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modulation of the contact interaction

S. Sabari1,2 and Bishwajyoti Dey1

1Department of Physics, SP Pune University, Pune 411007, Maharashtra, India
2Department of Physics, Bharathidasan University, Tiruchirappalli 620024, India

(Received 18 April 2018; published 2 October 2018)

We study theoretically the stability of a trapless dipolar Bose-Einstein condensate (BEC) with temporal
modulation of the short-range contact interaction. For this aim, through both analytical and numerical methods,
we solve a Gross-Pitaevskii equation with both constant and oscillatory forms of the short-range contact
interaction along with long-range, nonlocal, dipole-dipole interaction terms. By using the variational method,
we discuss the stability of the trapless dipolar BEC with the presence and absence of both constant and
oscillatory contact interactions. We show that the oscillatory contact interaction prevents the collapse of the
trapless dipolar BEC. We confirm the analytical prediction through numerical simulations. We also study the
collective excitations in the system induced by the effective potential due to the oscillating interaction.
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I. INTRODUCTION

The experimental realization of Bose-Einstein condensates
(BECs) of 52Cr [1,2], 164Dy [3,4], and 168Er [5] with a
long-range dipole-dipole (DD) interaction superposed on the
short-range atomic interaction marks a major development in
ultracold quantum gases. Because of the long-range nature
and anisotropic character of the DD interaction, the dipo-
lar BEC possesses many distinct features and new exciting
phenomena such as the dependence of stability on the trap
geometry [1,2], new dispersion relations of elementary exci-
tations [6–8], unusual equilibrium shapes, the roton-maxon
character of the excitation spectrum [8–13], novel quantum
phases including supersolid and checkerboard phases [14–
16], vortices [17,18], hidden vortices [19], the dynamics of
vortex-antivortex pairs [20], etc. These features arise due to
the interplay between the s-wave contact interaction and the
dipolar interaction.

Tuning contact interactions by using the Feshbach reso-
nance has attracted a considerable interest in the study of
dipolar BECs [8–10,10,11,21–32]. One of particular interest
is macroscopically excited BECs, such as solitons. Solitons
are localized waves that propagate over long distances without
change in shape or attenuation. The existence of solitonic
solutions is a common feature of nonlinear wave equations
and solitons appear in many diverse physical systems. The
theoretical description of a dilute weakly interacting dipolar
BEC can be formulated by including a nonlocal DD interac-
tion term in the Gross-Pitaevskii (GP) equation [1,2,33–35].
The nonlinear terms in the GP equation characterized by both
the DD interaction and the contact interaction can support
both dark and bright matter-wave solitons. In the conventional
BEC, bright matter-wave solitons form when the negative
(attractive) contact interaction exactly balance the dispersion
and the attractive contact interaction [36–38]. In the dipolar
BECs, a nonlocal DD interaction term is involved in the
nonlinear part together with the s-wave contact interaction.
The DD interaction has been a subject of active investigation

in disparate physical systems during the past decades. The
DD interaction plays a crucial role in the physics of solitons
and modulational instability [39,40]. The new prospect for the
formation of matter-wave bright solitons in BECs is suggested
by the presence of the DD interaction. Thus, in the presence
of the DD interaction, one can get a bright soliton even for
positive (repulsive) contact interaction (a > 0), which can
be controlled by means of the Feshbach resonance with a
tunable time-dependent magnetic field [33,34]. Furthermore,
in recent years, the study of temporal and spatial modulated
nonlinearities have attracted considerable attention in several
areas; for example, nonlinear physics [41], optics [42–44], and
conventional BECs [45–51].

In conventional BECs, the periodic temporal modification
of the atomic scattering length achieved by the Feshbach res-
onance has been used to stabilize the bright solitons in higher
dimensions. Through the GP equation with constant and oscil-
latory part of the contact interaction, Saito and Ueda stabilized
the trapless matter-wave bright solitons in two dimensions
(2D) by temporal modulation of the contact interaction [47],
Adhikari examined the problem and stabilized the untrapped
soliton in three dimensions (3D) and the vortex soliton in
2D by temporal modulation of the contact interaction [46].
Effects of the time-dependent nonlinear contact interaction on
the binding energy of soliton molecules has been examined
by Khawaja and Boudjemaa [52]. We studied the stability of
the 3D BEC with constant and oscillatory parts for both the
two- and three-body interactions in our previous work [45].
Besides, Wu et al. [48] and Wang et al. [53] discussed 2D
stable solitons and vortices for BECs with spatially modulated
contact interaction and a harmonic trap, respectively.

