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Symbolic high-order Markov chains: Entropy and compressibility
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Using the bilinear Markov chain approach, we study statistical properties of natural random symbolic
sequences with complex correlation properties. In the limit of weak correlations, we present analytically
the entropy of sequence by means of correlation functions of the second and third orders. We illustrate the
applicability of the developed theory to some sequences naturally arising in biology and chaotic dynamics. We
evaluate numerically the entropy of DNA nucleotide sequences and sequences obtained by dichotomization of a
logistic map. Using the connection between the compressibility of random sequence and the algorithmic entropy,
we compare the levels of entropies, obtained by means of a combination of analytical and numerical methods,
with the algorithmic entropy calculated by the standard files archivers. We show that our method gives a much
lower level of entropy as compared to the best archivers. Numerical simulations show also that an account of
third-order correlation functions significantly decreases the entropy calculated in the framework of the additive
Markov chain approach.
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I. INTRODUCTION

Random sequences with a finite number of state space
exist as natural sequences (DNA or natural language texts) or
arise as a result of coarse-grained mapping of the evolution of
the chaotic dynamical system into a string of symbols [1,2].
The items of sequence can be phonemes, syllables, words, or
DNA’s base pairs according to the application.

Such random sequences are the subject of study of the al-
gorithmic (Kolmogorov-Solomonoff-Chaitin) complexity, in-
formation theory, computability, statistical inference problem
and have many application aspects. Among them are data
compression [3] and the natural language processing [4],
which is the important branch of the artificial intelligence.

One of the ways to get a correct insight into the nature of
correlations in sequences with nontrivial information content
consists in an ability to construct a correlated sequence of
symbols having the same statistical characteristics as the
initial system under study. There exist many algorithms for
generating long-range correlated sequences—the high-order
Markov chains are ones among the most important. Such
random chains, the method of their generation and all their
statistical properties are completely determined by the condi-
tional probability distribution function (CPDF).

The main purpose of our work is to elaborate a reliable
tool for reconstructing the CPDF of random finite-length
sequences considering them as the high-order Markov chains
with finite alphabet. The quality of different methods of
CPDF’s reconstruction is verified by studying the entropy and
compressibility of random chains, numerically constructed
with these CPDFs. The principle of such verification consists
in the close connection between the entropy and compress-
ibility explained below by Eq. (13)—the better CPDF is re-
constructed, the lower entropy of the random sequence can be
achieved, the higher level of its compression may be reached.
The typical examples of sequences with correlated disorder—
DNAs and literature texts—can be found in Refs. [5,6].

The classical method of the CPDF construction is based on
calculation of the frequencies of word occurrence. The N th-
order CPDF, i.e., the probability of definite symbol aN+1 =
α occurring after known N subsequence a1, . . . , aN = aN

1
can be found by using the well-known standard likelihood
method,

P
(
aN+1 = α

∣∣aN
1

) = P
(
aN

1 , α
)

P
(
aN

1

) , (1)

where P (aN
1 ) and P (aN

1 , α) are the joint distribution functions
of the N subsequence aN

1 and (N + 1) subsequence (aN
1 , α)

occurring, respectively; hereafter we use the concise notation
ai−1

i−N for N word ai−N, . . . , ai−1. In our context, the N word
means a subsequence of N symbols.

For the long-range correlated systems another method is
more appropriate. In this framework we study complexes of
two and three symbols, transforming the frequencies of their
occurrence into correlation functions. After that the entropy
of sequence is presented analytically by means of correlation
functions of the second and third orders. An applicability of
each method for the sequence of finite length M is defined
by the possible length of words or by the distances between
letters in the complexes, which allows one the calculation of
the CPDF with a sufficient precision.

Obviously, the average number of some word aL
1 occurring

in a whole sequence of given length M and fixed dimension
m of the alphabet exponentially decreases with word length L.
Suppose that the sequence is weakly correlated (probabilities
of all words of fixed length are almost equal). Then, the
length Nmax of word, that occurs on average one time, is
determined from the evident equality M � mL, which gives
Nmax � ln M/ ln m.

