

The sequence sketched here allows variation of a single
experimental handle (NMR frequency, B0 direction) to isolate
the effect of each parameter. This allows an accurate deter-
mination of all the relevant Hamiltonian parameters and a
detailed understanding of the system.
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FIG. 10. NMR spectra of the ionized 123Sb donor (I = 7/2). In all panels, the transition line intensities indicate the coupling between
corresponding states, and parameter orientations are given by coordinate axes. Blue (dark gray) and green (light gray) dashed lines each indicate
matching conditions across panels. Unless specified otherwise, the Hamiltonian is given by Eq. (2) of the main text, with B0 = 1.4 T, Q =
0.8 MHz, and η = 0 [blue (dark gray) dashed lines]. (a) Influence of Q on NMR spectra for perpendicular orientations of B0, Q, and B1. The
convergence of NMR transition frequencies for Q = 0 Hz shows that a nonzero quadrupole is necessary to distinguish NMR transitions. (b)
Influence of B0 on NMR spectra for perpendicular orientations of B0, Q, and B1. In the absence of a linear interaction (B0 = 0 T), the twofold
degeneracy of the quadratic interaction translates to 3 distinct NMR frequencies. This degeneracy is lifted when B0 > 0 T, and the transition
frequencies approach a linear dependence on B0 in the high-field regime. (c) B0 is varied while oriented along the principal quadrupole axis
ẑ′. In this case, the eigenstates of the Zeeman interaction are simultaneously eigenstates of the quadrupole interaction, resulting in a linear
dependence on B0 and a constant spacing of 2Q between successive transitions. (d) Same as (c) but with η = 0.5, which results in a nonlinear
NMR-frequency dependence on B0. The behavior of (c) is recovered in the large-field limit (Q � γnB0). (e) Rotating B0 towards principal
quadrupole interaction axis, revealing a π periodicity and two symmetry axes. The separation of NMR frequencies is maximal when the
orientations of B0 and Q are aligned. (f) Rotating B0 perpendicular to Q with η = 0.5. The separation between spectral lines is maximal
when B0 is aligned with the secondary quadrupole interaction axis ŷ ′. When η = 0, there is no dependence of spectral lines upon rotating B0

perpendicular to Q.

APPENDIX J: STATE PREPARATION
AND MEASUREMENT

1. Arbitrary state preparation

The ability to create an arbitrary target state |ψT 〉 requires
addressability of individual transition frequencies and accu-
rate knowledge of all Hamiltonian parameters. The procedure
described in this section (see Fig. 11) can be used for arbi-
trary state preparation, provided that the above conditions are
fulfilled.

Assuming the system is initialized in the ground state |e1〉,
the necessary sequence of pulses that results in the target
state |ψT 〉 can be found by solving the problem in reverse:
go backwards in time and find the pulse sequence to end up
in |e1〉 starting from |ψT 〉. Starting at t = 0 s with initial state
|ψT 〉 = ∑

k ak|ek〉, where ak = 〈ek|ψT 〉, pulses are iteratively
chosen that transfer population from the populated highest-
energy eigenstate to a lower-energy eigenstate. The procedure
is as follows:

(1) Choose eigenstate |ek〉 with highest eigenvalue λk and
nonzero population |ak|.

(2) Find eigenstate |ek′ 〉 with lower eigenvalue λk′ that has
the highest coupling |〈ek′ |Iy |ek〉|.

(3) Transfer the population from |ek〉 to |ek′ 〉 using a pulse
with the following properties:

(a) frequency fk,k′ , which is the transition frequency
between |ek〉 and |ek′ 〉;

(b) duration tp = 2
�k,k′ arctan |ak |

|a′
k | , where �k,k′ is the

Rabi frequency;
(c) phase is the relative phase difference between ak

and ak′ , minus the phase offset 2πfk,k′ (t − tp ).
(4) Update t → t − tp and repeat steps until all population

is transferred to |e1〉.
These steps can be followed to create an arbitrary pure

state, and in particular the spin coherent states |θ, φ〉 used in
the proposed quantum driven-top experiments. While we do
not expect our state preparation fidelity to be limited by effects
such as decoherence (state preparation takes <1 ms, T ∗

2 ∼
1 s), the total pulse sequence duration can be further reduced
by using multifrequency pulses.

2. Measurement

The presence of a strong quadrupole interaction with axis
perpendicular to that of the linear interaction inhibits defining
a clear quantization axis. Upon adding an electron to the
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FIG. 11. Preparation of a spin coherent state. Final state is
|θ, φ〉 = |4π/5, π/2〉, and initial state is the ground state. A suc-
cession of pulses with different frequencies fk,k′ iteratively trans-
fer population from lower-energy eigenstates |ek〉 to higher-energy
eigenstate |ek′ 〉. To account for the remaining phase accumulation,
intermediate fidelities were calculated after leaving the intermediate
state idle until the end of the sequence. The final fidelity between
evolved state and target spin coherent state is |〈ψ |θ, φ〉| = 0.9989 for
B1 = 1 mT, Q = 1 MHz, B0 = 0.7 T, and can be further increased
by reducing the oscillating magnetic field strength.

ionized donor, the accompanying hyperfine interaction can be
approximated as an enhancement of the linear interaction by
about an order of magnitude for 123Sb (two orders for 209Bi ),
significantly altering the eigenbasis of the donor. The existing
techniques for initialization and readout of the nucleus rely
on electron tunneling events between donor and SET island.
Here, these tunneling events are accompanied by a change
of eigenbasis, resulting in a probabilistically modified state
after every such event. Modified protocols may therefore
be necessary for high-fidelity nuclear state initialization and
readout.

