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Several schemes are proposed to accelerate the recently designed variational approach for finding periodic
orbits in a nonlinear system with chaotic dynamics, especially those close to a singularity or with long period.
An effective equation is derived to implement an automatic allocation of lattice points to capture local fine
orbit structures while keeping the exponential convergence of the variational approach. Utilizing the special
structure of the matrix involved in the homotopy evolution, the lower–upper (LU) decomposition could be done
with much greater efficiency and much less memory, which considerably facilitates the search for long cycles.
Three examples are used to demonstrate the validity of the accelerated algorithm. For Hamiltonian systems,
an interesting scheme is designed to remove the neutral direction associated with the conservation law while
keeping the dynamics on the desired energy surface.
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I. INTRODUCTION

In a Hamiltonian system, the dynamics becomes increas-
ingly chaotic when its parameters move away from those in
the integrable regime. Although invariant tori gradually get
destroyed in this process [1–3], many periodic orbits survive
or are created and serve as the skeleton of the asymptotic
dynamics. In general, periodic orbits could be conveniently
used to study the long-term behavior of a nonlinear system
[1], for which cycle expansions are very efficient in computing
average values of physical observables [4–6] on the strange
attractors, where cycles are ordered hierarchically in terms of
their topological length or stability. Even in the microscopic
world governed by quantum mechanics, cycles could still
be utilized to carry out the semiclassical computation. For
example, in a molecular system [7], although most trajectories
are chaotic, periodic orbits could still be effectively used
for the quantization of a system. With quite high accuracy,
different energy levels or state densities are accessible in terms
of averages on short periodic orbits. Therefore, it is of great
significance to locate periodic trajectories, especially short
ones for the study of dynamical properties of a nonlinear
system.

Over past several decades, many methods have been pro-
posed to search for periodic orbits [8–15], such as the Newton-
Raphson method or its variants [15,16], which are applicable
to a large variety of dynamical systems. But, for a long
periodic orbit, it requires a very good initial guess that is
close to a true cycle. Even still, the method is likely to fail in
high-dimensional systems [17,18]. To reduce the cumulative
error in the long-time evolution, in the multiple shooting
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scheme, a set of Poincaré sections in the phase space is
selected to divide the cycle into short pieces. However, it
is hard to locate these many sections in the phase space of
a nonlinear system with complex dynamics, especially in a
high-dimensional system. This difficulty is subdued in a vari-
ational approach proposed in Ref. [10], which eliminates most
Poincaré sections by discretizing continuous time evolution
into small time steps. Specifically, a guess loop is put in the
phase space rather than a single point, which is driven to a
desired true orbit exponentially fast by a fictitious time flow.
The computation is highly stable and successfully applied
even to high-dimensional systems.

Nevertheless, the variational approach requires storage of
an entire trajectory in the computer memory, which is heavy,
especially for high-dimensional dynamical systems. Further-
more, the computation load is at least proportional to the
number of discretization points, which may significantly slow
the computation. In an effort of extending the method to
search for connecting orbits [19], an automatic mesh alloca-
tion algorithm is designed to make the guess points evenly
distributed in arc length instead of in time to avoid their
cumulation near the two ends of the connection where the flow
is exponentially approaching zero. It works nicely for search-
ing orbits connecting two equilibria. However, complications
may arise in search for an orbit of more general type, e.g., a
periodic orbit. Around a fixed point or a singularity, the orbit
structure may get intricate, or even worse, the dynamics could
turn nearly singular, which may fail the variational approach
in resolving the detailed structures at fine space or time scales.
In this case, an improved version is in need to ensure both the
efficiency and accuracy.

In the current work, in order to find such a “pathological”
cycle, we use different schemes to allocate mesh points in
different situations, which greatly reduces the number of
required lattice points with reasonable accuracy being kept
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[19–21]. Meanwhile, the program becomes more robust even
when a true singularity is approached since the intricate
dynamics or orbit structure could be much better resolved with
properly distributed lattice points. To get a better guess, the
homotopy evolution is often invoked: start with a periodic or-
bit away from the singularity, and then homotopically evolve
the orbit to the critical point by gradually changing the system
parameters. The variational approach is born for this type of
evolution and is thus very efficient. As before, the adaptive
time step is used in the calculation based on the smoothness
of the evolution. These improvements pave the way for appli-
cation of the variational method in many near-singular cases.