The correlations decrease the number of typical words
that can be found in the sequence, and this phenomenon
increases the length Nmax. In the presence of correlations, the
frequencies of words occurrence differ from one another and,
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more specifically, the most common typical words contribute
to entropy, and “discriminated” words drop out of the count.
This conclusion follows from the famous result of the in-
formation theory, known as the Shennon-McMillan-Breiman
theorem [7]. Above, in our qualitative reasoning, we have
neglected this phenomenon of correlations, although in the
below following consideration this effect is decisive and will
be taken into account.

The words of length L � Nmax � ln M/ ln m are well
represented in the sequence of length M , so that one can
use the statistical approach to these words and calculate the
probabilities of their occurrence in the chain. By contrast, the
statistics of longer words, L � Nmax, is not well defined and
the finite length sequences cannot be considered as a good
probabilistic object for such words.

So, the statistical properties of the studied sequence can
only be reconstructed up to the length of order L � Nmax.
For the correlation length Rc < Nmax the sequence should be
considered as quasiergodic because the words of length Rc

provide the statistically meaningful information for recon-
structing the conditional probability distribution function of
the sequence.

In the case Nmax < Rc the statistically important infor-
mation in the interval Nmax < L < Rc is inaccessible in the
framework of likelihood estimation method, Eq. (1), and can
only be constructed with the proposed method of the bilinear
Markov chains. Below in Figs. 2 and 3 we will see the
realization of these two regimes.

A method that allows us to use the information on the
symbols spaced by a distance Nmax � r � min(Rc, rmax), not
only in the narrower region with r � Nmax, is connected
with the high-order additive and bilinear Markov chains—
constructions proposed in Ref. [8]. We highly recommend this
paper to the reader before reading this article.

II. ANALYTICAL APPROACH

A. Symbolic Markov chains

Consider a semi-infinite random stationary ergodic
sequence S of symbols (letters, characters) ai , S = a0, a1,

a2, . . . , taken from the finite alphabet A = {α1, α2,

. . . , αm}, ai ∈ A, i ∈ N+ = {0, 1, 2...}. We use the notation
ai to indicate a position i of the symbol a in the chain and the
unified notation αk to stress the value of the symbol a ∈ A.

We suppose that the symbolic sequence S is the high-order
Markov chain [6,9–11]. The Markov chain is of the N order if
it possesses the following property: the probability of symbol
ai to have a certain value αk ∈ A under the condition that
all previous symbols are fixed depends only on N previous
symbols,

P
(
ai = α

∣∣ai−1
0

) = P
(
ai = α

∣∣ai−1
i−N

)
, i � N. (2)

Below we represent the conditional probability function
as the sum of multilinear monomials ai of different orders
(from zero up to the second order). The usefulness of such
representation can be expressed in the two following sections.

B. Additive CPDF

Taking into account all difficulties to use the CPDF of gen-
eral form Eq. (2), we should search some simplified models to
reproduce properties of the real CPDF. In particular, at the first
stage, we can suppose that the symbolic Markov chain under
consideration is additive, i.e., its conditional probability is
an additive function of random variables ak, k = i − N, . . . ,

i − 1,

P (1)
(
ai = α

∣∣ai−1
i−N

) = pα +
N∑

r=1

∑

β∈A
Fαβ (r )[δ(ai−r , β ) − pβ],

(3)

where δ(· · · ) is Kronecker delta, pα = δ(ai, α) is the relative
number of symbols α in the chain, or their probabilities of
occurring, and Fαβ (r ) is proportionality factors, referred to
below as memory functions.

The additivity means that the previous symbols ai−1
i−N exert

an independent effect on the probability of the symbol ai = α

occurring. The first term in the right-hand side of Eq. (3)
is responsible for correct reproduction of statistical proper-
ties of uncorrelated sequences (the so-called discrete white
noise); the second one takes into account and reproduces
binary correlations among symbols of the random sequence
under generation. For any values of α, β ∈ A and r � 1 the
relationship between the correlation and memory functions is
of the form (see Ref. [12])

Cαβ (r ) =
N∑

r ′=1

∑

γ∈A
Cαγ (r − r ′)Fβγ (r ′), (4)

where the symbolic two-point correlation function is de-
fined as

Cαβ (r )= [δ(ai, α) − pα][δ(ai+r , β ) − pβ], α, β ∈A. (5)

An approximate solution of Eq. (4) for the memory function
in the limit of weak correlations is

Fαβ (r )= Cβα (r )

pβ

. (6)