The proposed solution is the adiabatic transferring of the
electron from donor to the silicon/silicon-dioxide interface,
which maps neutral-donor eigenstates to ionized-donor eigen-
states and vice versa. This can be achieved by the addition
of an electrostatic gate above the donor that can attract its
outer electron, a technique that is currently being developed
in the context of achieving electrically active transitions and
long-range coupling of donor nuclear spin qubits [73]. Once
the electron is moved from the donor to the interface, spin-
dependent tunneling of the electron from the interface to the
SET island allows for readout without affecting the nucleus.

APPENDIX K: NUMERICAL METHODS
AND SIMULATION DETAILS

Both the classical and quantum simulations were primarily
performed using the commercial software package MATLAB
Release 2016b, The MathWorks, Inc., Natick, Massachusetts,
United States. In this section we will describe the simulation

techniques for both the classical and the quantum simula-
tions. The source code of our simulations is available in the
Supplemental Material [79].

1. Classical simulations

The most computationally expensive simulations were
those to determine the percentage of phase space that is
chaotic [Figs. 1(h), 1(i), 5(e), 5(f)]. Both color maps consist
of 25 × 25 logarithmically spaced points, each of which cor-
responds to a particular parameter set. For each parameter set,
a total of 2000 initial angular-momentum coordinates were
chosen uniformly distributed over the phase space. To deter-
mine whether the dynamics of an initial coordinate is chaotic,
a neighboring point with distance 10−8 was chosen, and both
were evolved for a fixed duration of 100/α. Whether or not a
trajectory is chaotic is determined by measuring the distance
between the two points over time, and fitting this to an
exponential curve. Chaos is characterized by an exponential
sensitivity to perturbations, and so the trajectory is categorized
as chaotic if its exponent is above a certain threshold. This
procedure is repeated for each of the 2000 initial conditions,
resulting in the percentage of phase space that is chaotic.

Some trajectories, especially near a chaotic-regular bound-
ary, can display an initial exponential divergence but never-
theless behave regularly over sufficient evolution time. These
cases, although uncommon, can result in the trajectory being
wrongly categorized as chaotic, and we expect a small uncer-
tainty in the percentages of Figs. 1(h), 1(i), 5(e), 5(f). It should
furthermore be noted that the fitted exponent is not necessarily
equal to the Lyapunov exponent, as the intertrajectory distance
may have increased sufficiently to be limited by the finite
size of the phase space. Although the exponent is then an
underestimate of the Lyapunov exponent, it will certainly be
above the chaotic threshold, thereby correctly characterizing
the trajectory as chaotic.

The classical simulation results shown in Fig. 1 were ob-
tained using the ordinary-differential-equation (ODE) solver
SUNDIALS [88]. Communication between MATLAB and
SUNDIALS was through self-written C code that was opti-
mized for the driven-top system. The combination of SUNDI-
ALS and the intermediate C code resulted in a computational
speedup of over an order of magnitude compared to the native
MATLAB ODE solvers. As chaotic dynamics are highly sen-
sitive to perturbations, stringent error tolerances were chosen
to ensure a high degree of accuracy in the computation of the
trajectories.

2. Quantum simulations

The quantum driven-top system is evolved using the Flo-
quet operator F , which can be approximated through segmen-
tation as

F ≈
N∏

k=1

e− it
h̄N

H( N − k
N

t ), (K1)

which becomes an equality in the limit N → ∞. In the
simulations, a fixed value of N = 1000 is used, as results
showed that the Floquet operator did not significantly change
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upon further increasing N . Additionally, the SUNDIALS
ODE solver was used to compute F , and was found to be
nearly identical to F computed using the above method.

Decoherence of spin coherent states (Fig. 3) under influ-
ence of the driven-top Hamiltonian [Eq. (4)] was simulated
by randomly fluctuating a Hamiltonian parameter during its
evolution and averaging over many such evolutions. To this
end, Floquet operators were calculated for 30 values of Q

uniformly distributed within three standard deviations of its
mean value (Q = 800 ± 4 kHz). For the evolution, a sequence

of Floquet operators was chosen through random sampling
of this set using a Gaussian distribution with the specified
standard deviation. This sequence was then applied to all
initial spin coherent states, and this process was repeated for
300 such sequences. For each spin coherent state, the final
density matrices were averaged, resulting in a mixed state ρ,
from which the purity Tr(ρ2) was determined. The results
shown in Fig. 9 are obtained via an identical procedure for
the parameters B0 and B1, using standard deviations of 1 mT
and 0.5 mT, respectively.
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