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We present an analytical framework to study the first-passage (FP) and first-return (FR) distributions for the
broad family of models described by the one-dimensional Fokker-Planck equation in finite domains, identifying
general properties of these distributions for different classes of models. When in the Fokker-Planck equation the
diffusion coefficient is positive (nonzero) and the drift term is bounded, as in the case of a Brownian walker,
both distributions may exhibit a power-law decay with exponent −3/2 for intermediate times. We discuss how
the influence of an absorbing state changes this exponent. The absorbing state is characterized by a vanishing
diffusion coefficient and/or a diverging drift term. Remarkably, the exponent of the Brownian walker class of
models is still found, as long as the departure and arrival regions are far enough from the absorbing state, but the
range of times where the power law is observed narrows. Close enough to the absorbing point, though, a new
exponent may appear. The particular value of the exponent depends on the behavior of the diffusion and the drift
terms of the Fokker-Planck equation. We focus on the case of a diffusion term vanishing linearly at the absorbing
point. In this case, the FP and FR distributions are similar to those of the voter model, characterized by a power
law with exponent −2. As an illustration of the general theory, we compare it with exact analytical solutions
and extensive numerical simulations of a two-parameter voterlike family models. We study the behavior of the
FP and FR distributions by tuning the importance of the absorbing points throughout changes of the parameters.
Finally, the possibility of inferring relevant information about the steady-sate probability distribution of a model
from the FP and FR distributions is addressed.
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I. INTRODUCTION

The first-passage (FP) and first-return (FR) times of a
stochastic variable are defined as the times needed for the
variable to reach a particular value from a given initial con-
dition or to return to the initial condition for the first time.
They provide valuable information on the temporal proper-
ties of the system and in turn are relatively easy to obtain
experimentally or by means of numerical simulations [1–5].
As consequence, the calculation of these quantities has had
immediate applicability in a myriad of problems: spreading
of diseases [6], animal or human movement [7], neuron firing
dynamics [8], diffusion in bounded domains [9–14], diffusion
in expanding mediums [15], diffusion-controlled reactions
[16], controlled kinetics [17,18], the computation of reaction
rates in chemical reactions [19], run-and-tumble particles
[20], renewal and nonrenewal systems [21], or nonequilibrium
systems in general [22].

One of the most simple problems where first-passage prop-
erties have been studied is the random walk on a semi-infinite
line. The position xn of the walker after n time steps veri-
fies xn = xn−1 + ηn, where the jumps ηn are identically and
independent random variables. Here the interest is in the per-
sistence probability Q(x0, n) or the probability of the random
walk with the initial condition x = x0 to survive (not to reach
the origin) until at least time n. From the persistence prob-
ability one can obtain the FP probability to reach the origin
at time n starting at x0 > 0 as f (x = 0, n|x0) = Q(x0, n) −
Q(x0, n + 1). The same formula holds, with x0 = 0, for the
FR probability to return to the origin at time n. Sparre-
Andersen [23] showed that Q(0, n) (and hence the FR to

the origin) has a universal character, meaning that Q(0, n) =(2n

n

)
2−2n for any symmetric and continuous jump distribution.

This implies an algebraic decay of Q(0, n) as n−1/2 and
of P (0, n) as n−3/2 for n → ∞. The study of persistence
exponents has been also extended to the random walk in a
lattice [2,24], with similar results, and to nonsymmetric jump
distributions [24,25]. In the latter case, one of the main results
is the breakdown of the aforementioned universality; in par-
ticular, if the jump distribution has an infinite second moment,
the decay of the persistence probability is not purely algebraic
(see [22,24]).

Another relevant example is the Brownian walker, a
continuous-time version of the random walker [3]. In this
case, the stochastic process becomes a purely diffusive pro-
cess, so the probability distribution for the position of the
walker satisfies a Fokker-Plank equation with a constant dif-
fusion coefficient and zero-drift term. In the one-dimensional
(1D) case the FP distribution is calculated [26] and it decays
in time as a power law with exponent −3/2, but now with
an exponential cutoff if the domain is bounded [3]. Within
the context of the 1D Fokker-Planck equation, other decay
exponents, different from the one of the Brownian walker,
have been observed for the FP and FR distributions. This is
the case of neural avalanches [27], described by a Fokker-
Planck equation with a position-dependent diffusion coef-
ficient, where the FP distribution to the state of no active
neurons from an infinitesimally close active state shows a
power law of exponent −2. An important issue to take into
account when explaining such a decay is the absorbing nature
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of the boundary. In other systems with absorbing states, such
as the voter model [28], dynamic percolation [29], or the
Manna model [30], the FP distribution, from a departure point
very close to the boundary towards the absorbing state, also
shows an exponent −2 [31].

In this work we explore the FP and FR time distributions of
the family of models described by a 1D Fokker-Planck equa-
tion in finite domains, with state-dependent drift and diffusion
terms. These models can be seen as the continuous-time limit
of the random walker with an x-dependent nonsymmetric
jump distribution with finite second moment. In the language
of the random walker, if the length of the system explored
by the walker is large enough, we provide compelling ev-
idence, using a general approximate methodology, that the
FP and FR distributions have an intermediate power-law time
decay whose exponents can take different values. The length
explored by the walker depends on the system size and on
the location of the initial and final (target) positions and the
values of the exponents depend on some conditions involving
the diffusion and drift terms as well as the initial and final
positions. For the class of models for which the diffusion
does not vanish and the drift remains bounded, the exponent
is −3/2, hence the result of Sparre-Andersen is generally
obtained. Furthermore, the exponent −2 may appear when
the diffusion coefficient vanishes linearly at some accessible
position of the random walk. Observe, however, that the
intermediate power-law time decays of both cases can be
followed by a nonuniversal scaling which also might have a
power-law scaling in time [32].

As illustrations of the predictions of our general theory,
we systematically study, both analytically and by extensive
simulations, different models of increasing complexity. The
models can be mapped into a family of two-parameter voter
models which allow us to analyze the interplay between
the −3/2 and −2 exponents. These models include the
random walk, the Ornstein-Uhlenbeck process, the voter
model itself [19,33–36], and two noisy variations [37–41] of
the latter. We note, however, that the 1D x variable of the
Fokker-Planck equation has different meanings for different
models. While it represents a space variable for the random
walk, it is a macroscopic density variable in the mean-field
approximation for voter models in large lattices of different
spatial dimensionality.

The outline of the paper is as follows. In Sec. II we briefly
review the relation between the 1D Fokker-Planck equation
and the FP distribution, leaving a more general treatment
to Appendixes A and C, where we discuss in particular the
difficulties of computing the FR distribution. In Sec. III the FP
distribution for the 1D Fokker-Planck equation is analyzed in
detail. Among other features, we identify the conditions under
which power laws with exponents −3/2 and −2 can appear in
the FP distribution. The general theory of Sec. III is tested
in Sec. IV, where a family of voterlike models is studied in
depth, theoretically and by means of Monte Carlo simulations.
Finally, Sec. V contains a summary and our conclusions.

II. FROM THE 1D FOKKER-PLANCK EQUATION
TO THE FIRST-PASSAGE DISTRIBUTION

Consider a one-dimensional real stochastic variable X(t ) ∈
I , with I a closed interval. Its probability density p(x, t )

satisfies the Fokker-Planck equation

∂p

∂t
= −∂[A(x)p]

∂x
+ 1

2

∂2[B(x)p]

∂x2
≡ −∂J [x|p]