The objective of the present work is to study the signifi-
cance of both the constant and oscillatory parts of the short-
range contact interaction on the stability of trapless dipolar
BECs. The effective strength of the DD interactions can be
controlled by adjusting the orientation of the dipoles, while
the strength of the contact interactions may be effectively
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tuned by means of the Feshbach resonance, as shown in the
condensate of 52Cr atoms. We investigate the stability of
the dipolar matter wave with both constant and oscillatory
contact interactions. From our theoretical analysis, we suggest
that one can increase the stability of the dipolar BEC by
considering the oscillatory contact interaction. This is the
main result of this paper.

A numerical study of the time-dependent GP equation with
a nonlocal DD interaction term is of interest, because this
can provide solutions to many stationary and time-evolution
problems. In the present study, we analyze the stability of the
dipolar BECs and point out that a temporal modification of
the contact interaction can lead to a stabilization of the dipolar
system. In addition to analytical studies, we also numerically
verify the stability of a dipolar BEC. In particular, by analyz-
ing the GP equation using the variational method and direct
numerical integration, we analyze the stability properties of
the dipolar BEC with constant and oscillatory parts of the
contact interactions. Our analysis strongly suggests that the
inclusion of the oscillatory contact interaction can help stabi-
lize the dipolar BEC.

The organization of the paper is as follows: In Sec. II, we
present a brief overview of the mean-field model. Next, we
discuss the variational study of the problem and point out the
possible stabilization of a trapless dipolar BEC in 2D with
and without the oscillatory contact interaction in Sec. III. In
Sec. IV, we report the numerical results of the time-dependent
GP equation through the split-step Crank-Nicholson (SSCN)
method. Finally, we give the concluding remarks in Sec. V.

II. NONLINEAR NONLOCAL MODEL

Consider a dipolar BEC of N particles with mass m and
magnetic dipole moment μ. At sufficiently low temperatures,
the description of the ground and excited states of the con-
densate is described by the time-dependent, dimensionless GP
equation with a nonlocal DD interaction term [1,2,33–35]:

ih̄
∂φ(r, t )

∂t
=

[
− h̄2

2m
∇2 + V (r) + 4πh̄2a(t )N

m
|φ(r, t )|2

+ N

∫
Udd(r − r′)|φ(r′, t )|2dr′

]
φ(r, t ), (1)

where V (r) = 1
2m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2), ωx , ωy , and ωz are

the trap frequencies, and a(t ) is the atomic scattering length.
The dipolar interaction, for magnetic dipoles, is given by
Udd(R) = μ0μ̄

2

4π
1−3 cos2 θ

|R|3 , R = r − r′ determines the relative
position of dipoles, θ is the angle between R and the direction
of polarization z, μ0 is the permeability of free space, and μ̄ is
the dipole moment of the condensate atom. The normalization
is

∫
dr|φ(r, t )|2 = 1. To compare the dipolar and contact

interactions, often it is useful to introduce the length scale
add ≡ μ0μ̄

2m/(12πh̄2) and its experimental value for 52Cr,
164Er, and 168Dy is 16a0, 66a0, and 130a0, respectively, with
a0 being the Bohr radius [1,2].

It is convenient to use the GP equation (1) in a dimen-
sionless form. For this purpose we make the transforma-
tion of variables as r̄ = r/l, R̄ = R/l, ā(t ) = a(t )/l, ādd =
add/l, t̄ = tω̄, x̄ = x/l, ȳ = y/l, z̄ = z/l, φ̄ = l3/2φ, and
l = √

h̄/(mω̄). Equation (1) can be rewritten (after removing

the overhead bar from all the variables) as

i
∂φ(r, t )

∂t
=

[
−1

2
∇2 + V (r) + 4πa(t )N |φ(r, t )|2

+ 3Nadd

∫
1 − 3 cos2 θ

|R|3 |φ(r′, t )|2dr′
]
φ(r, t ),

(2)

where V (r) = 1
2 (γ 2x2 + ν2y2 + λ2z2), γ = ωx/ω̄, ν =

ωy/ω̄, and λ = ωz/ω̄. The reference frequency ω̄ can be taken
as one of the frequencies ωx , ωy , or ωz or their geometric
mean (ωxωyωz)1/3. In the following we use Eq. (2) where we
have removed the “bar” from all variables.

