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Solitary waves in bistable lattices with stiffness grading: Augmenting propagation control
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In this study we introduce small perturbations in the forms of graded intersite stiffnesses and graded on-site
potentials to a lattice composed of bistable unit cells under elastic interactions. Based on a known soliton
solution in the φ-4 model, we use a perturbation approach to approximate the effects of the perturbations on the
propagation speeds of transition waves. Numerical validations follow on the exact discrete equations of motion,
from which we observe eventual stoppage of transition waves in the periodic lattice under physical damping,
unidirectional propagation of the waves in the direction of softening properties, and boomerang-like reflection
of the waves in the stiffening direction. Finally, we present three-dimensional-printed experimental lattices,
confirming the theoretical and numerical results. The observed behaviors imply the extreme controllability
of solitary waves through slight engineering manipulations in material-level structures. We further find that
both kink (rarefaction) and antikink (compression) waves are allowed at any site in the lattice, extending the
functionality of the lattice in engineering applications such as energy harvesting.
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I. INTRODUCTION

The utilization of nonlinearities in lattice systems has been
the focus of substantial research due to its potential to generate
classes of solitary waves [1–3], which are large-amplitude,
spatially localized waves exhibiting more robust transport
properties than their linear counterparts. In the context of
uniform periodic lattices, a considerable amount of theoretical
and numerical groundwork has been laid for the dynamics and
formations of such nonlinear waves, encompassing topologi-
cal solitons, nontopological solitons, envelope solitons, and
breathers [4–14]. To bridge the gap between the idealization
and physical reality, where no materials are perfect, and thus
the effects of relaxed periodicity on the solitary waves are of
physical importance, a series of studies on perturbed systems
have followed. In particular, inhomogeneities in the forms
of external force, boundaries, dissipation, substrate or mass
impurities, and stochastic or harmonic variations in additive
and/or multiplicative terms have been extensively analyzed in
both sine-Gordon [15–19] and φ-4 [20–23] models. However,
the dynamics of lattices supporting strongly nonlinear waves
under the presence of graded properties have not received
much attention.

In spite of the well-established theoretical and numerical
studies on solitary waves, their experimental manifestations
are still rare. The major experimental advances have been
made in the observations and utilizations of nontopologi-
cal solitary waves arising from the strong Hertzian contact
forces in granular chains [24–32]. However, the experimental
demonstration of topological solitary waves had long been
limited to the classical pendula model [33]. Recently, stable
propagation of topological solitary waves, or state transition
waves, has been successfully demonstrated in a chain of
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repelling magnets [34] and in a periodic lattice formed by
bistable unit cells [35,36] under magnetic interactions [37].
The latter results in extreme unidirectional wave guiding, and
it has been further observed that its response is independent of
the type and intensity of the input excitations, which suggests
its potential implementation for broadband energy harvesting
and protective metamaterials [38]. In an elastically connected
periodic bistable lattice made of highly dissipative soft media,
Raney et al. [39] have also demonstrated similar transition
waves for high-fidelity, controllable signal transmission. For
uninterrupted propagation of transition waves, both types of
bistable lattices in the previous studies utilize the stored
energy between asymmetric on-site potential wells in periodic
arrangements to balance out the inherent dissipation. This
choice destroys one of the two soliton solutions (kink and
antikink), limiting their functionalities in that no intrinsic
repositioning mechanism is available.

In this paper, we study the dynamics of lattices of symmet-
ric bistable elements exhibiting spatially varying properties,
investigating the effects of the grading on the propagation
characteristics of transition waves. To that end, we begin with
linear perturbation from the known soliton solutions of the
φ-4 model to find the approximate propagation speeds of the
solitons for each case. The numerical simulations on the exact
equations of motion follow to validate the theoretical predic-
tions, and finally, we present three-dimensional (3D) -printed
lattice samples demonstrating all of the predicted behaviors
in physical settings. We show that the introduction of spatial
grading allows for this class of lattices to support compression
and rarefaction topological solitons in contrast to periodic
arrangements, thereby providing an intrinsic mechanism for
resetting the states of all the elements in the arrangement.
The existence of the two possible topological soliton solutions
allows for the exciting nonlinear dynamics of bistable lattices
to be exploited in important applications, such as energy
harvesting or soft robotics.
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FIG. 1. A schematic representation of the bistable lattice with
elastic intersite interactions. A unit cell is composed of a mass
and an on-site bistable element (in solid red), and each unit cell
is coupled with the neighboring cell by intersite linear springs (in
dashed blue). Both the intersite and on-site elements are allowed to
vary in stiffness.