∂x
, (1)

where A(x) and B(x) � 0 are generic time-independent drift
and diffusion coefficients and the probability flow J [x|p],
defined through the last equality, is a function of x and a
functional of the probability density p. Throughout this article
we will be concerned with dynamics that are strictly governed
by Eq. (1), thus excluding some higher-dimensional problems
that can be effectively reduced to one-dimensional equations
but cannot be written in the form of the above equation. We
call absorbing states of the dynamics those states in which
once the system reaches them, it cannot leave. They can be
interpreted in terms of the drift and diffusion coefficients
of the Fokker-Planck equation: A point is absorbing if the
diffusion coefficient vanishes and the drift is either null or
points towards that state, or regardless of the diffusion, the
drift coefficient is diverging and points towards the absorbing
state. Our first objective is to compute the FP distribution
f (xf , t |x0) of X(t ), i.e., the probability density for the time
for the stochastic variable X(t ) to take the value xf for the
first time, provided X(0) = x0. This can be accomplished by
solving Eq. (1) with the initial and final (boundary) conditions
[26]

p(x, 0) = δ(x − x0),

p(xf , t ) = 0
(2)

and the boundary conditions physically relevant for the prob-
lem: absorbing, reflecting, or mixed boundary conditions at
∂I , the limit points of I . Observe that the absorbing boundary
condition at xf , together with the initial condition at x0, allows
us to take xf ∈ ∂I . Put otherwise, in the special case of a one-
dimensional problem defined in a given interval [a, b], where
a and b are the boundaries, when one considers an absorbing
point xf the original space reduces to an effective interval I ,
where I = [a, xf ] if x0 < xf or I = [xf , b] if x0 > xf . The
solution to the problem (1) and (2) can be formally written as
[4,42,43]

p(x, t ) =
∞∑

n=0

cnXn(x)e−λnt , (3)

where {cn}∞n=0 are coefficients to be determined by the initial
condition, and {Xn}∞n=0 and {λn}∞n=0 are the associated eigen-
functions and eigenvectors satisfying

d

dx
J [x|Xn] = λnXn(x), Xn(xf ) = 0, (4)

with J [x ∈ ∂I |Xn] = 0 if the physical boundaries of the prob-
lems are reflecting, Xn(x ∈ ∂I ) = 0 if they are absorbing, or
a combination of both conditions if one is absorbing and the
other reflecting.

It is well known from the mathematical theory of the
Sturm-Liouville problem [42] that the eigenfunctions form an
orthonormal basis of the Hilbert space of square-integrable
functions defined in I , with the scalar or inner product defined
as 〈f, g〉 ≡ ∫

I
dx w(x)f (x)g(x), and measure w(x)dx,

w(x) = B(x) exp

[
−2

∫ x

dx ′ A(x ′)
B(x ′)

]
, (5)
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which is proportional to the inverse of the steady-state solution
of Eq. (1) with reflecting boundary conditions. In Eq. (5) it is
assumed that the integral is well defined. The scalar product
of the Hilbert space, along with the orthonormal properties of
{Xn}, allow us to express the coefficients cn as a function of
the initial condition (2),

cn = 〈p(x, 0), Xn〉 = w(x0)Xn(x0). (6)

If we now use the general result of Eq. (A13) for the
FP distribution of the problem defined by Eq. (1) together
with the boundary condition p(xf , t ) = 0, as explained in
Appendix A 3, we get [26]

f (xf , t |x0) = 1

2
B(xf )

∣∣∣∣∂p(x, t )

∂x

∣∣∣∣
x=xf

∣∣∣∣, (7)

where the absolute value has been introduced in order to unify
the notation in the two possible cases xf < x0 and xf > x0,
which result in + and − signs, respectively. Using Eq. (3), we
obtain

f (xf , t |x0) = 1

2
B(xf )w(x0)

∣∣∣∣∣
∞∑

n=0

Xn(x0)X′
n(xf )e−λnt

∣∣∣∣∣. (8)

Note that Eqs. (7) and (8) hold only if B(xf ) 	= 0. If the
diffusion coefficient vanishes at the final state, we should
reconsider the problem (1) without the boundary condition
p(xf , t ) and then use the relation (A13).

The eigenvalues of a Sturm-Liouville problem form an
ordered sequence, 0 � λ0 < λ1 < · · · . Hence, we infer from
Eq. (8) that the last stage of the dynamics (tλs � 1) shows
always an exponential decay, with a characteristic time related
to the smallest eigenvalue λs for which Xs (x0)X′

s (xf ) 	= 0.
The other limit, namely, tλs � 1 will be considered in the next
section.

III. GENERAL FEATURES OF THE FIRST-PASSAGE
DISTRIBUTION

Consider the eigenvalue problem of the 1D Fokker-Planck
equation (1). If we introduce the so-called Liouville-Green
transformation [44]

y(x) =
∣∣∣∣∣
∫ x

xf

√
2

B(x ′)
dx ′

∣∣∣∣∣,
Yn(x) = B1/4(x)w1/2(x)Xn(x), n = 0, 1, . . . ,

(9)

Eq. (4) for the eigenvectors becomes

d2Yn(y)

dy2
+ [λn − �(y)]Yn(y) = 0, (10)

where

�(x) ≡ 16(A2 + A′B − AB ′) + 3B ′2 − 4BB ′′

32B
, (11)

with the prime denoting a derivative with respect to x. By
dimensional analysis, the solution of Eq. (10) can be written
as

Yn(y, λn,�c ) = g(
√

λny,�c/λn), (12)

where �c is a constant vector with physical dimensions of
�(x) made from all constants �(x) may depend on. The
function g must satisfy, according to the boundary conditions
and the identity y(xf ) = 0, the relations

g(0,�c/λn) = 0, (13)

and

g(
√

λny∗,�c/λn) = 0 or J [
√

λny∗|B−1/4w−1/2g] = 0,

where

y∗ ≡
{

y(max I ) for x0 > xf

y(min I ) for x0 < xf .
(14)

The solution of (13) determines the set of eigenvalues {λn}∞n=0
and determines, up to a normalization factor, the eigenfunc-
tions {Yn}∞n=0 and {Xn}∞n=0.

Recalling that X(xf ) = 0, which implies Y (xf ) =
0, and the relations in Eqs. (9) and (12), we
have X′

n(xf ) = 21/2B−3/4(xf )w−1/2(xf ) d
dy

Yn(xf ) =
21/2B−3/4(xf )w−1/2(xf )

√
λn

.
g(0,�c/λn), which is

proportional to
√

λn

.
g(0,�c/λn), where the overdot denotes

a derivative with respect to y. With these relations we obtain
from Eq. (8) that

f (xf , t |x0) ∝
∣∣∣∣∣

∞∑
n=0

√
λng(

√
λny0,�c/λn)

.
g(0,�c/λn)e−λnt

∣∣∣∣∣,
(15)

where

y0 ≡ y(x0), (16)

which depends also on xf [see Eq. (9)].
The first-passage distribution (15) can be simplified further

if we consider its continuum limit, i.e., write it as an integral
on the eigenvalues. We show the details of the derivation
and the range of validity of the used approximations in
Appendix B. Defining sn = √

λnt , we obtain that Eq. (15)
becomes

f (xf , t |x0) ∼ t−1

∣∣∣∣
∫ ∞

0
ds g

(
y0√

t
s,�ct/s

2

)

× .
g(0,�ct/s

2)se−s2

∣∣∣∣, (17)

up to a normalization factor. Observe that the dependence
on y∗ of Eq. (17) has disappeared, meaning that under this
approximation we are neglecting the effect of the boundaries
of I . However, for times t � y2

∗ , the time evolution of the FP
distribution does depend on the boundaries and involves only
a few terms of the sum of (15).

At this point, we have obtained a general expression for
the FP distribution from point x0 to xf , valid for bounded �,
which approximates well the actual distribution if we are not
in the latest stages of the dynamics. It will be used next to
infer more explicit expressions.

A. Case of bounded �

If �(x), or equivalently �(y), is a bounded function for the
allowed values of x, we can disregard its contribution in the
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eigenvalue problem of Eq. (10) as a first approximation. This
is valid for λ > �∗. This is the so-called WKB approximation
[44] and gives

Yn(y) ∝ sin(
√

λny),

λn = n2π2

y2∗

(18)

for n large enough. The smaller the value of �∗ is, the better
the WKB approximation works for the FP distribution, as
shown below. The relation g(

√
λny,�c/λn) � g(

√
λny, 0) is

a good approximation to Eq. (15) if the contribution of the
smallest eigenvalues (modes) can be neglected for the times of
interest. More precisely, by looking at Eq. (17) we realize that
the WKB approximation is equivalent to the limit �ct/s

2 →
0. However, for a bounded �(x), g, and

.
g the important

contributions to Eq. (17) occur around s = 1/
√

2, the location
of the maximum of se−s2

, that is, the range of validity of
the WKB reduces to �∗t � 1, with �∗ ≡ maxx |�(x)|, and
as an estimation we take t < tWKB ≡ �−1

∗ . This condition
is consistent with the continuum limit required to obtain
Eq. (17).