For an axially symmetric (ν = γ ) disk-shaped dipolar BEC
with a strong axial trap (λ > ν, γ ), we assume that the dy-
namics of the BEC in the axial direction is confined in the ax-
ial ground state φ(z) = exp(−z2/2d2

z )/(πd2
z )1/4, dz = √

1/λ,
and we have for the wave function φ(r) ≡ φ(z)ψ (ρ, t ) =

1
(πd2

z )1/4 exp[− z2

2d2
z
]ψ (ρ, t ), where ρ ≡ ρ(x, y), ψ (ρ, t ) is the

effective 2D wave function for the radial dynamics and dz is
the axial harmonic-oscillator length. To derive the effective
2D equation for the disk-shaped dipolar BEC, we use φ(r) in
Eq. (2), multiply by the ground-state wave function φ(z), and
integrate over z to get the 2D equation [33,35,54]

i
∂ψ (ρ, t )

∂t
=

[
−∇2

ρ

2
+ V (ρ )d(t ) + 4πa(t )N |ψ (ρ, t )|2√

2πdz

+ 4πaddN√
2πdz

∫
dkρ

(2π )2
e−ikρ ·ρn(kρ, t )h2D (σ )

]

× ψ (ρ, t ), (3)

where the parameter d(t ) represents the strength of the ex-
ternal trap, which is to be reduced from 1 to 0 when the
trap is switched off. The dipolar term has been written in
Fourier space after taking the convolution of the correspond-
ing variables [33], n(kρ, t ) = ∫

dρeikρ ·ρ |ψ (ρ, t )|2, h2D =
2 − 3

√
πσ exp(σ 2){1 − erf(σ )}, σ = kρdz√

2
, λ = 9, and kρ =

(k2
x + k2

y )1/2. In Eq. (3) length is measured in units of charac-
teristic harmonic-oscillator length l = √

h̄/mω, angular fre-
quency of the trap in units of ω, time t in units of ω−1, and
energy in units of h̄ω.

We considered a pancake-shaped (disc-shaped) condensate
since azimuthal instabilities can be reduced in such conden-
sates by choosing appropriate trap frequencies which validates
the quasi-2D approximation. We considered an axially sym-
metric pancake-shaped condensate in a strong axial trap with
large system parameters λ = ωz/ω̄ = 9, where ω̄ = ωx = ωy .
We have checked from numerical simulations that the sta-
bility of the dipolar BEC occurs without any axial modes
or azimuthal instabilities being excited. We have repeated
our simulations for higher values of the parameter λ and got
similar results.

III. VARIATIONAL RESULTS

In the following, to obtain the governing equations of
motion of the condensate parameters, we use the variational
approach with the Gaussian ansatz as a trial wave function
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for the solution of Eq. (3) where the external potential is
absent [39]:

ψ (ρ, t ) = 1

R(t )
√

π
exp

(
− ρ2

2R(t )2
+ iβρ2

)
. (4)

The Lagrangian density for generating Eq. (3) with d(t ) = 0
is

L = i

2

(
ψ

∂ψ∗

∂t
− ψ∗ ∂ψ

∂t

)
+ |∇ρψ |2

2
+ 2πNa(t )√

2πdz

|ψ |4

+ 2πNa(t )√
2πdz

|ψ |2
∫

dkρ

(2π )2
eikρ ·ρn(kρ, t )h2D (σ ). (5)

The trial wave function (4) is substituted in the Lagrangian
density (5) and the effective Lagrangian per particle is calcu-
lated by integrating the Lagrangian density as

Leff = 2R(t )2β(t )2 + Na(t )√
2πdzR(t )2

+ 1

2R(t )2

+ R(t )2β̇(t ) − addη(ξ )√
2πdzR(t )2

,

with

η(ξ ) = 1 + 2ξ 2 − 3ξ 2d(ξ )

(1 − ξ 2)
, d(ξ ) = atanh

√
1 − ξ 2√

1 − ξ 2
,

and ξ = R(t )/dz. The Euler-Lagrangian equations for the
variational parameters R(t ) and β(t ) are obtained from the
effective Lagrangian in a standard fashion as

∂R(t )

∂t
= 2R(t )β(t ), (6)

∂β(t )

∂t
= 1

2R(t )4 + N [a(t ) − addη(ξ )]√
2πdzR(t )4

− 2β(t )2, (7)