C. Bilinear CPDF

The right-hand side of Eq. (3) contains two first terms of
asymptotic expansion of the exact form, Eq. (2) (see details in
Refs. [8,13]). The next term Q(2) is

Q(2)(ai = α
∣∣ai−1

i−N

) =
∑

βγ∈A

∑

1�r1<r2�N

Fα;βγ (r1, r2)

×{[δ(ai−r1 , β ) − pβ][δ(ai−r2 , γ ) − pγ ]

−Cγβ (r2 − r1)}. (7)

The conditional probability function that contains linear term
Padd = P (1)(·|·) and bilinear function Q(2) defines the bilinear
Markov chain [8].

D. Entropy of the Markov chains

To estimate the conditional entropy of stationary sequence
S of symbols ai one could use the Shannon definition for the
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block entropies HL of block length L,

HL = −
∑

a1···aL∈A
P

(
aL

1

)
log2 P

(
aL

1

)
. (8)

The conditional entropy, or the entropy per symbol, is
given by

hL = HL+1 − HL = h
(
aL+1

∣∣aL
1

)
. (9)

This quantity specifies the degree of uncertainty of the (L +
1)th symbol occurring and measures the average information
per symbol if the correlations of the (L + 1)th symbol with
preceding L symbols are taken into account. The conditional
entropy hL can be presented in terms of the conditional
probability distribution function

h
(
aL+1

∣∣aL
1

) = −
∑

aL+1∈A
P

(
aL+1

∣∣aL
1

)
log2 P

(
aL+1

∣∣aL
1

)
. (10)

E. Multilinear entropy presentation

The conditional entropy of a stationary ergodic weakly cor-
related random sequence can be approximately expressed [12]
in terms of symbolic two-point correlation functions. The
result of its analytical evaluation in the additive approxima-
tion is

hL = h0 − 1

2 ln 2

L∑

r=1

∑

α,β∈A

C2
αβ (r )

pαpβ

. (11)

The correction due to the third-order correlation obtained
by the same method with using the bilinear CPDF is of the
form [13]

�hbil
L = − 1

2 ln 2

L∑

r1<r2

∑

α,β,γ∈A

C2
βγα (r2, r1)

pαpβpγ

. (12)

The correlation functions and other statistical characteristics
of the Markov chain are deterministic quantities only in the
limit of infinite lengths of the random sequence. For this rea-
son, under calculations we eliminate fluctuations of random
quantities that can contribute to the entropy of finite random
chains, as was done in [12].

To obtain Eqs. (11) and (12), we have supposed that
correlations in the random chain are weak. This is not a very
severe restriction. Many examples of such systems, described
in the framework of the weak correlation approximation, are
given in Ref. [14]. The randomly chosen example of DNA
sequences supports this conclusion. The strongly correlated
systems, which are opposed to weakly correlated chains, are
nearly deterministic. For their description we need a com-
pletely different approach. Their study is beyond the scope
of this article.

F. Prediction and arithmetic coding

According to the information theory, there is a straight con-
nection between the information entropy, the ability of sym-
bols prediction, and the compressibility of data arrays [15,16].

Having a message composed of symbols over some finite
alphabet and knowing the probability of appearance of each
symbol we seek to represent the message using the smallest

possible number of bits. For this purpose, the most convenient
seems the entropy encoders, namely, the adaptive arithmetic
coding [17].

Arithmetic coding is a data compression technique that
encodes the source binary string by creating another binary
code string, which is a number between 0 and 1. The method
starts with the interval [0, 1), and narrows it with each read
symbol of sequence, taking into account its probability. The
algorithm is designed such that a high-probability symbol nar-
rows the interval less than a low-probability symbol (with the
result that higher-probability symbols require less information
to describe).

The length of the resulting binary chain is determined by
the size of the final segment. The degree of compression is
maximal in the case when the probabilities of the symbols
occurring are predicted most accurately. The efficiency of the
coding method can be expressed by means of its compression
coefficient k defined in information theory [18],

k = no. of bits after compression

no. of bits before compression
= h

log2 m
. (13)

This simple formula reflects a concept that a maximally
compressed sequence is totally random, does not contain any
correlations and its length, no. of bits after compression, is the
algorithmic Kolmogorov complexity of the initial sequence.