Now, from Eqs. (17) and (18) under the WKB approxima-
tion (t < tWKB), the first-passage distribution reduces to the
Lévy-Smirnov density [32]

f (xf , t |x0) � y0

2
√

π
t−3/2e−y2

0 /4t . (19)

Note that y0 depends not only on x0, but also on xf [see
Eqs. (9) and (16)]. Equation (19) indicates that the FP dis-
tribution vanishes exponentially fast near t = 0 and more
interestingly shows a power-law decay with exponent −3/2
for larger times, regardless of the spatial dependence of the
drift and diffusion terms. The range of times where the power
law is obtained is

y2
0 � t � y2

∗ , (20)

which depends only on the diffusion coefficient. As already
discussed, Eq. (19) breaks down for t > tWKB, where a few
modes, the lowest ones, dominate the dynamics. The decay is
exponential for tλ0 > 1, an inequality that in this case depends
on both the diffusion and drift terms. Moreover, a nonuniver-
sal scaling can also emerge just before the exponential decay,
as can be realized if we were to include the �-dependent
corrections of the WKB approximation. (See Refs. [32,45]
for a deeper and more general study of the exponential and
preexponential decay.)

Our first example of the class of models with a bounded
�(x) is the random walk within a finite interval whose con-
tinuous version is the Brownian motion. In the terminology
of the Fokker-Planck equation [see Eq. (1)], it is described
by a null drift term A = 0 and a constant diffusion B [46].
The discrete random walk, the one we simulate, is defined
as follows. Let x be the position of the walker, where x ∈
[−1, 1]. At each time step δt the walker moves with equal
probability to adjacent states x → x ± δx. The step size is
δx = 2/N , meaning that the [−1, 1] interval is divided into N

subunits. The time is measured in Monte Carlo steps (MCS),
i.e., N jumps correspond to 1 MCS. This leads to δt = 1/N .

t

−1

1

x

Case I

Case III

Case II

Case IV

FIG. 1. Schematic representation of the types of trajectories we
study in this work. Cases I and II correspond to the FP from the
boundary to the center and from the center to the boundary, respec-
tively. Cases III and IV correspond to the FR to the boundary and
to the center, respectively. In practice, however, the latter cases are
considered as FP from x0 = 1 − 1/N to xf = 1 and from x0 = 1/N

to xf = 0, respectively.

The equivalence between the continuous and the discrete
versions is achieved when N � 1. Performing the expansion
for large N in the master equation of the random walk, one
readily obtains the diffusion coefficient B = δx2/δt = 4/N .

We study the FP and FR time distributions in several
situations, as sketched in Fig. 1. Cases I and II correspond
to FP processes. Case I corresponds to trajectories from
the extreme of the interval to its center. Case II takes into
account trajectories from the center of the interval to one
of the boundaries. Cases III and IV are scenarios of FR to
the boundary and to the center, respectively. If the drift and the
diffusion terms are symmetric with respect to the center, the
distributions are independent of which boundary we depart
from or we arrive at.

In the context of random walks, the distributions for the
four cases can be obtained analytically. For the sake of
completeness we summarize this calculation in Appendix C.
In Fig. 2 we display the exact distributions, together with
their WKB approximation of Eq. (19) and the Monte Carlo
simulations of the discrete random walker (RW) process. In
the region of small and intermediate times, we find almost per-
fect agreement between simulations and the approximation.
This was expected since in this case the WKB approximation
provides the exact eigenvalues and eigenvectors (for absorb-
ing boundary conditions). The differences at small times are
due to the difference between the Monte Carlo dynamics
and that of the Fokker-Planck equation (since t ∼ δt). In the
long-time limit tλ0 > 1, the continuum approximation fails,
as already analyzed. Specifically, it does not capture the latest
exponential decay, since the smallest eigenvalues have been
disregarded. Observe that there are no power laws for the first
two plots, since for the corresponding values of the parameters
we have y0 � y∗ and, according to Eq. (20), the power-law
region disappears.

Another interesting example is the Ornstein-Uhlenbeck
process (see [47]). It is characterized by a constant diffusion
coefficient and a linear position-dependent drift, so the func-
tion �(x) never diverges in a finite interval. For x ∈ [−1, 1],
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FIG. 2. First-passage and first-return distributions for a random walker in the interval [−1, 1], with N = 200 subdivisions, shown for (a)
case I, (b) case II, (c) case III, and (d) case IV from Fig. 1. Symbols are from Monte Carlo simulations, solid lines are from the solutions of
Eqs. (C3) and (C7) (using 105 addends), and dashed lines are the approximate theory of Eq. (19).

the drift and diffusion coefficients are written as

A(x) = −k

2
x, B(x) = 1

N
, (21)

where k is a constant and N is the number of subunits of the
interval in the Monte Carlo simulations. Note that for k > 0
and x(0) = 0 this process describes the decay from a linearly
unstable state (case II). The main results are summarized in
Fig. 3, where the same four cases of Fig. 1 are considered.
First-passage distributions have a well-defined peak, whose
position depends on the strength of the drift k. Thus, the
transitions from the boundary to the center [Fig. 3(a)] for high
k are faster than those for small k. The opposite is found
for transitions from the center to the boundary [Fig. 3(b)].
These results are reflected in the shape of the distributions.
Regarding the FR distributions [Figs. 3(c) and 3(d)], we see
that although the Ornstein-Uhlenbeck process has a drift, the
power laws are still present, with the same exponent as that of
the random walk. The approximate theory, given by Eq. (19),
compares well for all values of the diffusion coefficient,
except for the two extreme values of k, since tWKB ∼ y2

∗/10.
In these latter cases, the approach to be considered in the next
section is needed.

B. Case of unbounded �

The results of the preceding section require �(x) to be
bounded. If this is not the case, i.e., if the drift term is not
bounded and/or the diffusion coefficient vanishes at or near
the boundaries of the interval, the FP distribution may still
exhibit a power-law behavior but with an exponent different
from −3/2 (see [48,49]). This is the case of neuron avalanches
[27] and other significant models in nonequilibrium statistical

mechanics [31], in which the first-passage distribution from
a point nearby the absorbing state toward the absorbing state
itself follows a power law of exponent −2. Here we show that
the result holds for any drift and diffusion coefficients such
that �(x), defined in Eq. (11), can be written as

�(x) = �r (x) + �s

x − xs

, (22)

where �r is a bounded function, the singularity xs coincides
with one of the borders of I or xs /∈ I but close to I , and �s

is a constant that can be positive or negative. The interval I

where the system effectively evolves was defined just after
Eq. (2).

Following similar arguments behind the WKB approxi-
mation for the bounded case, we can solve the eigenvalue
problem with �(x) given by Eq. (22) by properly approxi-
mating the function �. Since �r (x) is a bounded function,
for large enough λ the only relevant part of �(x) for our
purposes is the one with the singularity, �(x) ∼ �s/(x − xs ).
This implies that different functions �r (x) provide the same
scaling exponents of the FP and FR distributions for λ �
�r

∗ ≡ maxx |�r (x)|. This fact allows us to select a convenient,
analytically tractable bounded function �r (x). Note that this
conclusion justifies the generality of the results to be derived
in the following. Although the most natural procedure would
be to drop �r (x), it turns out that the resulting problem is very
hard to tackle analytically. Instead, one interesting option is to
consider A(x) = 0 and B(x) = (1 − x2)/2N , with N a con-
stant and x ∈ [−1, 1]. These coefficients correspond to those
of the voter model, to be explained in detail later on. The diffu-
sion coefficient vanishes at the boundaries of the interval, i.e.,
we have two absorbing states. Due to symmetry properties,
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FIG. 3. First-passage and first-return distributions for the Ornstein-Uhlenbeck process (21), in the interval [−1, 1], with N = 50
subdivisions, for (a) case I, (b) case II, (c) case III, and (d) case IV of Fig. 1. Symbols correspond to Monte Carlo simulations: k = 6.25,
pink up triangles; k = 1.25, orange down triangles; k = 0.125, red squares; and k = 0.0125, blue circles. The dashed line is the approximate
theory of Eq. (19).
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however, we can reduce the problem to x ∈ [0, 1] and study
the effects of only one absorbing state, namely, x = 1. Now
we have �(x) = x2+2