By combining Eqs. (6) and (7), we get the following
second-order differential equation for the evolution of the
width R(t ):

∂2R(t )

∂t2
= 1

R(t )3 + 2Na(t )√
2πdzR(t )3

− Nadd�(ξ )√
2πdzR(t )3

, (8)

where �(ξ ) = 2 − 7ξ 2 − 4ξ 4 + 9ξ 4d(ξ )/(1 − ξ 2)2.
Since we consider a periodic modulation of the s-wave

interaction of the form a(t ) = ε0 + ε1 sin (�t ) on the sta-
bility of dipolar BEC, where ε0 and ε1 are the amplitudes
of constant and oscillating parts of the s-wave contact in-
teraction, respectively, a Kapitza averaging scheme can be
used to treat these oscillatory terms [55]. Such a modulation
of the contact interaction is possible by manipulating an
external magnetic or optical field near a Feshbach resonance
[41–43,45–48,53]. After including the oscillating nonlinearity
in the contact-interaction part, we get the following second-
order differential equation for the evolution of the width for
radial coordinates [33],

∂2R(t )

∂t2
= 1

R(t )3 + 2N [ε0 + ε1 sin (�t )] − Nadd�(ξ )√
2πdzR(t )3

. (9)

Now R can be separated into a slowly varying part R0 and
a rapidly varying part R1 by R = R0 + R1. When � � 1, R1

becomes of the order of �−2. Keeping the terms of the order of

up to �−2 in R1, we obtain the following equations of motion
for R0 and R1 [55]:

∂2R1

∂t2
= 2Nε1 sin (�t )√

2πdzR
3
0

, (10)

∂2R0

∂t2
= 1

R3
0

+ N [2ε0 − add�(ξ0)]√
2πdzR

3
0

− 6Nε1〈R1 sin (�t )〉√
2πdzR

4
0

,

(11)

where 〈· · · 〉 denotes the time average over the rapid
oscillation. From Eq. (10), using the solution R1 =
−2Nε1 sin(�t )/[

√
2πdz�

2R3
0] and substituting it into

Eq. (11), we obtain the following equation of motion for the
slowly varying part:

d2R0

dt2
= 1

R3
0

+ N [2ε0 − add�(ξ0)]√
2πdzR

3
0

+ 6N2ε2
1

2πd2
z �2R7

0

. (12)

The variational approximation suggests that the effect of the
DD interaction is to reduce the constant contact interaction
for add > 0. Immediately, one can conclude that the system
effectively becomes attractive for add > ε0. So one can have
the formation of bright solitons even for positive (repulsive)
scattering length, provided that add > ε0.

Equation (12) can be written as d2R0
dt2 = − ∂U (R0 )

∂R0
where the

effective potential U (R0) is given by

U (R0) = 1

2R2
0

+ N [2ε0 − addη(ξ0)]

2
√

2πdzR
2
0

+ N2ε2
1

2πd2
z �2R6

0

, (13)

where η(ξ0) = [1 + 2ξ 2
0 − 3ξ 2

0 d(ξ0)]/(1 − ξ 2
0 ) and

ξ0 = R0/dz. Now, we can analyze the nature of the effective
potential U (R0) versus R0 in the presence and absence of add

and ε1.
In Fig. 1, we show the stability properties of the 52Cr

condensate in the absence of an external trap potential in
Fig. 1(a) for repulsive two-body (ε0 = 15a0) and Fig. 1(b) for
attractive two-body (ε0 = −15a0) interactions. And the other
parameters are taken as add = 16a0, ε1 = 4ε0, � = 10π , and
N = 1000. In both panels, the dash-dotted curve represents
the potential in the presence of dipolar interaction alone,
the dashed curve represents the dipolar interaction with a
constant part of the contact interaction, and the continuous
curve represents the dipolar interaction with both constant and
oscillatory parts of the contact interactions. In the top panel,
we observe no negative value of the potential for all three
cases. Moreover, there is no trapping potential to prevent the
expansion of the width of the condensate.

But in the lower panel, we observe a negative potential for
condensate with DD interactions in addition to both constant
and oscillatory contact interactions (continuous curve). Here,
the attraction due to constant part of the two-body and DD
interactions is balanced by the oscillatory part of the two-body
interaction. The dashed curve corresponds to collapse of BEC
due to strong attractive contact two-body interaction.