It should be stressed that the model described in our
article, as well as standard archivers, leads to the lossless
compression: The calculation of each next character means
a narrowing of the working segment, by choosing the left or
right part of it. Therefore, as a result of processing, we obtain
the final segment, whose coordinates are uniquely determined
by the entire sequence. By setting the position of a segment
with sufficient accuracy, we obtain the lossless encoding. For
effectiveness of the arithmetic compression, it is necessary to
know statistics of the words (or the two- and three-letter com-
plexes in our case) of the sequence. An inaccurate evaluation
of the statistics of the compressed sequence leads to the worst
compression, which remains nevertheless a lossless one.

Let us illustrate the applicability of the developed theory to
some random weakly correlated sequences naturally arising in
biology and chaotic dynamics.

III. NUMERICAL SIMULATION

A. Entropy of a DNA sequence in the additive CPDF approach

In Fig. 1 the conditional entropies per symbol versus the
length L for the DNA sequence of Drosophila melanogaster,
NC 004354.1 taken from the NCBI base [19], are demon-
strated. The sequence of nucleotides is transformed into a
binary file, a sequence of bits, by coding each nucleotide
with two bits: A ⇒ 00, C ⇒ 01,G ⇒ 10, T ⇒ 11 and then
converted every eight bits into one byte.

The solid line corresponds to the entropy estimation based
on the approximate analytical formula, Eq. (11), with nu-
merically estimated symbolic correlation functions, Eq. (5).
The compressibility level of the correlated sequence indicated
in Fig. 1 by the dashed straight horizontal line is calculated
by applying to the sequence the standard archiver 7Zip. The
maximum compression is provided by the PPMd algorithm
with the dictionary size equal to 1024 MB and the word size
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FIG. 1. The conditional entropies h per symbol vs the length
L for R3 chromosome DNA from the Drosophila melanogaster
of length M ≈ 2.7 × 107. The solid line is the entropy calculated
in the weak pair correlations approximation, Eq. (11). The dashed
horizontal line is the average compressibility of sequence by the
standard file archiver, expressed in the entropy unities, Eq. (13).

equal to 32. We see a much lower level of entropy (the solid
line in Fig. 1) with respect to algorithmic entropy obtained by
the standard archivers.

As mentioned above, Eqs. (11) and (12) are valid only in
the case of weak correlations. This condition can be repressed
in terms of correlation functions, |Cαβ (r )| � Cαβ (0), or in
terms of CPDF, |P (ai = α|ai−1

i−N ) − pα| � 1. In practice, the
verification of these conditions for each pair (α, β ) of random
variables can be quite cumbersome and complicated. There-
fore, one can roughly estimate their fulfillment by comparing
the contribution to the entropy caused by correlations, h0 −
hL, with the uncorrelated entropy h0. For the example of the
DNA shown in Fig. 1, this condition is approximately 0.3 �
2, which is good enough for the criterion of weak correlations.

B. Bilinear approximation

Now, let us study the effect of the third-order correlations
on the CPDFs. We show that the third-order correlation
functions can significantly lower the entropy calculated in
the framework of the additive Markov chain approach and
improve the compressibility of random sequences. In each of
the cases considered below the results are obtained by taking
into account all terms in Eqs. (11) and (12) with numerically
calculated correlation functions (of the second and third order)
for the given sequences. The first example is the chaotic
deterministic system with relatively weak and short-range
correlations and the second one is the same DNA sequence
as that studied above.

1. Mapping

In Fig. 2 we present the plot of the conditional entropy
per symbol versus the length L for the quasirandom se-
quence obtained by a coarse-graining of logistic map, xn+1 =
μxn(1 − xn). Dichotomization of continuous variables by the
coarse-graining consists in replacement (after generation) of
the numbers xn by 0 or 1, if xn ∈ (0, 1/2) or xn ∈ [1/2, 1),
respectively. The third-order correlations are taken into