16N (1−x2 ) = 1−2x
32N (1+x) + 3

32N (1−x) , which has

been separated in the form of Eq. (22). Hence �r
∗ = 1

32N
and

�s = 3
32N

. The eigenvalue problem of the voter model can be
analytically solved [50–52], with the result

Xn(x) ∝ N1/4

√
n + 3/2

(n + 1)(n + 2)
C3/2

n (x) � C
3/2
n (x)

(2λn)1/4
,

λn = (n + 1)(n + 2)

4N
� n2

4N
,

(23)

where C
3/2
n is the Gegenbauer polynomial of order 3/2 and

degree n. The approximate relations hold when n � 1.
The results of Eqs. (23) can be used now to compute the

FP distribution of the four cases shown in Fig. 1.
Case I (0 = xf < x0 ∼ 1). The initial state is close to the

singularity and the final state is away from it. Using C
3/2
n (1) =

�(n+3)
2�(n+1) = 2Nλn with Eq. (27), we obtain

f (0, t |1−) ∼
∑

n

n5/2 sin

(
nπ

2

)
e−(n2/4N )t ∼ t0, (24)

where t0 indicates no power-law decay.
Case II (0 = x0 < xf ∼ 1). The initial state is far from

the singularity while the final state is close to it. Since the
final state is now near or at the singularity, we cannot use the
result of Eq. (8), but instead we should compute the general
relation (A13) without p(xf , t ) = 0. Since B(x = 1) = 0,
now J [1−|Xn] = −1/2B ′(1)Xn(1−) and

f (xf , t |x0) ∼
∑

n

λ
− 1

2
n C3/2

n (x0)C3/2
n (1−)e−λnt . (25)

Proceeding as in case I, we arrive at the same functional
dependence of Eq. (24).

Case III (1 ∼ x0 < xf = 1). The initial and final states are
close to the singularity. Particularizing Eq. (25) for x0 = 1, we
have

f (xf , t |x0) ∼
∑

n

n3e−(n2/4N )t ∼ t−2 (26)

for x0 − xf � t � 1. This is the power law with exponent −2
observed in Ref. [27], which we now realize appears for any
drift and diffusion terms of the class of models defined by
Eq. (22).

Case IV (0 = xf < x0 � 1). The final and initial states
are far from the singularity (x = 1). From Eq. (8), the FP
distribution is

f (0, t |x0) ∼
∑

n

λ−1/2
n C3/2

n (x0)C5/2
n−1(0)e−λnt , (27)

where we have used the relation d
dx

C
3/2
n (x) = 3C

5/2
n−1(x). If t is

larger than the typical time the system needs to relax from x0

to xf , namely, if t/N > x0, with a good approximation we can
replace C

3/2
n (x0) by C

3/2
n (x0) � 3C

5/2
n−1(0)x0. Now, by using

TABLE I. Summary of the theoretical predictions for the asymp-
totic behavior of the FP distribution for small and intermediate times.
The cases are related to those sketched in Fig. 1.

Case Bounded �(x ) Unbounded �(x )

I t0 t0

II t0 t0

III t−3/2 t−2

IV t−3/2 t−3/2

|C5/2
n−1(0)| = 4

3
√

π

�( n+4
2 )

�( n+1
2 )

δn,odd ∼ n3/2δn,odd, we obtain

f (0, t |x0) ∼
∑
n odd

n2e−(n2/4N )t ∼ t−3/2, (28)

where the last approximation holds for x0 � t/N � 1. Hence,
in this scenario, we recover the results of the WKB approxi-
mation for the case of bounded �(x).

Table I summarizes the predictions for the FP distributions
obtained so far.

For other initial and final values of x, the situation can be
more complicated. For instance, if x0 ∼ xf and close, but not
too close (as in case III), to a singularity, the first-passage
(-return) distribution can exhibit two power-law decays: the
first one at early times with exponent −3/2 that accounts for
an initial exploration far from the singularity and a later one
with exponent −2 coming from contributions of the region
close to the singularity. The sequence of power laws seems
counterintuitive, but it is due to the fact that the system needs
more time to leave the singular region. In order for the last
stage to appear, the typical time for the system to leave
the neighborhood of the singularity should be smaller than
λ−1

0 , the smallest timescale of the system. We will illustrate
this double-power-law behavior, as well as the predictions of
Eqs. (24)–(28) in the next section, after introducing a voterlike
family of models. We should mention that the existence of a
double scaling is not new and has been reported previously,
for example, in the family of Bessel processes [32] or in the
birth-death process with population-proportional rates [53].
The latter case has a singularity of the type of Eq. (22), hence
showing the same scaling as the voter model.

IV. FAMILY OF VOTER MODELS

A. Voter model

The voter model is a paradigmatic binary-state stochastic
model, with applications to physical, biological, chemical,
and social complex systems [19,33,34,36]. It considers an
ensemble of N equivalent elements, also called agents, en-
dowed with two possible states, namely, +1 or −1, frequently
called the opinion. We define n ∈ [0, N] as the total number
of agents in state +1, so the associated magnetization x =
2n/N − 1 ∈ [−1, 1] is a relevant quantity to study the global
time evolution of the system. The extreme values x = ±1 de-
scribe consensus states, in which all agents agree, while x = 0
corresponds to an equal coexistence of opinions. The standard
voter model (VM) features a stochastic evolution for x based
on an imitation process, that is, the state of an agent changes

042143-6



FIRST-PASSAGE DISTRIBUTIONS FOR THE ONE- … PHYSICAL REVIEW E 98, 042143 (2018)

10−2 10−1 100

t/y2
0

10−4

10−2

100

f
(0

,t
|1)

y
2 0

10−2 10−1 100

t/y2
0

10−4

10−2

100

f
(1

,t
|0)

y
2 0

10−4 10−2 100

t/y2
0

10−5

10−3

10−1

101

103

f
(1

,t
|1)

y
2 0 −2

10−5 10−3 10−1

t/y2
0

10−3

10−1

101

103

f
(0

,t
|0)

y
2 0

−3/2

(a) (b) (c) (d)

FIG. 4. First-passage and first-return distributions studied in the text for the voter model, for (a) case I, (b) case II, (c) case III, and (d)
case IV of Fig. 1. Symbols are from Monte Carlo simulations for (a) and (b) N = 100 and (c) and (d) N = 200. Solid lines are from the exact
theory of Eq. (8) (200 addends) and dashed lines are the approximate theory of Eq. (19).

by adopting the opinion of a neighbor in a lattice or a network
of interactions. At the mean-field level, to be considered
here, all agents are neighbors of each others (fully connected
network). Consensus states are pure absorbing states of the
dynamics: Once the system reaches them, it cannot leave.
A natural question concerns the probability density, or its
moments, for the time the system needs to reach a consen-
sus state for the first time given an initial condition. This
and related questions have been partially addressed recently
[54–65] and will be reconsidered next.

In the framework of the Monte Carlo simulations, the
mean-field voter model can be defined as follows. At each
update event, two randomly chosen agents interact and modify
their opinions according to the model, i.e., one of them blindly
copies the state of the other. The repetition of N of such inter-
actions computes as 1 MCS. We keep repeating this dynamics
until a steady state is reached. Consensus is the final fate of the
model as far as the system size N remains finite. Moreover, if
N is finite but large enough, the probability distribution for the
global magnetization obeys the Fokker-Planck equation (1)
with A = 0 and B(x) = (1 − x2)/2N [54]. Our analysis of
the family of voter models is restricted to finite values of N .

We illustrate in Fig. 4 the same time distributions al-
ready addressed in the previous models. We plot again the
analytical solution for the voter model [Eqs. (8) and (23)]
and the results coming from the simulations. Additionally,
in each corresponding case we plot also the results of the
WKB calculations (24)–(28), which capture the expected
power-law behavior. It is worth mentioning the discrepancy
between the theoretical solution and the simulation results
in Fig. 4(c), as the very same phenomenon will also appear
when analyzing other models that experience the effects of
absorbing states. The small-time difference comes from the
fact that we use a finite number of addends in the final
solution and eventually disappears when the sum is computed
with infinite terms. However, the mismatch in the tail has
a different origin: The theoretical solution is a continuous
approximation of the discrete process, the voter model, which
is the one we actually simulate. When an absorbing state
is approached, the transition rates between states tend to 0,
but they do it in a different manner depending on whether
a continuous or a discrete case is considered. These rates
become equal when the distance between adjacent states
become 0; otherwise the discrete rates are smaller and the
dynamics is trapped. The consequence of this, as can be
observed in Fig. 4(c), is that simulations take longer to decay
than the analytical continuous solution. We will give quan-

titative arguments at a further point to better understand the
discrepancy.