In Fig. 2, the effect of the amplitude of the oscillatory
contact interaction (ε1) is depicted with and without the
function ε0. It is evident from the two panels that there is
an enhancement of the stability region of trapless dipolar
BEC due to the inclusion of oscillatory contact interaction
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FIG. 1. The effective potential using Eq. (12) showing the stabil-
ity properties of the trapless dipolar condensate.

in addition to the constant part of the contact interaction.
In the present work, we have used the relation ε1/ε0 = 4
which is already used in Refs. [45–47]. Also, if we increase

FIG. 2. (upper panel) Potential curves for varying values of the
amplitude of oscillating nonlinearity. (lower panel) Potential curves
for varying values of frequency of oscillation of the two-body
interaction.

TABLE I. Stability properties of trapless dipolar BEC by varia-
tional method.

U (R0) R0 at U (R0)
ε0 add ε1 � Minimum at minimum minimum

0 16a0 0 No
15a0 16a0 0 No

−15a0 16a0 0 No
15a0 16a0 4ε0 10π No

−15a0 16a0 4ε0 10π Yes −0.258 0.560
−20a0 16a0 4ε0 10π Yes −0.900 0.567
−25a0 16a0 4ε0 10π Yes −1.453 0.582
−15a0 16a0 ε0 10π Yes −5.237 0.246
−15a0 16a0 2ε0 10π Yes −1.550 0.365
−15a0 16a0 4ε0 10π Yes −0.259 0.560
−15a0 16a0 6ε0 10π Yes −0.003 0.749
−15a0 16a0 7ε0 10π No
−15a0 16a0 4ε0 15π Yes −0.900 0.567
−15a0 16a0 4ε0 20π Yes −1.453 0.582

the amplitude of the oscillatory part alone, ε1/ε0 > 4, it
decreases the depth of the minimum in the effective potential
and the trapless system will become unstable due to more
oscillation when compared with the attraction due to both the
DD interaction (add ) and the constant part of the two-body
interaction (ε0). But, if we decrease the amplitude of the
oscillatory part alone, ε1/ε0 < 4, it increases the depth of the
minimum in the effective potential and the trapless system
will become more stable. This is illustrated in the upper panel
in Fig. 2. Moreover, the trapless condensate is more stable
for higher frequency of oscillation �. In Table I, we present
systematically the stability properties of trapless dipolar BEC
with the effect of the oscillatory two-body contact interaction.
In the following, we confirm these predictions by using direct
numerical integration of the governing equation.

IV. NUMERICAL RESULTS

We solve the GP equation (3) by employing real-time prop-
agation with the split-step Crank-Nicolson method applied to
the diffraction operator [56,57]. The DD interaction is eval-
uated by fast Fourier transform [10]. The typical discretized
space and time steps for the numerical grid are 0.05 and 0.005,
respectively. In the numerical simulation, it is important to
remove the harmonic trap while increasing the nonlinearity
for obtaining the stability. Otherwise, the oscillations that
arise due to the sudden removal of the trap may lead to the
collapse due to attraction. In the course of time iteration, the
coefficients of the nonlinear terms are increased from 0 at each
time step as g(t ) = f (t )gf {a1 − b1 sin[�t]}, with f (t ) = t/τ

for 0 � t � τ , f (t ) = 1 for t > τ and gf = 4πNa. At the
same time the trap is removed by changing d(t ) from 1 to 0
by d(t ) = 1 − f (t ). During this process, the harmonic trap
is removed, and after the gf is attained at time τ , the peri-
odically oscillating nonlinearity g(t ) = gf [a1 − b1 sin �t] is
effected for t > τ [45–47]. In the following, we present results
for 52Cr atoms which has a moderate dipole moment with
add = 16a0 [1,2]. We consider different dynamical regimes
wherein we alternatively study the effects of inclusion of the
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FIG. 3. Density profiles for trapless dipolar BEC with different
values constant part of the two-body interaction. (a) ε0 = −15a0,
ε1 = 0; (b) ε0 = −20a0, ε1 = 4ε0; (c) ε0 = −25a0, ε1 = 4ε0; and
(d) ε0 = −28a0, ε1 = 4ε0. Other parameters are add = 16a0, N =
1000, and � = 10π .

time-dependent periodic two-body interaction as well as the
DD interaction so as to understand their effects on the system
dynamics.