The paper is organized as follows. In Sec. II, the variational
equation is modified to automatically allocate lattice points
according to a given rule but still keep the exponential con-
vergence. In Sec. III, the lower–upper (LU) decomposition
is optimized based on the special structure of the evolution
matrix and an interesting algorithm is proposed to remove the
singularity associated with the conservation law. In Sec. IV,
three examples are used to demonstrate the validity of the
improved variational approach. We summarize the paper and
point to possible future applications in Sec. V.

II. THE VARIATIONAL METHOD WITH AUTOMATIC
ALLOCATION OF LATTICE POINTS

We consider a general dynamical system which is defined
by a set of ordinary differential equations (ODEs):

d

dt
x(t ) = v(x(t )), (1)

where x ∈ Rd, t ∈ R, and v(x) is a smooth function defined
in the phase space. If there is a trajectory x(t) of Eq. (1) that
satisfies the condition

f T (x) = x, (2)

where f t (x) indicates the evolution result of x under system
dynamics (1) in a time interval t and T > 0 is the smallest
positive number that satisfies this condition, we refer to this
type of trajectory as a periodic orbit and T is the period.
Quite many methods for finding periodic orbits have been
designed and applied [10–12,22,23] in recent years. Never-
theless, for high-dimensional or complex systems, such as the
Kuramoto-Sivashinsky system in a spatiotemporally turbulent
regime, the variational approach shows great robustness and
versatility [10].

We recall first the variational method previously designed
for the determination of periodic orbits in Eq. (1) (see
Refs. [10] and [24]), which drives a loop in the phase space
to a true cycle by a fictitious evolution equation,

∂2x̃

∂s∂τ
− λ

∂v

∂x

∂x̃

∂τ
− v

∂λ

∂τ
= λv − ∂x̃

∂s
, (3)

where ṽ = ∂x̃
∂s (x̃ ∈ Rd ) is the loop velocity, x̃(x̃ ∈ Rd ) marks

the representative points of the loop and is parameterized
by s(s ∈ [0, 2π ]), τ is the fictitious time which records the
evolution from an initial guess loop to the desired periodic
orbit, and v is the velocity field of the dynamical systems
along the guess loop given in Eq. (1). The parameter λ is a

constant which is used to match the magnitude of v and ṽ, or
in other words, to adjust the period. We may rewrite Eq. (3) in
a more concise form as follows:

∂

∂τ
(ṽ − λv) = −(ṽ − λv), (4)

which could be formally solved

ṽ − λv = e−τ (ṽ − λv)|τ=0 , (5)

showing that the value of ṽ − λv converges exponentially with
the increase of τ as the loop continuously evolves toward the
periodic orbit. However, if there is a nonzero local minimum
for the squared deviation (ṽ − λv)2, the evolution of Eq. (3)
will become singular and lead to blowup. Usually, a good
initial guess may avoid this trouble. Nevertheless, if there
are too few lattice points, the cycle could not be represented
authentically; it is impossible to reduce the error to a suffi-
ciently small value which may fail the program as well. This
happens quite often near a singularity where the orbit structure
becomes finely twisted with dynamics varying violently. As a
result, for a uniform in time distribution of the lattice points, in
order to reduce the error, a large number of points are needed,
which may choke the computer memory and tremendously
slow the program.

In fact, the computation would become much more effi-
cient if we only increase the lattice points near the singulari-
ties (or fixed points), keeping the points in other places more
or less balanced. Based on this consideration, a moving mesh
is introduced by reparametrizing periodic orbits to redistribute
the lattice points in a way that caters to our need. In Eq. (3), the
parameter s is supposedly proportional to the time along the
trajectory, which may not be the best and should be replaced
by a better scheme in the above-mentioned cases. Suppose that
s could be reparametrized as s = s(α) by a new parameter
α, α ∈ [0, 2π ] so that