As discussed at the end of the preceding section, we can
have a crossover effect between the power-law of exponent
−2 (due to the absorbing state) and the exponent −3/2 (free
exploration of the interval). This occurs when there is no
dominant effect of one of the above elements over the other.
To illustrate this effect, we show in Fig. 5 the FR distribution
for the voter model, varying the initial condition x0, i.e.,
modifying the influence of the singularity on the stochastic
evolution of the variable x. We see that if the starting point
is close to the boundary, the exponent −2 dominates in the
distribution; however, if we place x0 away from the singular-
ity, the exponent −3/2 appears for small times. The further
the starting point is from the singularity, the longer the −3/2
decay dominates.

B. Noisy voter models

All scenarios studied up until now correspond to situations
where the singularities of the �(x) function are accessible to
the system, i.e., they are within the valid range of x. However,
when noise is introduced in the voter model (understood as
spontaneous opinion flips), �(x) is still singular but the sin-
gularities fall outside the interval [−1, 1]. Put otherwise, the
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FIG. 5. Return distributions for the voter model with a system
size N = 104. Symbols are from Monte Carlo simulations, vary-
ing the initial condition x0 = 0.998, blue circles; x0 = 0.995, red
squares; x0 = 0.99, orange down triangles; and x0 = 0.9, pink up
triangles for N = 104. Dashed lines correspond to the power laws of
exponents −2 and −3/2, to guide the eye. For the sake of clarity,
the distributions have been multiplied by different factors sb and the
exact and approximate theoretical lines have been omitted.
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TABLE II. Reduction of the general model (29) and (30) to specific models for different values of the parameters q and k.

Parameter Random walk Ornstein-Uhlenbeck Voter Voter global noise Kirman

k 0 ∈ (−∞, ∞) 0 0 1
q 1 1 0 ∈ [0, 1] ∈ [0, 1]

system could display absorbing states, but they are practically
inaccessible. In this case the consensus states still exist, but
they are no longer absorbing: Due to noise, the system can
leave them. We now study the effects of this type of noise on
the FP and FR distributions.

We focus on a family of models that, besides the copy-
ing mechanism based on interactions among nodes, include
too a mechanism of opinion change intrinsic to the agents,
the noise. In particular, two ways of implementing such a
mechanism will be considered: the voter model with global
noise (VMGN) and the noisy voter model or Kirman model
(KM) [37–41,66]. On the one hand, in the VMGN we have
two kind of events: At each update, with probability q a
node changes state to the state of another node chosen at
random, just the standard VM; with probability 1 − q, the
total magnetization of the system decreases or increases, with
the same probability, an amount 2/N (except for the extreme
values x = ±1), that is, the update is driven by pure noise
at a global level. The latter is just like a random walk event
in the magnetization space. For example, let us consider a
scenario in which we have 90 nodes in states +1, out of 100.
A noisy update of the VMGN will lead the system to a number
of 89 or 91 nodes in state +1 with equal probability: The
noise is magnetization independent. On the other hand, in the
Kirman model with probability q we perform a standard voter
model update, whereas with probability 1 − q a random node
is selected and changes its state. The crucial difference in this
model, compared to the voter model with global noise, is that
the noise is magnetization dependent, that is, if we have a
majority of nodes +1, a transition +1 → −1 is more likely
to be observed. In the same scenario as before, in the noisy
update of the Kirman model the transition to 89 nodes in state
+1 will occur with probability 0.9, while the other transition
will occur with probability 0.1.

When the number of agents N and the typical timescale
evolution of the system are large enough, the variable x can
be regarded as continuous and its probability density p(x, t )
satisfies a Fokker-Planck equation. More precisely, p(x, t )
satisfies Eq. (1) with the drift and diffusion terms given by

A(x) = −q
k

2
x, (29)

B(x) = 1

N

[
q + 1 − q

2
(1 − x2)

]
, (30)

where k = 0 holds for the VMGN and k = 1 for the KM.
This two-parameter model also includes all the other models
studied so far with the proper choice of the parameters q and
k (see Table II). Note that in the case of the voter model
with global noise, upon varying q from 0 to 1 we interpolate
between the voter model and the random walk. This is no
longer true if k 	= 0 because a drift term appears, so the
random walk cannot be recovered.

C. Analytical results

As discussed in Sec. II, in order to obtain the FP distri-
butions we first have to solve the corresponding eigenvalue
problem, that is, Eq. (4) with the drift and diffusion coeffi-
cients given by (29) and (30). The eigenvalue equation to be
solved is

1

2N

d2

dx2

{[
q + 1 − q

2
(1 − x2)

]
X(x)

}

+ q
k

2

d

dx
[xX(x)] + λX(x) = 0. (31)

If we seek a solution of the form X(x) = (1 − z2)εZ(z) with

z =
√

1−q

1+q
x and ε an exponent to be determined, Eq. (31) can

be transformed into an associated Legendre equation

(1 − z2)
d2

dz2
Z(z) − 2z

d

dz
Z(z)

+
[
ν(ν + 1) − μ2

1 − z2

]
Z(z) = 0, (32)

with

ε = −1

2

(
1 − Nk

q

1 − q

)
(33)

and

μ = ±2ε, (34)

ν = −1

2

[
1 ±

√
(1 + 4ε)2 + 16Nλ

1 − q

]
. (35)

A general solution to Eq. (31) can be constructed by means
of the Ferrers function [67] of the first kind P μ

ν (x) of order μ

and degree ν. Selecting μ > 0, we have

Xn(x) =
(

1 + 1 − q

1 + q
x2

)ε
[
AnP

−μ
ν

(√
1 − q

1 + q
x

)

+BnP
−μ
ν

(
−

√
1 − q

1 + q
x

)]
(36)

provided ν + μ 	= −1,−2, . . . and μ − ν 	= 0,−1,−2, . . . ;
otherwise the two terms of the sum are linearly dependent.
Since P μ

ν (x) = P
μ
−(ν+1)(x), the proposed solution accounts

for the two values of ν allowed by Eq. (35). The constants
An and Bn and the eigenvalues λn have to be determined by
imposing the boundary conditions and the normalization of
Xn. The boundary conditions are

Xn(xf ) = 0, (37)

J [x∗|Xn] = 0, (38)
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FIG. 6. First-passage and first-return distributions for the voter model with global noise (k = 0) for (a) case I, (b) case II, (c) case III, and
(d) case IV, with q = 10−4 (blue circles), q = 10−3 (red squares), and q = 10−2 (orange triangles). Symbols are from Monte Carlo simulations
for N = 200, solid lines are from the exact theory of Eq. (8) (with 10–50 addends), and dashed lines are from Eq. (19).

with x∗ = −1 if x0 < xf or x∗ = 1 if x0 > xf . We could also
use an absorbing boundary condition at x∗ [Xn(x∗) = 0] but
we find more natural the reflecting ones in the context of the
voterlike models.

D. Effects of global noise and absorbing states

We can increase or decrease the effect of the absorbing
state by modifying the amount of noise in the system. In
general, since the VMGN has no drift, the diffusion term of

Eq. (30) gives the absorbing states, located at x = ±
√

1+q

1−q
,

which are at the border of the available values of the magne-
tization for a noise parameter q = 0 (VM) and fall outside
the interval (−1, 1) for q > 0, moving to infinity for q =
1 (RW). We expect that in the regime q � 0, the system
experiences the effects of the absorbing states, although they
are inaccessible. In the following, we study the influence of
noise on the FP and FR distributions.

We analyze in Fig. 6 the dependence on the noise parameter
q of the distributions of the four cases sketched in Fig. 1 for
the voter model with global noise. Figures 6(a) and 6(b) show
that the FP distributions from the origin (coexistence) to the
borders (consensus) and vice versa depend very weakly on
the values of q, their shape being very similar to the ones
for the RW and VM. This effect is surprising, especially for
the case of the FP distribution from consensus to coexistence
[Fig. 6(a)], when q is very small, since some effect from the
absorbing state should be expected. In fact, this is the case
for the numerical simulations, where a plateau appears. This
plateau disappears if the number of nodes increases.