FIG. 2. The conditional entropies for the dichotomized logis-
tic map: xn+1 = μxn(1 − xn). The length of generated sequence
is M = 105, the parameter μ = 3.80, and the Lyapunov exponent
� = 0.43. The bottom dotted curve presents the block entropy hbl,
Eqs. (8)–(10), obtained by the estimation of the block probability
occurring, Eq. (1); the top dashed curve is the entropy Eq. (11); the
solid curve, hbil, is the result obtained by taking into account both
terms Eqs. (11) and (12) with r � 60 for the pair correlation function
and r1 < r2 � 30 for the third-order correlator. The vertical line at
L ≈ 16 indicates the length of words Nmax. The straight horizontal
dash-dotted line indicates the average compression of the sequence
by the standard 7Zip file archiver.

account at L < 30 because for the larger L their contributions
disappear. It seems plausible to accept that the value of the
block entropy per letter hbl at L � 14 becomes incorrect. At
the same time the result for the entropy hbil (not shown in the
figure) remains valid until L � 103.

The compressibility level of the correlated sequence in-
dicated in Fig. 2 by the straight horizontal dash-dotted line
is calculated in the same way as for DNA, by applying the
standard archiver 7Zip to the sequence. In this case, the
optimal compression is achieved with the algorithm BZip2
(the dictionary size is 900 KB and the block size is 64 KB).

The proximity of the upper dashed line, where the pair
correlations are only taken into account, and the straight hor-
izontal dash-dotted line indicates that the standard archivers
take into account the pair correlations only. A satisfactory
coincidence of the bottom dotted curve and the solid line in the
interval 9 < L < 15 says that the proposed bilinear method
correctly takes into account short-range statistics, unlike the
standard compressor.

We can conclude that the entropy level for the chaotic data
is higher than in the previous example of the DNA sequence.
This is due to the higher level of correlations and larger value
of the correlation length Rc in the DNA sequence as compared
with the logistic map sequence (for the chosen value of the
parameter μ).

2. Bilinear CPDF for DNA sequences

The importance of taking into account the third-order
correlation functions is shown in Fig. 3, where we present the
plot of the conditional entropy per symbol versus the length L
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FIG. 3. The conditional entropies h per symbol vs the length
L for R3 chromosome DNA from the Drosophila melanogaster
nucleotide sequence translated into a binary file. Description of
all curves coincides with that of Fig. 2. The pair and third-order
correlation functions are taken into account in regions r � 104 and
r1 < r2 � 10, respectively. The vertical line at L ≈ 12 indicates the
length of words Nmax. In the inset, the same curves are shown in the
large scale.

for the DNA sequence of the R3 chromosome of Drosophila
melanogaster. Under calculations we took into account the
terms Cβγα (r2, r1) at r1 < r2 � 10. For r > 10 the third-order
correlations give a negligibly small contribution.

In distinction from Fig. 2 there is a common region of the
entropy coincidence at L < 6 only. We see that the applica-
bility of the likelihood method is lost long before (at L ∼ 10,
the lower curve) all pair and third-order correlations are taken
into account (at L ∼ 7 × 103, in the inset).

Figure 3 shows that the gain in the level of compress-
ibility, which we obtain by the method considered here (the

combination of additive and bilinear parts of CPDF) with
respect to the standard file archivers is

�hbil

�hstand
= 2 − 1.67

2 − 1.93
≈ 4.7. (14)

IV. CONCLUSION

We have elaborated the accurate estimation for the CPDF
of random symbolic sequences with complex correlation
properties. The failure of the standard method, Eq. (1), even
for moderate distances L is demonstrated. We have shown
that for DNA nucleotide sequences a much lower level of
entropy (and, probably, a higher level of compression) can be
obtained by the method presented here than by the standard
file archivers, even in the case of using the pair correlations
only. The entropy of sequence was expressed by means of
the correlation functions of the second and third orders, in the
limit of weak correlations (11) and (12). Using this connection
the entropy of the DNA nucleotide sequences and sequences
obtained by dichotomization of the logistic map had been
evaluated.

Using the connection between the compressibility of ran-
dom sequence and the algorithmic entropy, the evaluated
levels of entropies had been compared with the algorithmic
entropy calculated by the standard files archivers. Numerical
simulations show that the third-order correlations can signif-
icantly lower the entropy calculated in the framework of the
additive Markov chain approach.

The result Eq. (14) allows us to hope that the method
proposed in this work can be used for the creation of data
compressors with the properties superior to the currently
known archivers.

Our study was limited by the additive and bilinear Markov
chain models. Nevertheless, there are no principal restrictions
to use the higher-order memory and correlation functions.
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