∂

∂s
= dα

ds
· ∂

∂α
, (6)

where dα
ds

= ω(x(s)) is a weight function [20] which monitors
the density of lattice points. If points are distributed uniformly
in α, then in s or in time, the point density is proportional
to ω(x(s)). Therefore the choice of the weight function is
essential. With this new parameter, Eq. (3) becomes

ω
∂2x̃

∂α∂τ
−

[
λ

∂v

∂x
−

(
∂x̃

∂α

)
∂ω

∂x

]
∂x̃

∂τ
− v

∂λ

∂τ
= λv − ω

∂x̃

∂α
,

(7)

which still satisfies Eq. (4) and hence converges in the ficti-
tious time if the definition ṽ = ∂x̃

∂α
is used. Note that a new

term appears in Eq. (7), which distinguishes Eq. (7) from the
corresponding Eq. (10) in a previous paper [19].

In many applications [19,20], the weight function could be
written as

ω(t ) =
√

γ + c|v̄t |2, (8)

where γ and c are two adjusting parameters and γ could be
set to 1. If c = 0, then ω is a constant which indicates that α
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is proportional to s, and thus the lattice points distribute uni-
formly in time. When C → ∞, ω(t ) ∼ |vt |, α is parameter-
ized by the arc length. Different distributions can be obtained
by adjusting these parameters. When the cycle approaches a
singularity where the coordinates change rapidly, the above
parameterization might still not be valid and other types of
choices are needed.

III. NUMERICAL IMPLEMENTATION

The periodic orbit is invariant if all the lattice points
move along the trajectory for the same time interval. This

translational invariance will supply a neutral direction to the
update of the coordinates, which will undermine the solution
of the fictitious time evolution [10]. In order to remove the
translational invariance, a gauge-fixing condition is added
[18,19,25], one form of which will be employed in the fol-
lowing. In a discretization of a loop, the velocity along the
loop reads

ṽn = ∂x̃

∂s

∣∣∣∣
x̃=x̃n

≈ (D̂x̃)n. (9)

With a five-point approximation scheme, D̂ with the peri-
odic condition is rewritten as

D̂ = 1

12h

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 8 −1
−8 0 8

1 −8 0
−1

8 −1

1 −8
1

...
. . .

...

1
8 −1

1 −8 0
1 −8

8 −1
0 8

−8 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (10)

where h = 2π/N , and each entry represents a d × d matrix, with blank space filled with zeros. In our numerical work, along
with the gauge-fixing condition, the discretized version of Eq. (7) with the choice ω(t ) ∼ |v̄t | can be written as(

Â −v̂

â 0

)(
δx̂

δλ

)
= δτ

(
λv̂ − |v̄t |̂ṽ

0

)
, (11)

where

Â = |v̄t |D̂ − diag[λA1 − B1, λA2 − B2, . . . , λAN − BN ],

with An = ∂vi

∂xj
(being the Jacobian matrix of the velocity field), and Bn = ( ∂x̃

∂α
) ∂|v̄t |

∂x
is a d × d matrix. ̂̃v = (ṽ1, ṽ2, . . . , ṽN)′ and

v̂ = (v1, v2, . . . , vN)′ respectively represent the loop velocity vector field and the velocity vector field of the flow which the loop
goes through. â is an Nd-dimensional row vector representing the gauge-fixing condition,

â · δx = 0,

which adds a linear constraint to the change of the coordinates. In the current situation, one specific choice would be â →
(1, 0, 0, . . . , 0), which would fix just the first coordinate of the first point and limit the motion of the first point to a (d-1)
dimensional hyperplane, while other representative points are rearranged by the weight function ω(t). By solving Eq. (11)
repeatedly, the coordinates of the guess loop are updated step by step, so that the initial loop exponentially converges to the true
periodic orbit which we want to find.

In order to reduce the memory load and accelerate the computation, in the previous section we designed an automatic mesh
allocation scheme to reduce the number of lattice points for accurately characterizing a periodic orbit. Here, we may obtain
another reduction of the computation load by a more efficient LU decomposition scheme. From the above analysis, we see that
the inversion of the matrix equation (11) is the most time-consuming part in the evolution. However, in view of the special
structure of the matrix involved, the LU decomposition [21] could be greatly simplified such that the computation load is
proportional to the size Nd of the matrix instead of its square, thus enabling the search for long cycles and a more detailed

characterization of chaotic dynamics. The matrix (Â −v̂
â 0 ) on the left-hand side of Eq. (11) has a band diagonal form and as a

result the L and U matrices could be written as follows:

L =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
a0 1
b0 a1 1

b1 a2 1
. . .