The return distributions to consensus (case III) are shown
in Fig. 6(c). There are three main parts: a short-time part, a
second part that exhibits two power-law decays, the first one
with exponent −3/2 and a second one with exponent −2, and
a last part with a plateau followed by an exponential decay.
As already analyzed for the case of the VM (Fig. 5), the
power law of exponent −3/2 is a consequence of the first
exploration of regions far from the absorbing state, while the
one with exponent −2 appears as a result of the influence of
the absorbing point near x = ±1. This scenario is the same
for almost all values of q, although we observe that the width
of the region with exponent −2 narrows when increasing q.
The plateau for long times also appears due to the presence of
the absorbing states near the boundary of the interval.

Finally, Fig. 6(d) shows the return distribution to coex-
istence of opinions or, equivalently, the FP from x0 = 0 to

xf = 0 (case IV). For a wide time window the distribution
displays a power law of exponent −3/2, as for the RW.
The situation resembles the one for the VM, for similar
initial and final points, something expected since there is no
important contribution to this quantity from the absorbing
state for intermediate times. The role of the absorbing state
is markedly present in the tails of the distributions, where a
plateau appears as a consequence of the trapping of the system
at the boundaries, which lasts longer as q approaches 0. When
there is no noise q = 0, one recovers the voter model and,
accordingly, the plateaus disappear since there is no way of
leaving the consensus state.

The difference between the Monte Carlo simulations (sym-
bols) and the theoretical predictions (lines), in both Figs. 6
and 7, lies in the failure of the continuous limit (N is not
big enough), that is, in the difference between the simulations
and the Fokker-Planck equation mainly near the absorbing
points. This is easy to understand if we estimate, as an
example, the typical time the system needs to go from one
point to an adjacent one x → x ± 2/N . In the discrete case,
it is τd ∼ [q + (1 − q )(1 − x2)/2]−1, which is of the same
order as for the continuous case τc ∼ |N ∫ x±2/N

x
dx[q + (1 −

q )(1 − x2)/2]|−1, except for x = ±1, where we have τd ∼
q−1 and τc ∼ [q + 1/2N ]−1. Hence, when the extreme points
are being explored by the system and the level of noise is
q � 1/2N , the numerical (discrete) distribution is a factor of
time of the order of q−1 − 2N slower than the analytic one.
For N → ∞, it is τd ∼ τc and the discrepancies disappear.

E. Effect of different phases

An important conclusion from the analysis of the preceding
section regarding the voter model with global noise can be
inferred. Namely, the FP and FR distributions depend weakly
on the parameter q, provided the time is measured in units
of y2

0 (q ). This is related to the fact that the system is always
in a bimodal phase, that is, the steady-state solution of the
Fokker-Planck equation for the VMGN is always a convex
function with two maxima at x = ±1, regardless of the values
of q ∈ (0, 1). The Kirman model, by introducing a drift term
proportional to x that pushes the system toward the origin,
allows the opportunity to go beyond the VMGN by allowing
the system to be also in a unimodal phase with pst (x) peaked
around x = 0 and where x = ±1 are global minima, i.e., the
least probable values of the steady-state magnetization. The
transition from the unimodal to the bimodal phase occurs at
qc = 1/(N + 1) [37,68].
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FIG. 7. First-passage and first-return distributions for the Kirman model (k = 1), for (a) case I, (b) case II, (c) case III, and (d) case IV,
with q = 10−5 (blue circles), q = 10−4 (red squares), qc = 5 × 10−3 (orange down triangles), and qc = 10−2 (pink up triangles). Symbols are
from Monte Carlo simulations for N = 200, solid lines are from the exact theory (with 10–50 addends), and dashed lines are from Eq. (19).
Data in (c) have been multiplied by different factors sb in order to better appreciate the different power laws.

In Fig. 7 we have plotted for the Kirman model the same
magnitudes as in Fig. 6. We observe that for q < qc, i.e., in
the bimodal phase, the FP and FR distributions of the Kirman
model behave as that of the voter model with global noise.
Important differences appear when q > qc.

(i) The FP distribution from coexistence to consensus
develops a plateau at intermediate times [case II, Fig. 7(b)].

(ii) The FR distribution to a consensus state loses its power
law with exponent −2 [case III, Fig. 7(c)].

(iii) The FR distributions to the origin lose their long-time
plateau [case IV, Fig. 7(d)].

More interestingly, at q = qc the return distribution to
a consensus state develops a power-law decay of exponent
∼−1.3, which turns out to be independent of the number of
agents N .

F. Inferring the phase from the first-passage distributions

The value of the noise parameter q determines the phase
of the system, i.e., the unimodal or bimodal structure of the
probability density function of the magnetization in the steady
state. However, we now show that the phase can be inferred

from properties of the FR distribution too. In fact, there are
two features of this distribution that provide information about
the phase of the system. One option is to look at the FR to any
of the consensus states [case III, Fig. 7(c)], the exponent of
the intermediate power laws is different for the two phases.
The exponent in the bimodal phase is −2, whereas an abrupt
change occurs around the critical point, being the exponent
∼−1.3. Once we enter the unimodal phase, we recover the
exponent −3/2. The other option is to investigate the FR to
coexistence [case IV, Fig. 7(d)], where the presence or not of
a final plateau indicates the bimodal or unimodal character
of the phase, respectively. Let us analyze this second option,
the FR distribution to the center of the interval. The absorbing
boundary condition enforces the eigenfunctions (36) to satisfy
Xn(0) = 0, which implies An + Bn = 0. In addition, owing to
the reflecting nature of the boundary, we have J [1|Xn] = 0.
The latter involves Xn(1) and its derivative at x = 1, namely,

expressions with P −μ
ν (±

√
1−q

1+q
) and P

−μ
ν+1(±

√
1−q

1+q
). Setting

the value of the noise to q ∼ 1/N , i.e., close the critical point,
the arguments of the Ferrers functions are close to ±1. In this
limit, we have

P −μ
ν

(√
1 − q

1 + q

)
∼ 1

�(1 + μ)

(
q

2

)μ/2

and

P −μ
ν

(
−

√
1 − q

1 + q

)
∼ −�(ν − μ + 1) sin[(κ − μ)π ]

�(ν + μ + 1) sin(μπ )

1

�(1 + μ)

(
q

2

)−μ/2

,

which implies, for μ > 0, P −μ
ν (

√
1−q

1+q
) � P −μ

ν (−
√

1−q

1+q
). The boundary conditions impose the equation

⎡
⎣ν −

2(1 + ε) − 1 + (μ − 1)
√

1+q

1−q√
1+q

1−q
− 1

⎤
⎦ sin[(ν − μ)π ] � 0, (39)

from which we obtain an approximate expression for the eigenvalues

λ0 �
⎧⎨
⎩

o(q ) for Nk
q

1−q
� 1

√
1−q2(1−q+

√
1−q2 )ε

2Nq

[√
1−q+√

1+q

2 ε − 1
]

for Nk
q

1−q
> 1

(40)

and

λn � 1 − q

4N
{n(n + 1) + 2[|ε|(2n + 1) − ε]} (41)
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for n = 1, 2, . . . . We recover the result of the voter model
[q = 0; see Eq. (23)], after changing n to n − 1 (since in
the VM the mode associated with λ = 0 was disregarded).
Interestingly, the smallest eigenvalue is approximately zero
(much less than q) in the bimodal phase and different from
zero in the unimodal phase. That means that for N � 1 the
system gets trapped close to the borders only in the bimodal
phase. For finite N , though, the FP distribution develops a
plateau in the bimodal phase.