II. LATTICE DESCRIPTION

A simple one-dimensional chain of a spring-mass system is
used to represent the lattice model. Each unit cell is composed
of a bistable element (depicted by solid red lines in Fig. 1)
with a mass that is connected to the nearest neighbors by linear
springs (dashed blue lines in Fig. 1). The governing equation
of motion can be written as

mun,tt = kn+ 1
2
(un+1 − un) − kn− 1

2
(un − un−1)

+ Fon
n (un) − dun,t , (1)

where un and Fon
n represent the displacement and on-site force

of the nth element, and kn− 1
2

and kn+ 1
2

are the spring stiffness
to the left and right of the element. The mass m and on-site
damping d remain invariant through the lattice. The masses
are separated from one another by a constant lattice spacing
L, although it does not explicitly appear in the equation.

For a more compact mathematical treatment, the governing
equation is nondimensionalized to

ūn,t̄ t̄ = k̄n+ 1
2
(ūn+1 − ūn) − k̄n− 1

2
(ūn − ūn−1)

+ F̄on
n (ūn) − d̄ūn,t̄ , (2)

where the following nondimensionalization is used:

un = Lūn, t = τ t̄, τ =
√

m

k1
,

k̄n = kn

k1
, d̄ = d

m
τ, F̄on

n = Fon
n

k1L
. (3)

This discrete equation is in general difficult to solve exactly,
and thus we seek a continuum-limit model for an approximate
solution. Expanding ūn±1(t̄ ) = ū(x̄ ± 1, t̄ ) = ū(x̄, t̄ ) ±
∂ū(x̄,t̄ )

∂x̄
+ 1

2
∂2ū(x̄,t̄ )

∂x̄2 , k̄n± 1
2

= k̄(x̄ ± 1
2 ) = k̄(x̄) ± 1

2
∂k̄
∂x̄

+ 1
8

∂2 k̄
∂x̄2

and letting L approach 0, we obtain

∂2ū(x̄, t̄ )

∂t̄2
− k̄(x̄)

∂2ū(x̄, t̄ )

∂x̄2
− ∂k̄(x̄)

∂x̄

∂ū(x̄, t̄ )

∂x̄

− F̄on(ū, x̄ ) + d̄
∂ū(x̄, t̄ )

∂t̄
= 0. (4)

The on-site force F̄on(ū, x̄) should represent bistability
of each unit cell, providing a necessary condition for the
generation of transition waves. The lowest polynomial that
can represent the bistability of the on-site force is a cubic
function (referred to as a φ-4 potential in most literature); one
such expression for a symmetric on-site potential is ω2

0(ū −
ū3/u2

0), where ω0 and u0 are arbitrary constants. By letting
a(x̄) and b(x̄) be small perturbations from the reference
stiffness k̄1 and the reference on-site force F̄on(ū, 0) such that
k̄(x̄) = 1 + a(x̄) and F̄on(ū, x̄) = [1 + b(x̄)]ω2

0(ū − ū3/u2
0),

respectively, the final equation can be written without loss of
generality as

∂2ū

∂ t̄2
− [1 + a(x̄)]

∂2ū

∂x̄2
− ∂a(x̄)

∂x̄

∂ū

∂x̄

− [1 + b(x̄)]ω2
0

(
ū − ū3/u2

0

) + d̄
∂ū

∂ t̄
= 0. (5)

By setting X = ω0x̄, T = ω0 t̄ , ū = u0F , a(x̄) = α(X),
b(x̄) = β(X), and d̄ = ω0δ, Eq. (5) can further be reduced
into a canonical form:

F,T T −[1 + α(X)]F,XX −α′(X)F,X

+ [1 + β(X)](F 3 − F ) + δF,T = 0. (6)

III. THEORETICAL ANALYSES

The exact solution to Eq. (6) is not known, and so we
seek a perturbed solution from a known soliton solution in the
periodic lattice without any perturbations: α(X), β(X), δ = 0.
Applying a Lorentz transformation,

ξ = γ (X − vT ), τ = γ (T − vX), γ = 1√
1 − v2

,

X = γ (ξ + vτ ), T = γ (τ + vξ ), (7)

Eq. (6) becomes

[1 − α(X)γ 2v2]F,ττ +2vα(X)γ 2F,τξ −[1 + α(X)γ 2]F,ξξ

+ γ [α′(X)v + δ]F,τ −γ [α′(X) + δv]F,ξ

+ [1 + β(X)](F 3 − F ) = 0. (8)

Since the unperturbed equation is invariant under Lorentz
transformation and the velocity v is a free parameter, we can
work with a static soliton in a moving frame traveling to the
+ξ direction (to the right) with v. In the physical frame, the
soliton itself can be considered to travel to the right.

Assuming a perturbed solution F (ξ, τ ) = Fs (ξ, τ ) +
f (ξ, τ ), where Fs (ξ, τ ) is the soliton solution of the equation

Fs,ττ −Fs,ξξ +F 3
s − Fs = 0, (9)

Eq. (8) becomes

[1 − α(X)γ 2v2](Fs,ττ +f,ττ ) + 2vα(X)γ 2(Fs,τξ +f,τξ ) − [1 + α(X)γ 2](Fs,ξξ +f,ξξ ) + γ [α′(X)v + δ](Fs,τ +f,τ )

− γ [α′(X) + δv](Fs,ξ +f,ξ ) + [1 + β(X)]
(
F 3

s + 3F 2
s f + 3Fsf

2 + f 3 − Fs − f
) = 0. (10)
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Subtracting the unperturbed equation of motion [Eq. (9)] from Eq. (10) and substituting the known solution Fs (ξ, τ ) = tanh ξ√
2

(kink soliton), we obtain

[1 − α(X)γ 2v2]f,ττ +2vα(X)γ 2f,τξ −[1 + α(X)γ 2]f,ξξ +γ [α′(X)v + δ]f,τ −γ [α′(X) + δv]f,ξ

+ [1 + β(X)]

(
2 − 3 sech2 ξ√

2

)
f + α(X)γ 2 sech2 ξ√

2
tanh

ξ√
2

− 1√
2
γ [α′(X) + δv] sech2 ξ√

2
− β(X) sech2 ξ√

2
tanh

ξ√
2

= 0, (11)

where only up to the linear terms of the small perturbation f (ξ, τ ) are retained. Note that Fs,τ = Fs,ττ = 0 since the selected
soliton solution is static in the transformed coordinate.

The φ-4 soliton has a known set of two bound states (ψb and ψ1) and scattering states (ψk), which form a complete set [3].
Therefore,

f (ξ, τ ) = 1

cb

φb(τ )ψb(ξ ) + 1

c1
φ1(τ )ψ1(ξ ) +

∫
φk (τ )ψk (ξ ) dk, (12)

where ∫ +∞

−∞
dξ ψ∗

b (ξ )ψb(ξ ) = 1

2

∫ +∞

−∞
dξ sech4 ξ√

2
= cb,

∫ +∞

−∞
dξ ψ∗

1 (ξ )ψ1(ξ ) = 1

23/2

∫ +∞

−∞
dξ tanh2 ξ√

2
sech2 ξ√

2
= c1, (13)

∫ +∞

−∞
dξ ψ∗

k (ξ )ψk′ (ξ ) = δ(k − k′)︸ ︷︷ ︸
dirac delta function

.

Since we are interested in the translation mode ψb of the
soliton, we project Eq. (11) onto φb, the details of which
are provided in Supplemental Material [40]. Assuming linear
[α(X) = α̃X, β(X) = β̃X] and small (α̃, β̃ � 1) variations
in the perturbations, low propagation speed (v � 1), and
weak coupling between different modes for a qualitative
analysis, Eq. (11) becomes

φb,ττ +γ δφb,τ = − 1
2γ 3α̃cb + γ α̃cb + γ δvcb + 1

2γ β̃cb.