. . .
. . .

bN−5 aN−4 1
c0 c1 c2 cN−5 cN−4 cN−3 1
d0 d1 d2 · · · dN−5 dN−4 dN−3 dN−2 1
e0 e1 e2 eN−5 eN−4 eN−3 eN−2 eN−1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (12a)
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U =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f0 g0 h0 i0 j0 k0

f1 g1 h1 i0 j0 k0

. . .
. . .

. . .
...

...
...

fN−5 gN−5 hN−5 iN−5 jN−5 kN−5
)

fN−4 gN−4 hN−4 jN−4 kN−4

fN−3 gN−3 hN−3 kN−3

fN−2 gN−2 kN−2

fN−1 kN−1

fN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (12b)

where each element in the matrices given above is a d × d
matrix. Both L and U have a tridiagonal form with three more
rows (for L) or columns (for U) filled at the bottom or the right
end. As usual, the matrix elements of L and U are determined
by the identity

Pij =
i−1∑
k=1

likukj

in a straightforward way if proper care is exercised. In the
present, however, the number of unknown elements in L and
U is proportional to Nd instead of (Nd )2 as in the usual LU
decomposition, which greatly speeds up the computation, es-
pecially when the method is applied together with an adaptive
step size scheme based on the smoothness of the fictitious
evolution devised in Ref. [10]. When the loop is close to a
periodic orbit, the step size can be set to the full Newton one
δτ = 1.

A conservation law in a dynamical system may supply a
neutral direction for the variation of the lattice points and
hence make Eq. (11) near singular. In a commonly seen
Hamiltonian system, the energy is very likely to be conserved,
which may set our searching program awry. Here we use
a two-dimensional Hamiltonian as an example to present
one possible way to remove this trouble. Suppose that the
Hamiltonian is

H = H (x, y, px, py ), (13)

where x, y, px , py are four parameters describing the state
of a system, and the equation of motion of the Hamiltonian
system could be written as

ẋ = ∂H

∂Px

Ṗx = −∂H

∂x
,

ẏ = ∂H

∂Py

Ṗy = −∂H

∂y
.

If we denote X = (
x

y

Px

Py

), then the canonical equation could

be written as

Ẋ =

⎛⎜⎜⎝
ẋ
ẏ

Ṗx

Ṗy

⎞⎟⎟⎠ = M · ∇H with M =
(

0 1
−1 0

)
, (14)

where 1 is a 2 × 2 unit matrix, resulting in

d H
dt

= ∇H · Ẋ = 0. (15)

Equation (15) is a mathematical expression of the energy
conservation. If we concentrate on a specific energy level E0,
to remove the conservation law, we add one extra term to the
original dynamics equation, so that

Ẋ = M · ∇H + β · (E0 − H ) · ∇H, (16)

where the second term on the right is zero at the desired energy
surface E0–H = 0. The equation of motion does not change
at this energy. In addition, according to Eqs. (16) and (15), we
have

d(H − E0)

dt
= ∇(H − E0) · Ẋ = β · (E0 − H ) · (∇H )2,

(17)

which drives a representative point back to the desired surface
if it deviates from the prescribed energy. In this way, all
previous formulas could still be used and a different energy
surface is considered for different E0 values.

IV. APPLICATIONS

In this section we show the validity of the modified varia-
tional method by applying it to several classical models. In all
the computations, the convergence condition is

F =
√√√√ N∑

i=1

(ṽi − λvi )2 � 10−6. (18)

A. Example 1

We first apply the modified method to the search of the
periodic orbit in the Lorenz equation [26], which reads

ẋ = σ (y − x)
ẏ = x(ρ − z) − y

ż = xy − μz.