V. DISCUSSION, CONCLUSIONS,
AND FUTURE PERSPECTIVES

The problem of characterizing the FP and the FR distribu-
tions for the 1D Fokker-Planck equation in bounded domains,
with generic position-dependent diffusion and drift terms,
has been tackled. By means of the WKB approximation, we
demonstrate that both functions may exhibit general features
whose properties depend essentially on the eventual presence
of absorbing states (where the diffusion coefficient vanishes
or the drift term diverges towards this state) in which the
dynamics is trapped. Among all possible cases, we have
focused on two general situations: One is the class of models
with the same general characteristics as of the RW and the
other the class of models with the general characteristics of
the VM. When there is no absorbing state affecting the system
dynamics (the RW case), the first-passage and the first-return
distributions for small and intermediate times are given by
Eq. (19), which can lead to a power-law decay with exponent
−3/2. In the long-time limit, the decay of the FP and FR
distributions is always exponential with a timescale strongly
dependent on the diffusion and drift terms, compromising
for finite domains the possible appearance of the power law
at intermediate times. If an absorbing state exists, the RW
behavior may break down with the eventual appearance of
new exponents. If the diffusion coefficient vanishes linearly
at one point accessible to the system, or more generally if the
quantity at Eq. (10) diverges as in Eq. (22), the behavior of
the FP and FR distributions is that of the class of model of
the VM. For these models, if the initial and final states for
computing the FP and FR distributions are far enough from the
absorbing sates, the behavior of the random walk still prevails.
In the other extreme case where the initial and final states are
close to the absorbing state, a new power law at intermediate
times with exponent −2 is found.

To check our theoretical predictions, we have discussed
five models of increasing complexity. As examples of systems
without absorbing states we have explored (i) the well-known
random (Brownian) walker, characterized by constant diffu-
sion and no drift, and (ii) the classical Ornstein-Uhlenbeck
process, with a linear drift and constant diffusion. With these
two models we aimed at evaluating the influence of a drift
on the FP and FR distributions. The RW exponent prevails
for almost all drifts considered defining a class of models
with power-law decay with exponent −3/2. However, these
results are different from those obtained in semi-infinite do-
mains where a nonalgebraic decay is observed [24]. The three
remaining models have in common the existence of an absorb-
ing state in the dynamics, which eventually can be outside
the considered domain. They are (iii) the voter model that

has a space-dependent diffusion but lacks drift and where the
two boundaries are natural absorbing states of the dynamics;
(iv) the voter model with global noise, which has no drift,
but has no absorbing states because of the effects of noise
acting at a global level (this model depends on a continuous
parameter that interpolates between the RW and VM); and (v)
the Kirman model, which displays drift and diffusion owing
to a magnetization-dependent noise and has no absorbing
states. The interest now has been the evaluation of the effect
of the absorbing state on the FP and FR distributions. We
demonstrate, both analytically and numerically, that the two
general behaviors of the RW and VM classes of models can
appear separately or even together. Beyond an intermediate
decay, the system may exhibit plateaus in the FP and FR times
due to the trapping nature of the absorbing states, a feature that
has been used to infer the phase, either unimodal or bimodal,
of the system dynamics.

The generality of the 1D Fokker-Planck equation together
with the weak conditions required on the drift and diffusion
coefficients give a broad applicability to our results. This
generality relies on the possibility of expressing the FP and
FR distributions as a superposition of modes, on the contri-
bution of many of these modes, and also on the possibility of
approximating this superposition to that of the RW if there
is no absorbing state or that of the VM (with the appropriate
absorbing state).

There are some open questions that fall beyond the scope of
this work. A main point concerns the nature of the absorbing
state. In the present paper we have focused on those absorbing
states characterized by a linearly vanishing diffusion coef-
ficient. Other physical systems might have absorbing states
with another functional dependence on the state variable, but
still our theory can be applied to them. It would certainly
be interesting to study the same distributions in higher di-
mensions of the Fokker-Planck equation, particularly d = 2,
which is critical for the random walk. Finally, real physical
systems are highly correlated, display memory, and their
statistics, for example, in the jump step size or in the waiting
times, are non-Poissonian [69]. It is an interesting task for
future research to study the impact of these elements on our
theoretical predictions.
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APPENDIX A: FIRST-PASSAGE DISTRIBUTIONS
FOR GENERIC DYNAMICS AND DIMENSION

We devote this Appendix to formally define time quantities
such as first-passage and first-return distributions, the rela-
tions among them, and the way they can be obtained from
the probability density of the system. We consider the general
situation of a d-dimensional real and continuous stochastic
variable X(t ) ∈ Rd whose probability density p(x, t ) is taken
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FIG. 8. Schematic representation of three trajectories. Two of
them (solid lines) contribute to the first-passage distribution, as it
is introduced in Eq. (A1), from point x0 to region R. The remaining
one contributes to the first-return distribution to region R0, as defined
in Eq. (A7).

as known. Note that one realization of X(t ) can be viewed
as a trajectory, understood as a (measurable) subset of Rd .
Thereby, the probability density p(x, t ) is a measure of the
proportion of associated trajectories for which the stochastic
variable takes the value x at time t . The intrinsic dynamics of
X(t ) will not be specified, although some restrictions will be
assumed later.

1. Definitions and relations

Consider a closed region R of Rd with a smooth boundary
∂R and a point x0 /∈ R. We define the first-passage distribution
f (x, R, t |x0, t0) from point x0 to region R, with x ∈ ∂R the
first-contact point of R, so that

f (x, R, t |x0, t0)dSdt ≡ probability of X(t ) to be for the

first time in R, taking a value near point x at a time

close to t , provided X(t0) = x0. (A1)

By “near point x” we mean inside a ball in ∂R of center x
and d − 1 area dS and by “close to time t” we mean at a time
between t and t + dt . For d = 1 there is no need to consider
the ball around x and we should set dS = 1 in (A1). In an
intuitive way, the distribution of Eq. (A1) accounts for the
fraction of trajectories that start at point x0 at time t0 and
after a time t − t0 reach for the first time region R at the
point x ∈ ∂R (see Fig. 8). Hence, the stochastic process X(t )
is allowed to revisit x0 after t .

The FP distribution of Eq. (A1) is a fundamental quantity
from which we can infer other, more common ones. In partic-
ular, the first-passage distribution from point x0 to the point
x 	= x0 is

f (x, t |x0, t0) = lim
SR→0

f (x, R, t |x0, t0), x ∈ R, (A2)

where SR is the area of ∂R and the limit is assumed to
exist. When the first-passage time is towards a whole region
regardless of the first point reached, one can write it as

f (R, t |x0, t0) =
∫

∂R

dS f (x, R, t |x0, t0). (A3)

If, on the contrary, the trajectory departs from a region R0

towards a point x /∈ R0, the first-passage distribution is, in this
case,

f (x, t |R0, t0) =
∫
R0

dx0f (x, t |x0, t0)p(x0, t0)∫
R0

dx0p(x0, t0)
, (A4)

where the relation (A2) is needed and p(x0, t0) is the initial
probability density. Finally, when the transition is between
two disjoint regions of the space R0 to R, the FP distribution
is

f (R, t |R0, t0) =
∫
R0

dx0f (R, t |x0, t0)p(x0, t0)∫
R0

dx0p(x0, t0)
, (A5)

where now Eq. (A3) is needed.
A common feature of all the definitions (A1)–(A5) is that

the stochastic variable X(t ) does not need to leave R0 or
x0 immediately after t0, but it can stay there for some time.
The first-passage distributions presented so far do not provide
any direct information about the distribution for the time
spent going from one place to another, i.e., the time while
the system is actually “traveling.” In order to account for
the latter case, we introduce the concept of first-transition
distributions, denoted by ft , which can be simply defined as
in Eqs. (A1)–(A5) with the additional condition X(t+0 ) 	= x0.

For the case of the departure and arrival regions being
the same ones (or joint regions), we consider the first-return
distributions. Assuming that X(t ) is a Markov process and it
returns to a point x0, the first-return distribution is

f (x0, t |x0, t0) =
∫
Rd−{x0}

dx
∫

dτ f (x0, t |x, τ )

× f (x,Rd − {x0}, τ |x0, t0). (A6)

When the stochastic process goes back to a region R0, the
first-return distribution is then

f (R0, t |R0, t0) =
∫
Rd−R0

dx
∫

dτ f (R0, t |x, τ )

× f (x,Rd − R0, τ |R0, t0). (A7)

We can also consider, as above, the first-return distribution
disregarding the time the system stays at the initial point (or
region). In order to compute this distribution we only need to
replace f on the right-hand sides of Eqs. (A6) and (A7) by
ft . We identify this function as the residence distribution at
Rd − R0, that is, the probability density for the time t − t0 the
system spends in region Rd − R0, with ft (R0, t |R0, t0).