(14)

This is a second-order ordinary differential equation, and its
solution yields

φb(τ ) = cb[(2 − γ 2)α̃ + β̃ + 2vδ]

2δ

[
τ + e−γ δτ − 1

γ δ

]
. (15)

Since φb(τ )/cb is the coefficient of the translating mode
ψb(ξ ), its increase represents movement to the left in the
spatial coordinate ξ . The presented analyses above are per-
formed in a moving frame, implying that the actual physical
velocity corresponds to v − φ′

b(τ )/cb, which asymptotically
approaches

vprop → v − (2 − γ 2)α̃ + β̃ + 2vδ

2δ
. (16)

The propagation speeds of the soliton due to intersite
stiffness changes from this approximate relation are plotted
in Fig. 2(a). When there is damping only (δ = 1), the propa-
gation speed approaches zero, becoming a static soliton. This
result is physically reasonable since there are no other sources
providing energy to the system to balance out the dissipated
energy, thereby resulting in the static soliton solution. With the
softening intersite interaction (α̃ < 0), the propagation speed

always stays positive, indicating that the soliton can travel
an arbitrary distance without ever stopping. This can be an
alternative method to attain a unidirectional wave propagation.
With the stiffening intersite interaction, on the other hand, the
soliton slows down to zero, eventually changes the direction of
propagation, and continues to travel in the opposite direction.
Similarly, Fig. 2(b) shows the propagation speed variations
due to the on-site stiffness changes. They have identical
trends to those of the intersite stiffness changes: a decreasing
stiffness leads to a continued propagation of a soliton, and an
increasing stiffness leads to a returning wave.

The obtained results are also valid for the other (antikink)
soliton solution Fs (ξ, τ ) = − tanh ξ√

2
. Any of the polarity

changes in Eq. (11) from using the antikink solution will be
recovered upon the projection on the first bound mode ψb

so that the final differential equation and its solution will be
identical to those of the kink soliton case. Thus, a series of
alternating compression and rarefaction waves can be continu-
ously triggered anywhere in this bistable lattice model, which
is a limitation in the previous studies [37–39]. Therefore, the
introduction of spatially graded properties reveals new physi-
cal mechanisms for sustaining the unidirectional propagation
of solitary waves, as well as for obtaining the two possible
topological soliton solutions: rarefaction and compression.

The condition (2 − γ 2)α̃ + β̃ + 2vδ = 0 appears to reveal
that the soliton propagates with a constant speed (two exam-
ples are plotted in dashed magenta in Fig. 2); yet care must be
taken as the small perturbation assumption no longer holds as
τ grows large. The results can be improved by including the
coupling terms and computing through an iterative process as
described in Dauxois and Peyrard [3]. However, the process
requires highly convoluted calculations and lengthy expres-
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FIG. 2. The theoretical prediction of the propagation speed of the soliton for (a) the intersite stiffness variation α̃ and (b) the on-site stiffness
variation β̃. The same damping value δ = 1 is used for every plot.

sion. Instead, the qualitative behaviors from this approximate
theoretical approach will be validated by the numerical analy-
ses in the following section.

IV. NUMERICAL SIMULATIONS

For the numerical simulations, a central difference
method [41] with a constant time step �t̄ = 0.01 is directly
applied to the discrete equation of motion [Eq. (2)]. Linear
variations are applied to both intersite stiffness and on-site
force changes for simplicity as done in the theoretical anal-

yses, such that (k̄n+1/2−k̄n−1/2 )
k̄1

and (F̄n+1−F̄n )
F̄1

are 0.015 for the
softening cases and 0.02 for the stiffening cases. A large num-
ber of elements (N = 500) are used to minimize the response
distortion due to the boundary effects. However, only a limited
number of elements (N = 60) are used for the softening
lattices since an arbitrarily long lattice can yield an unphysical
negative value for the stiffness. To minimize the discreteness
effects, the stiffness ratio between the intersite and on-site
members is chosen to be a large value (which ensures gradual
displacement changes between the neighboring sites); in this
study, the reference intersite stiffness is chosen to be five
times higher than the reference on-site stiffness (ω2

0 = 0.1 and
u2

0 = 1). The input excitation is simulated by imposing an
initial velocity condition (dū1/dt̄ = ±2) on the first element,
and the same on-site damping d̄ = 0.08 is used throughout the
simulations.