(19)

The origin is a fixed point for all parameter values and
the z axis is invariant under the evolution (19). The system
is invariant for x → −x, y → −y so that a periodic orbit
is either symmetric or has a symmetry partner. At σ = 10,
μ = 8/3, ρ = 13.926 56, a homoclinic explosion [27] takes
place where a pair of cycles are born with increasing ρ.
However, if the value of ρ is close to 13.926 56, the cycle bears
great resemblance to the mother homoclinic orbit and is nearly
singular (shown in Fig. 1) close to the fixed point. As a result,
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（a） （b）

（c） （d）

（e） （f）

（g） （h）

FIG. 1. (a), (b) The projections in the X-Z plane of the initial guess loop (red line) and the butterflylike periodic orbit obtained by our
modified method at ρ = 28. (c), (d) The periodic orbit at ρ = 13.93. (e) Value of the weight function ω(t) along the orbit with different ρ. (f),
(g), (h) Projections of different orbits at ρ = 17, 15.5, 14.5, and 13.93, and (g) is an enlared part of (f) near the origin. Here, we show only the
orbit in the positive x axis, and there exists a symmetry counterpart in the negative x axis. The total number of lattice points is 550 (a), (b) or
220 (c)–(h).

the smoothness and the stability of the fictitious evolution at
the corner are severely damaged and a good many points are
needed to depict the fine structure. In other regions, much
fewer points could do the job. According to the special feature
of the periodic orbit, the weight function ω(t) can be set as

|v̄t | = ω(t ) = 5

6
+ 1

|R| , (20)

where |R| is the radius of curvature and

1

R
= 1

f 2

[
∇f · f − 1

2
fv · f · (∇f 2) · f

]
, with f =

⎛⎝ẋ

ẏ

ż

⎞⎠.

(21)
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（a （） b）

（c） （d）

FIG. 2. (a) The x component of the periodic orbit depicted in Fig. 1 at different ρ values (distinguished by different thick lines). The
abscissa is the time scaled by the period T. (b) The number N of integration points as a function of ρ. (c) The period T with the same
computational accuracy as that in Fig. 1. (d) The difference of the period obtained by the Newton-Raphson method with different integration
accuracy (10−10 vs 10−13).

Equation (20) indicates that the lattice points are dis-
tributed either uniformly when this radius is large or inversely
proportional to the radius when it is small. Close to the
singularity, the smaller the |R|, the greater the density. The
constant of 5/6 here marks the minimum relative density of
the points, which should not be too small so as to prevent over
sparsity of the lattice points along the cycle and to keep the
algorithm running. In the following, N = 220 and N = 550
points are used to represent the short cycle and the long cycle,
respectively, and as the gauge-fixing condition we set the y

coordinates of the first point to a fixed value y0 = 2.
Figure 1 displays the periodic orbits found by the modified

variational method. Figures 1(a) and 1(b) first depict the
projections of the long orbit (black line) and the guess loop
(red line) which is obtained by Fourier transforming a close
recurrence into the frequency space, keeping only the low-
frequency part, and then back to the phase space at ρ = 28.
The guess loop obviously has identical topology to the desired
periodic orbit and is a very irregular orbit compared to the
located periodic orbit in Fig. 1(b). As mentioned earlier, the
variational method is quite robust. Despite such a bad initial
condition as shown in Fig. 1(a), it still converges quite nicely
to the final symmetric, butterflylike periodic orbit. Just before
the onset of homoclinic explosion, the relevant periodic orbit
passes closely to the fixed point located at (0,0,0), as shown
in Figs. 1(c) and 1(d) at ρ = 13.93. The segment of the cycle
in the neighborhood of the origin bends a lot, resulting in a
very small radius of curvature. Figure 1(e) plots the weight
function along the orbit at ρ = 17 (pale yellow line), 15.5
(orange line), 14.5 (line), 14 (green line), and 13.93 (black
line). The outer black curve corresponds to ρ = 13.93, where
the density of points sitting in the sharp bending area is about
4 times greater than that in other regions. With the increase of

ρ, the density variation becomes smaller and almost vanishes
for ρ = 17. Figures 1(f)–1(h) show the projections of the
orbit at ρ = 16.5, 15.5, 14.5, and 13.93, and Fig. 1(g) is
one magnified part of Fig. 1(f) near the origin where the
bending corner gradually pops out with the decrease of ρ. This
orbit will become a homoclinic orbit at the critical value ρ =
13.932 656. However, other parts of the orbit do not change
much, as shown in Figs. 1(e)–1(h), so that as ρ increases, the
nonuniformity near the origin gradually builds up and more
and more points are automatically allocated to this segment.