In Fig. 3, we show the dynamical stabilization of the
trapless dipolar BEC. It is already known that, in the repulsive
case, the trapless condensate expands in time. On the other
hand, for the attractive case, it collapses in time. But in
the presence of the oscillatory interaction (ε1), the stability
of the trapless condensate is progressively increasing with
increasing constant part of the two-body interaction along
with its oscillatory part (ε1). This is clearly explained in Fig. 3.
Here the frequency of oscillation of the time-periodic term is
kept constant at � = 10π . In Fig. 3(a) density profile shows
the dynamics for ε0 = −15a0, ε1 = 0. Here, the density
collapses due to the strong attraction by the combination of
both the DD interaction and the constant two-body interaction.
But, if we include the oscillatory contact interaction
(ε1 = 4ε0), the system becomes stable up to t = 5 time units
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0

2

4

t

<
ρ>

 

 

ε =−15a

ε =−18a

ε =−20a

ε −25a

ε =−28a

FIG. 4. Plot of root mean squared distance 〈ρ〉 rms as a func-
tion of time t for different values constant part of the two-body
interaction.
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FIG. 5. Density profiles for (a) ε0 = −28a0, � = 10π and
(b) ε0 = −20a0, � = 20π . Other parameters are add = 16a0, N =
1000, and ε1 = 4ε0.

in Fig. 3(b). Furthermore, if we increase ε0 to ε0 = −25a0 and
ε0 = −28a0 in Figs. 3(c) and 3(d), respectively, the system be-
comes stable up to t = 6 and t = 10 time units, respectively.

In Fig. 4, we show the root mean squared distance 〈ρ〉rms

of the trapless dipolar BEC. For ε1 = 4ε0, the 〈ρ〉rms of
the condensate is stable up to t = 2 time units. But, if we
increase ε0 to ε0 = −18a0, ε0 = −20a0, ε0 = −25a0, and
ε0 = −28a0, the 〈ρ〉rms of the condensate is becomes stable
up to t = 4, t = 5, t = 6, and t = 10 time units, respectively.
The oscillation and exponential growth of the curves is for
stable and collapse of the system, respectively. From Figs. 3
and 4, it is clear that the oscillating contact interaction can
help in stabilizing the trapless dipolar BEC, because the effect
of the oscillatory term is to induce an additional potential due
to Kapitza averaging [45–47], the profile and magnitude of
which depends on the frequency of oscillation.

Now we illustrate the effect of varying the frequency of
oscillation of the time-periodic oscillatory contact interaction.
The results are depicted in Fig. 5 for increasing values of
the frequency of oscillation �. As can be seen, an increase
in the oscillation frequency further helps in the stabilization.
In Fig. 6, we show the root mean squared distance 〈ρ〉rms

for increasing values of the frequency of oscillation �. From
Figs. 4 and 6 we can see that the oscillation in 〈ρ〉 persists
only for a particular duration of time depending on the system
parameters. From Eq. (13) we can see that, when ε1 is small
or when |ε0| is large, the effective force is not sufficient to
prevent the atoms from collecting at the center. As a result,
the peak density |ψ (ρ = 0)|2 grows and the condensate width
decreases. The condensate then expands due to repulsive
first and the last terms in the effective potential [Eq. (13)].
Subsequently, most of the expanded atoms collect at the center

0 5 10 15 20
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0
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4

t

<
ρ>
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, ω = 0

ε
0
=−28a

0
, ω = 10π
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0
, ω = 15π

ε
0
=−20a

0
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FIG. 6. Plot of root mean squared distance 〈ρ〉 rms as a function
of time t .
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TABLE II. Stability properties of trapless dipolar BEC
(comparison).

U (R0) Min. Inference
ε0 add ε1 � (analytic) (numerics)

15a0 16a0 0 No Unstable (expand)
−15a0 16a0 0 No Unstable (collapse)