Due to the energy dissipation as a wave passes through
each element, the triggered transition wave in a periodic
bistable lattice is not expected to propagate indefinitely in
physical settings. Figure 3(a) shows the time responses at
the selected sites and the propagation fronts at several time
instants (inset i) in a periodic lattice. The elements between
the 18th and 30th sites cease to make complete transitions to
the other states, and the wave becomes a stationary soliton
after t̄ ≈ 60. In inset ii is the space-time contour of the tran-
sition wave, which is numerically obtained by measuring and
plotting the time instant that crosses the zero displacement line
for each site. The gradient of this contour corresponds to the
propagation velocity, confirming that the speed approaches
zero in a periodic bistable lattice with damping.

To allow a continued propagation of the transition wave,
the total dissipated energy should not exceed the available
energy in the lattice. Since the initial excitation energy is fixed
and all the on-site potentials are symmetric, no additional
energy can be supplied in the course of a wave transmission.

One way to achieve the balance is by reducing the mechanical
resistance, which is effectively done by continuously soften-
ing either the intersite or the on-site stiffnesses. Figure 3(c)
shows that the state transition occurs at every investigated site
in the bistable lattice with softening intersite stiffnesses. The
continued translation of a transition wave in the space config-
uration at each successive time instant (inset i) reinforces the
complete transmission of a transition wave through the lattice.
The nonzero propagation speed in inset ii is also in agreement
with the theoretically predicted behavior.

A stiffening lattice may be thought of as a flipped version
of a softening case. Due to the tendency of the softening lattice
to discharge the signal in the softening direction, it is expected
that the input signal would return to the excitation point. The
time response of each element in the bistable lattice with
linearly increasing intersite stiffnesses is plotted in Fig. 3(e).
In this case, the first few elements initially jump to the other
stable states, but they return to their original states in due
course. If seen in the space configuration [inset Fig. 3(e)-i],
the main wave front shows a boomerang-like behavior; it
initially moves in the direction of the excitation, changes the
propagation direction at around site 20, and eventually returns
to the excitation site. Again, the characteristic behavior in
the space-time contour [inset Fig. 3(e)-ii] agrees with the
theoretical result.

The observed transition waves in Figs. 3(a), 3(c), and 3(e)
are compressive in nature; however, the theoretical prediction
implies that every compression wave is accompanied by a
rarefaction wave. Figures 3(b), 3(d), and 3(f) show the prop-
agation of rarefaction waves for each type of the bistable
lattices with identical parameters to those for the compression
waves except that every on-site element is initially at the
other stable state and that the excitation is applied in the
opposite direction. It is worth noticing that the excitation
is made from the same side of the lattice, enabling signals
to be continuously sent from a single input site (site 1 in
these examples). Furthermore, the proposed class of graded
lattices allows for the rarefaction and compression waves to be
triggered from any site on the lattice, remedying the limitation
of previously studied periodic lattices. Other than the sign
changes, the responses are exactly the same as in the cases
with compression waves.

The same qualitative behaviors observed in the bistable
lattice with the intersite stiffness variations are present for the
on-site stiffness variation as shown in Fig. 4. In the softening
direction of the on-site potentials, each successive on-site
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FIG. 3. The propagation of (a) compressive and (b) rarefactional transition waves in the periodic bistable lattice, (c, d) the lattice with
linearly decreasing intersite stiffness, and (e, f) the lattice with linearly increasing intersite stiffness. In the inset of each figure are (i) the wave
profiles in the space configuration at the selected time instants of interest and (ii) the space-time contour of the transition wave.

element becomes a preferred path, resulting in a complete
propagation through the lattice [Figs. 4(a) and 4(b)]. In the
stiffening direction, it acts as an increasing barrier, creating
a boomerang-like wave transmission that can be observed by
the returning of the wave form to the excitation site in insets
i and ii of Figs. 4(c) and 4(d). In the sense that the transition
wave entering from one side propagates through the lattice,
but the one entering from the opposite side does not, the
bistable lattice with a monotonic stiffness variation can be
viewed as a unidirectional lattice.