Alternatively, we may compute the short periodic orbit in
Fig. 1 with the well-known Newton-Raphson method com-
bined with the Runge-Kutta integrator with variable step size
(the computational accuracy is 10−10), and the results are
shown in Fig. 2. On one hand, we found that a large number
of representative points dwell around the fixed point (the
origin) and the integrator seems to make tiny steps there,
especially when the parameter ρ approaches the critical value
13.926 56 [see Fig. 2(a)], which also makes the number of
integration points as well as the period T increase dramatically
[see Figs. 2(b) and 2(c)]. On the other hand, we found that
the result of the Newton-Raphson method starts to become
inaccurate when the parameter ρ is less than 13.93, which is
attributed to the fact that the Jacobian matrix J required in the
Newton-Raphson method appears bizarre (namely, the values
of some matrix elements are huge) as the orbit closely passes
the fixed point. As a result, the calculation error is sharply
increased. Shown in Fig. 2(d) is the difference in the period
T obtained by the Newton-Raphson method, with different
integration accuracy (10−10 vs 10−13). It is less than 10−6

when ρ is greater than 13.95 but rapidly increases with ρ

approaching the critical value. In the varitional approach, due
to the coordinate change implemented by the automatic lattice
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（a） （b）

（c） （d）

FIG. 3. (a) Distribution of points along a periodic orbit with E = −3.0; the weight function ω(t) (b) and one oval periodic orbit (c) at
E = −3.0, −2.8, −2.6, −2.4, −2.2. (d) One 8-shaped periodic orbit with E = −3.6, −3.1, −2.6, where R = 8, ε = 13, δ = 0.355, C = 0,
and β = 2.4. The y coordinate of the first point is set to a fixed value y0 = 0, and the star symbol (�) marks the positions of the fixed stars and
the periodic orbit is represented by 204 points.

point allocation, this caveat is greatly reduced and for the
same accuracy less than 10% of the number of points here is
needed at ρ = 13.93, which clearly improves the efficiency.

B. Example 2

In this section, we construct a bisolar model to test the
modified variational method in a Hamiltonian system with
energy conservation which consists of one planet and two
fixed stars with the same mass M, and the distance between
the two fixed stars is R. The planet is running around the fixed
stars in a plane, and the Hamiltonian of this system (in the
Descartes coordinate system) is written as

H =
(
p2

x + p2
y

)
2m

− GMm√
x2 + y2

− GMm√
(x − R)2 + y2

, (22)

where the two stars sit at the origin and (R,0), respectively.
Here, m is the mass of the planet, and px ,py are the two
momentum components of the planet. G is the gravitational
constant. The planet runs fast in the perigee and slowly at the
apogee. If it is very close to the stars, the acceleration would
be so great that a very high-order integrator is needed together
with adaptive step size for a reliable computation, since a
glitch near the star will result in a large deviation away from
the singularity. For convenience, m is set to 1 and ε = GM, so
that Eq. (22) is rewritten as

H =
(
p2

x + p2
y

)
2

− ε√
x2 + y2

− ε√
(x − R)2 + y2

. (23)

In this example, we have two singular points—the two
stars where the potential energy of the planet becomes minus
infinity and the speed positive infinity. Nevertheless, in the
phase space the two singularities lie at infinity when the
energy is finite. We can simply choose the weight function
ω(t) proportional to the local phase-space speed:

|v̄t | = ω(t ) = c + 1

δ
·
[(

∂H

∂x

)2

+
(

∂H

∂y

)2

+
(

∂H

∂px

)2

+
(

∂H

∂py

)2
] 1

2

, (24)

such that the new parameter is proportional to the trajec-
tory length. Since the orbit becomes very sensitive to per-
turbations near the perigee and the accuracy of the com-
putation worsens quickly, the weight function based on
Eq. (24) naturally puts more points in a region near the
perigee.