15a0 16a0 4ε0 10π No Unstable (expand)
−15a0 16a0 4ε0 10π Yes Stable (up to 2 time units)
−18a0 16a0 4ε0 10π Yes Stable (up to 4 time units)
−20a0 16a0 4ε0 10π Yes Stable (up to 5 time units)
−25a0 16a0 4ε0 10π Yes Stable (up to 6 time units)
−28a0 16a0 4ε0 10π Yes Stable (up to 10 time units)
−20a0 16a0 ε0 15π Yes Stable (up to 18 time units)
−20a0 16a0 ε0 20π Yes Stable (up to 20 time units)
−20a0 16a0 ε0 24π Yes Stable (up to 50 time units)

due to the attractive terms (second term) in the effective
potential [Eq. (13)]. This process of oscillation (contraction
and expansion) of the condensate goes on for some time.
Since the system is trapless, after each expansion some of the
atoms scattered with high energy cannot return to the center.
The oscillation decays and the condensate starts to expand,
as shown in Figs. 4 and 6. From Figs. 3–6, it is clear that
the oscillating contact interaction can help in stabilizing the
trapless dipolar BEC, because the effect of the oscillatory term
is to induce an additional potential due to Kapitza averaging
[45–47], the profile and magnitude of which depends on the
frequency of oscillation. A comparison between the analytical
and numerical results for different parameters values is sum-
marized in Table II, showing good agreement.

V. COLLECTIVE EXCITATIONS

It is well known that collective modes can be induced in the
condensate by several means, such as rotating the condensate,
modulation of the external trapping potential, modulation of
the s-wave scattering length, etc. It has been shown that the
excitations of low-lying collective modes, such as the breath-
ing mode, can be induced by harmonic modulation of the
s-wave scattering length [47,58]. Bismut et al. [59] measured
the effect of dipole-dipole interactions on the frequency of
a collective mode of a Cr BEC. Recently, we studied the
hydrodynamics of collective excitations such as quantized
vortices and solitons in a dipolar Bose-Einstein condensate
induced by an oscillating trapping potential [60].

In the present case, we study the collective excitation of
the condensate by using a variational method and numerical
simulations. From Eq. (13) we obtain the minimum of the
effective potential U (R0) at

R4
min = − 6N2ε2

1

d2
z �2

{
2π + √

π
2 N [2ε0 − addη(ξ0)]

} . (14)

To obtain the frequency of the breathing mode (small os-
cillation) we linearize Eq. (12) around the minimum of the
effective potential U (R0) [Eq. (13)] [47]. For this we expand
the effective potential around the minimum of the potential
by a Taylor series keeping only up to quadratic term in
the expansion. The frequency of the small oscillation or the

 0  5  10  15  20

< 
ρ >

 

t

4

2

0

-2

FIG. 7. Plot of root mean squared distance 〈ρ〉 rms as a function
of time t for ε0 = −20a0, � = 20π , add = 16a0, N = 1000, and
ε1 = 4ε0.

breathing mode around the minimum as obtained variationally
is given by

ω2
br = d2

z �2
{
2π + √

π
2 N [2ε0 − addη(ξ0)]

}2

3πN2ε2
1

. (15)

Figure 7 shows the breathing mode as obtained from the nu-
merical simulations. The figure shows both the rapid oscilla-
tion part and a slow, smoothly varying breathing mode caused
by the effective potential due to the oscillating interaction.

VI. CONCLUSION

In conclusion, we have stabilized the trapless dipolar Bose-
Einstein condensate by considering the constant and oscilla-
tory parts of the short-range contact interaction. The effect of
the oscillatory nonlinear term in the short-range contact in-
teraction is to provide an additional confining potential which
helps in the stabilization of the trapless dipolar BEC. For this
aim, we first performed a variational analysis on the governing
equation and obtained the equations of motion. Using this
we derived the effective potential which is experienced by
the system. A minimum in the potential signifies a possible
stable state. Our study shows that the stability of the dipolar
BEC can be increased by considering the oscillatory contact
interaction. We have shown that the dipolar BEC can be
stabilized over various lengths of time for appropriate choices
of the system parameters. To further prove this point, we
performed direct dynamical evolution of the condensate using
the harmonic oscillator solution to understand the stability
properties. As from variational analysis, numerically also
we conclude that the trapless dipolar BEC is stabilized and
also the stability of the trapless dipolar condensate is highly
enhanced by the time-periodic contact interaction in addition
to the constant part of the contact interaction. Even though the
periodic temporal modification of the atomic scattering length
achieved by Feshbach resonance has been used to stabilize the
conventional BECs, to the best of our knowledge, such exper-
imental or theoretical studies have not yet been reported for
the dipolar condensate. Such stable dipolar BECs can be used
for different applications which require condensates to remain
stable over large timescales. Our predictions of dynamically
stabilizing a dipolar condensate by temporal modulations of
the two-body interaction can be tested in experiments with
pancake-shaped condensates. We also studied the collective
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excitations in the system induced by the effective potential
due to oscillating interaction.
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