V. EXPERIMENTAL VALIDATION

The experimental samples are prepared with a fused-
deposition-modeling 3D printer (Ultimaker 3). Two sets of
ladder-shaped lattices are 3D-printed and then glued together

to form a lattice of 14 unit cells as shown in Fig. 5. A brass ball
of diameter 12.7 mm and mass 9.36 g is glued to each web to
form a unit cell, and each unit cell is connected to the neigh-
boring elements by spring-shaped features so that they can
support both compressive and tensile forces. On the opposite
side of the mass attachment, rectangular pieces of black and
white speckled patterns are applied to allow for data collection
with digital image correlation techniques. The bistabilities of
the on-site potentials is achieved by imposing precompression
controlled by a universal testing machine (Instron 3345). To
collect the experimental dynamic responses, a pair of high-
speed cameras (Photron UX100) are used with a frame rate
of 2000 fps. The width of the analysis area is focused on
the first seven elements from the excitation point to allow for
sufficient picture resolution while capturing enough elements
to observe the desired behaviors. The collected images are
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FIG. 4. The propagation of (a) compressive and (b) rarefactional transition waves in the lattice with linearly decreasing on-site stiffness
and (c, d) the lattice with linearly increasing on-site stiffness. In the inset of each figure are (i) the wave profiles in the space configuration at
the selected time instants of interest and (ii) the space-time contour of the transition wave.

postprocessed using a commercial digital image correlation
software (VIC-3D).

Each unit cell is identically designed for the periodic
lattice, and 1 mm of precompression is applied, resulting in
a snapping distance of about 15 mm between the two stable
states. Figure 6(a) shows the time responses of the first seven
elements of the periodic lattice from the excitation site (see

video S1). The displacements are measured with respect to
the initial stable states. It can be observed that the first two
elements display complete transitions to the other stable states
while the seventh element remains at the same initial state af-
ter a transient motion. (The final displacements of the interme-
diate elements are progressively dispersed between two stable
states, which is in line with the gradual variation condition

(a)

Precompression

(b) h1 h13

(c)

0.334 deg

(d)

Bistable elements

L = 24.5 mm

FIG. 5. The 3D-printed samples for (a) the periodic bistable lattice, (b) the bistable lattice with intersite stiffness grading, and (c) the
bistable lattice with on-site potential grading. (d) The experimental setup, showing how to create the bistabilities in the on-site members.
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FIG. 6. The time response of the experimental lattices at sites 1–7. The propagation of (a) compression and (b) rarefaction waves in the
periodic bistable lattice, (c, d) the lattice with linearly decreasing intersite stiffness, and (e, f) the lattice with linearly increasing intersite
stiffness. Each individual displacement in (a–d) is offset in the time axis by 0.05 s for a better presentation of the results.

for the continuum-limit approximation.) This implies that the
transition wave does not propagate through the lattice. The ob-
served stabilization as time grows indicates that the transition
wave stops inside the lattice, becoming a stationary soliton
just as predicted in the theoretical and numerical analyses.

The intersite stiffness variation is controlled by gradually
changing the height of the interelement spring elements as
shown in Fig. 5(b); the stiffest spring has h1 = 17 mm, and
the softest spring has h13 = 5 mm. For the lattice with linearly
decreasing intersite stiffness [Fig. 6(a) and video S2], all of the
elements transition into the other stable states, in agreement
with the theoretical and numerical predictions. The slight
differences in the final displacements after the transition wave
passes are due to the imperfections in the test fixtures and the
manufacturing variations.