Figure 3 displays two typical orbits found by our method
at E0 = −3.0. One is an oval orbit and another is an 8-shaped
one. Figure 3(a) shows the distribution of lattice points along
the periodic orbit which cluster to the high-speed regions near
the fixed stars. The density function is shown in Fig. 3(b),
with the black thick curve marking the extremely uneven
distribution of the lattice points with the ratio of the maximum
and the minimum being nearly 40. Figure 3(b) also depicts
the point density for other oval orbits plotted in Fig. 3(c) at
E0 = −3.0, −2.8, −2.6, −2.4, and −2.2. It is easy to see
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（a） （b）

（c） （d）

（e） （f）

FIG. 4. Two interesting types of long periodic orbits in the bisolar model we constructed. (a), (b) The projections in the X-Y and the Px-Py

plane of the hamburgerlike periodic orbit at E = −1.792 816, C = 0.625, β = 1.2, δ = 10, N = 665. (c), (d) Projections in the X-Y and the
Px-Py plane of the Chinese-knot-like periodic orbit at E = −3.012 307 9, C = 0.1923, β = 7, δ = 2.8, N = 885. (e), (f) The weight function
ω(t) at E = −1.792 816, −3.012 307 9. Other parameters are the same as in Fig. 3, and the x coordinate of the first point is set to a fixed value
x0 = 4.

that when the energy of an orbit is relatively high, the orbital
points are basically uniformly distributed [e.g., the density
function curve of the orbit with E = −2.2 is approximately
flat, as shown in Fig. 3(b)]. With the decrease of the total
energy, the orbit approaches the singularities and the density
of the lattice points becomes increasingly uneven as more and
more points move close to the singularities. In Fig. 3(d), we
show the 8-shaped orbits at different energies. They cannot
get too close to the singularities, but the weight function
has the same tendency to cripple near the singularities with
decreasing energy. For all the periodic orbits found by our

method, the energy conservation is well preserved,

�E =
√√√√ N∑

i=1

(Ei − E0)2 � 10−6, (25)

where E0 is the chosen value of the energy and Ei is the
energy of the lattice point on the orbit. Each orbit is described
by 204 lattice points.

In this model, we continue to search for period orbits with
more interesting topology in order to test the practicability
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(a)

(b)

(c)

FIG. 5. (a) The energy of each point on the orbit obtained by
ODE45 in MATLAB (the black solid line) and the energy (E0) of
the initial point is −3.012 3079 (the dashed line), the number of
representative points is 885; (b) the energy error of ODE 45 in
MATLAB (the black line) for (�Ei < 10−6), and the number of
representative points is 2605; (c) the energy error of our method (the
black line) for (�Ei < 10−6) and the number of representative points
is 885; (b), (c) the red lines indicate �Ei = 0, where �Ei = Ei − E0

with E0 = −3.012 307 9 [the corresponding periodic orbit is shown
in Figs. 4(c) and 4(d)].

and stability of the variational method. Two new cycles are
displayed in Fig. 4. Figures 4(a) and 4(b) depict a hamburger-
like periodic orbit in the X-Y and the Px-Py plane. Its weight
function ω(t) is shown in Fig. 4(e). Figures 4(c) and 4(d)
depict a Chinese-knot-like periodic orbit, and Fig. 4(f) de-
picts its weight function ω(t). Whenever the orbit approaches
the singularities, the density of representative points rises
significantly. For the hamburgerlike cycle, the density varies

FIG. 6. The orbit structure on the Poincaré surface of section of
the Hénon-Heiles system with E0 = 11.014 at y = 0.0 and py < 0.

between 0.7 and 1.8, while for the Chinese-knot-like periodic
orbit, the ratio of the maximum and the minimum density is
nearly 51. Compared with the oval or 8-shaped orbits found
above, they pass by the singular points in a more subtle way
and are very vulnerable to perturbations or numerical instabil-
ities. As we may see, due to this fragility whenever the orbit
goes through the neighborhoods of the singularities, the total
energy jitters around, which is shown in Fig. 5(a) (black solid
line) such that the energy deviation between an orbit point and
the initial one increases with the time lapse if no special care
is taken. For the same periodic orbit [such as the one shown
in Figs. 4(c) and 4(d)], if we take efforts to control the error
of the energy to be less than [10−6(�Ei < 10−6)], similar
results may be obtained by using the ODE 45 with variable
step size in MATLAB, or our variational method. However, as
displayed in Figs. 5(b) and 5(c), the number of representative
points needed for the former is about 3 times that of the latter.
Hence, the proper redistribution of lattice points may greatly
reduce computation load while maintaining a reasonable
accuracy.