To observe the behavior in the lattice with linearly increas-
ing intersite stiffness, the same lattice as in the decreasing
case is used except that now the excitation is made at the
opposite end (where the spring stiffness is the softest). In this
case, all the analyzed elements return to the initial stable states
even though the first element hits the other stable state briefly

[Fig. 6(e) and video S3]. The limited manufacturing precision
prevents us from showing the more extreme boomerang-like
behavior, where the transition wave travels further in the stiff-
ening direction before returning to the excitation point. How-
ever, such behavior is physically attainable with the higher
ratio between the intersite and on-site stiffness values as can
be partially observed in video S4, where the transition wave
is triggered at an internal site with a greater intersite stiffness.
Figures 6(b), 6(d), and 6(f) show the measured responses of
the bistable lattices initially at the second stable states under
tensile input excitations. The transmissions of the rarefaction
transition waves exhibit the same characteristic behaviors as
those of compression waves except the changed polarities and
slight deviations in values due to irregularity of the test setup.

The on-site stiffnesses are controlled by applying different
precompression levels. This is achieved by designing the
flanges with an initial draft angle of 0.334◦ as shown in
Fig. 5(c). Thus, as the two flanges are installed on the parallel
test rigs, each individual element is compressed by a differing
amount. The precompression is applied in such a way that
the softest on-site member is compressed by 0.5 mm and the
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FIG. 7. The time response of the experimental lattices with on-site stiffness grading at sites 1–7. The propagation of (a) compression
and (b) rarefaction wave in the lattice with decreasing on-site stiffness and (c, d) the lattice with increasing on-site stiffness. Each individual
displacement in (a, b) is offset in the time axis by 0.05 s for a better presentation of the results.

stiffest on-site member by 6 mm. The experimental realization
for this case results in the slight deviations from the expected
theoretical and numerical observations as the precompression
introduces longer snapping distances, which is evident from
the different displacements after the state transition occurs
at each site in Figs. 7(a) and 7(b). Also, a linear change in
compression does not necessarily mean a linear change in
the stiffness. However, it is difficult to manufacture linearly
varying on-site buckled elements with constant snapping dis-
tances with the inherent nonlinear geometry, and thus we
opt for qualitative comparison in this study. The overarching
effects of having decreasing (increasing) on-site potentials are
the same as the effects of decreasing (increasing) intersite
stiffnesses, confirming the theoretical and numerical predic-
tions. Figures 7(a) and 7(b) and video S5 show the complete
transmission of an antikink and a kink from a single excitation
point; Figs. 7(c) and 7(d) and videos S6 and S7 show the
reflections of them.

VI. CONCLUSIONS

In this study, we have investigated the effects of introduc-
ing spatially graded properties to lattices of bistable elements.
Our theoretical analysis predicts that the generated solitary
waves cannot propagate completely through the lattice in
a physical setting with nonzero damping, using a perturba-
tion method. Rather, these waves become stationary solitons,
meaning that the propagation of a transition wave stops inside
the lattice. Either linearly decreasing intersite or linearly
decreasing on-site stiffnesses enable the continued propaga-
tion of transition waves through the lattice even under the

presence of strong damping. On the other hand, an interesting
boomerang-like transmission of a transition wave is predicted
for such lattices with linearly increasing intersite or on-site
stiffnesses. These transmission characteristics constitute an
alternative way of achieving unidirectionality. A series of
numerical simulations and experiments on the 3D-printed
bistable lattice samples validate all of our theoretical predic-
tions. The observed behaviors manifest that the directional-
ity of transition waves can be controlled drastically through
small manipulations in material-level designs. Furthermore,
such architecturing enables the existence of both compression
and rarefaction solitons. This allows a simple, yet effective
mechanism for creating multifunctional metamaterials with
built-in energy harvesting capability owing to the intrinsic
resetting mechanism that enables the continued transmission
of the transition wave pairs. Further technological applications
exploiting the spatial grading of properties are envisioned. For
example, a softening arrangement can be used as a robust
signal transmission network while the integrated transducer
at each unit cell converts energy from the traveling solitary
waves. In the stiffening direction, the lattice can act either as
a protective material that blocks any transmission of catas-
trophic inputs or as a phase-delaying mechanism while still
manipulating the solitary waves for power conversion.
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