C. Example 3

The Hamiltonian of the Hénon-Heiles system [7] is written
as

H = 1

2

(
P 2

x + P 2
y + x2 + y2

) + μx

(
y2 − x2

3

)
, (26)

where μ = (0.0125)1/2. When the variational technique is
applied here, the weight function has taken the same form as
Eq. (24). The orbit structure on a specific Poincaré surface of
section is shown in Fig. 6 for energy E0 = 11.014. We can
see that most areas are filled with chaotic orbits, but there
still exist several resonance islands where quasiperiodic orbits
lie on invariant tori which contain two noncommensurate
frequencies and hence an irrational winding number. Quite
many lattice points are needed to represent the whole torus
in the 4-d phase space and it is awkward to describe the
dynamics with these points. Nevertheless, for an invariant
torus with the winding number α, it is convenient to approx-
imate the torus with a series of periodic orbits with winding
numbers αn = pn

qn
→ α, as n → ∞. For sufficiently large n,

the approximation is as good as one desires. However, the long
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a）

b）

c）

FIG. 7. (a) The periodic orbits of increasing length approaching
the invariant torus marked by the yellow line; (b) magnification of
part of (a); (c) the values of αn (black dot) for the periodic orbits,
with the dashed line denoting the irrational winding number of the
invariant torus α = 0.390 086 206 896 552.

period and the dynamics subtlety near the invariant torus may
pose considerable difficulty to the search of these cycles. In
the following, we focus on the island marked with the letter
“A” in Fig. 6 and try to locate this series of periodic orbits
with the current variational method. The result is depicted in
Fig. 7. As shown in Fig. 7(a), the cycles approach the invariant
torus (marked by the arrow) gradually, and the greater the
period, the closer the cycle to the torus. Correspondingly, the

winding numbers αn of the periodic orbits also approach those
of the torus as shown in (c). The convergence seems to be
exponentially fast. A more detailed observation is displayed
in Fig. 7(b), which is a magnification of some part of (a). As
we can see, the orbits with period 41 or 59 seem to already
overlap with the torus line for the plotting accuracy. Therefore
the current variational approach seems good at handling this
class of problems.

V. SUMMARY AND DISCUSSION

We further optimize the variational approach for searching
periodic orbits proposed in Ref. [10]. Improvements are made
in several aspects: First, a new equation is derived to auto-
matically adjust the spacing between lattice points but still
guarantees the exponential convergence, which bestows extra
robustness and hence makes the cycle search more efficient
by increasing the number of points near singularities while re-
ducing point population in the smooth parts. Second, based on
the special matrix structure in the evolution equation the LU
decomposition is optimized such that the computation load is
proportional to the cycle length instead of its square, and the
memory consumption of the L and U matrix storage is much
reduced, which gives another reduction of the computational
and memory requirements for searching long periodic orbits.
Finally, for conservative systems, one scheme is designed to
remove the ill conditioning in the fictitious time evolution
associated with the energy conservation by constructing a new
velocity field which brings all orbit to the desired surface on
which the dynamics remains the same as before.

The variational approach puts a guess loop near a true
periodic orbit and requires an accurate enough representation
with sufficiently many lattice points. In a complex system
with high-dimensional phase space, the storage of these many
points could be the bottleneck of the algorithm. The automatic
distribution adjustment of the lattice points relieves part of the
problem, especially for a cycle near a singularity. However,
the computation of the Jacobian in high-dimensional systems
is also time and resource consuming. How to overcome this
difficulty is a major challenge for a future investigation. On
the other hand, the computation of the weight function seems
quite cumbersome. There may exist an equivalent way for
redistributing the lattice point but with much lighter computa-
tion load. We believe that the improvement made here expands
considerably the possible application scope of the variational
approach, especially in the atomic and molecular physics
and celestial mechanics where singular potentials routinely
appear.
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