2. Relation between the first-passage distribution
and the probability density function

We can find at least two different ways of relating the
time distribution functions that we have just defined to the
probability density p(x, t ) of the stochastic process X(t ).
The one used in [3] begins with discrete space and time, then
is generalized to the continuum case, and uses the Laplace
transform. However, the resulting relation turns out to be valid
only for the random walk, or more generally if the trajectories
are time reversible (see [21] for a recent generalization). Here
we use the more flexible approach of [26], which allows gen-
eralization for almost any regions, dimensions, and dynamics.

In this approach, the d-dimensional continuous stochastic
process X(t ) takes all its possible initial values inside region
R0 ⊆ Rd and has an eventual forbidden region R, disjoint
to R0, whose surface ∂R = ∂Rr ∪ ∂Ra is divided into a
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reflecting ∂Rr part and an absorbing ∂Ra part. The probability
density p(x, t ) of X(t ) verifies

∂tp(x, t ) = −∇ · J[x, t |p] for x ∈ Rd,

p(x, t0) = 0 for x /∈ R0,

∫
dx p(x, t0) = 1, (A8)

J[x, t |p] · n̂(x) = 0 for x ∈ ∂Rr,

p(x, t ) = 0 for x ∈ ∂Ra, (A9)

where J denotes the vector of probability flow, which we
take as general but is assumed to be a linear functional of
p(x, t ), and n̂(x) is a unit vector normal to ∂Rr at point x
pointing towards the allowed region. We are beyond standard
approaches that use a particular dynamics. This way, p(x, t )
is associated with the ensemble of trajectories that evolve
according to the dynamics of (A8), that begin initially at
region R0 with probability density p(x, t0), being rebounded
upon arriving at ∂Rr , and that are absorbed upon contacting
∂Ra .

Once the dynamics of the problem is defined, we compute
next the first-passage distribution f (R, t |R0, t0) from a region
R0 to R, with R a generic d-dimensional region disjoint to R0.
First, it is useful to divide the trajectories associated with X(t )
into two sets: the set SR̄ of the trajectories that have never
been to region R and the set SR of the reminder trajectories.
The two defined sets are disjoint, so the probability density
p(x) can be written as

p(x, t ) = pR̄ (x, t ) + pR (x, t ), (A10)

where the two terms on the right-hand side account for the
contributions of SR̄ and SR , respectively. Second, since the
system (A8) and (A9) is a linear problem in p, the two new
functions are also solutions of Eq. (A8), with the same initial
condition but different boundary conditions. In particular, it is
pR̄ (x, t ) = 0 if x ∈ ∂R. Finally, we can express f (R, t |R0, t0)
as a function of pR̄ (x, t ) as follows. The fraction of tra-
jectories that have never been to R between t0 and t is∫

dx pR̄ (x, t ), so − d
dt

∫
dx pR̄ (x, t ) gives the rate of loss of

probability due to contact with Ra and R, or the fraction of
trajectories that have contacted Ra and R for the first time in
a time in (t, t + dt ), that is, f (R ∪ Ra, t |R0, t0). After using
the equation for pR̄ and the divergence theorem we have

− d

dt

∫
dx pR̄ (x, t ) = −

∫
∂Ra

dS J[x, t |pR̄] · n̂(x)

−
∫

∂R

dS J[x, t |pR̄] · n̂(x), (A11)

which allows us to make the identification

f (R, t |R0, t0) = −
∫

∂R

dS J[x, t |pR̄] · n̂(x), (A12)

from which we also infer

f (x, R, t |x0, t0) = −J[x, t |pR̄] · n̂(x), x ∈ ∂R, (A13)

provided pR̄ (x, t0) = δ(x − x0), where δ(x) is the Dirac delta
function.

In summary, in order to obtain the first-passage distribu-
tions of a stochastic process X(t ) we have to solve the original

problem for its probability distribution pR̄ , with the same
initial condition, but imposing absorbing boundary conditions
to the region where the first passage occurs, and finally apply
Eq. (A13). The conclusion, which generalizes the results of
[26], holds for general dynamics and was used in Sec. II
for the case of the 1D Fokker-Planck equation. Observe that
the fundamental relation (A13) can be easily generalized to
discrete time and/or space.

3. The one-dimensional Fokker-Planck case

The general analysis of the preceding section can be partic-
ularized for the one-dimensional case, under the assumption
that the dynamics is described in the form of the Fokker-
Planck equation. In this case, the operator J is given by
Eq. (1),

J [x, t |p] = A(x)p − 1

2

∂[B(x)p]

∂x

= A(x)p − 1

2
B(x)

∂p

∂x
− 1

2
p

∂[B(x)]

∂x
, (A14)

and the unit vector n̂(x) reduces to −1 or 1. For the case of
bounded �(x) [when A(x) is bounded and B(x) is nonzero],
upon using the latter expression for J in Eq. (A13), only the
term proportional to ∂p

∂x
survives and we recover Eq. (7).

APPENDIX B: OBTAINING THE INTEGRAL EXPRESSION
OF THE FIRST-PASSAGE DISTRIBUTION

The goal of this Appendix is to show the steps and the
approximations needed to go from the discrete version of the
first-passage distribution (15) to its integral version (17) in
the case of a regular �(x). Defining sn = √

λnt , the sum in
Eq. (15) can be written as a sum over sn,

∑
sn

sn√
t
g

(
y0√

t
sn,�ct/s

2
n

)
.
g
(
0,�ct/s

2
n

)
e−s2

n , (B1)

which has the form (1/
√

t )
∑

n h(sn), after an evident identi-
fication of h(sn). By means of dimensional analysis, we can
write

sn+1 − sn = δn

√
t

y∗
, (B2)

with δn a dimensionless function. Thus, the sum of Eq. (B1)
can be written as a Riemann sum

y∗
t

∑
n

h(sn)
sn+1 − sn

δn

. (B3)

According to the classical spectral theorem [70] applied to
Eq. (10), the eigenvalues satisfy

n2 + m � ky2
∗λn � n2 + M, (B4)

where m and and M are bounds such as m � ky2
∗ |�| � M ,

k is a constant of order one, and y∗ is defined in Eq. (14).
The latter relation implies sn+1 − sn ∼

√
t

y∗
, or equivalently

δn ∼ 1, for n � √
M . In other words, for large enough n

the eigenvalues grow quadratically with n and the interval
sn+1 − sn becomes independent of n.
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At this point, our first approximation is to take δn ∼ 1 as
a constant, that is, to (significantly) modify the contribution
to Eq. (B1) of addends with n �

√
M . This approximation is

good as long as time is small enough (tλ√
M � 1) so that the

smallest modes (n �
√

M) are inactive. We can estimate the
value of the eigenvalue from which this approximation starts
to fail, which is, according to the last inequality in Eq. (B4),
λ√

M ∼ M/y2
∗ ∼ �∗, with �∗ = maxx |�(x)|. Hence, the first

approximation is valid for t � �−1
∗ .

Our second approximation assumes sn+1 − sn to be small,
so |h(sn+1) − h(sn)| = O(sn+1 − sn). According to Eq. (B2)
and since h(sn) is a smooth function for bounded �, it is
enough to take the effective interval I large and/or the time
small

√
t � y∗. Under these two approximations, Eq. (B1)

coincides with its Riemann integral and Eq. (15) becomes the
integral expression (17).

APPENDIX C: EXACT FIRST-PASSAGE
AND FIRST-RETURN DISTRIBUTIONS

FOR THE RANDOM WALK

In this Appendix we give a thorough compilation of ana-
lytical results regarding the random walk, namely, the first-
passage-time distributions of the cases I–IV discussed in the
main text (see Fig. 1), and a way of obtaining the first-return
distribution that is consistent with the discrete numerical
simulations. First, consider the Fokker-Planck equation (1)
for the probability density p(x, t ) with A(x) = 0 and con-
stant diffusion coefficient B(x) ≡ B, with an initial condition
p(x, 0) = δ(x − x0) and a reflecting condition in one of the
boundaries, say, at min I = −1, and an absorbing condition
at the point xf = max I in which we want to compute the
first-passage time. Thus, due to the one dimensionality of the
problem, the effective interval in which the process takes place
is x ∈ [−1, xf ], assuming −1 < xf . The scenario x ∈ [xf , 1],
with xf < 1, is equivalent because of the symmetries of the
problem. The resulting eigenvalue problem (4) is easily solved
and the probability density reads

p(x, t ) = 2

xf + 1

∞∑
n=0

cos[λn(x + 1)]

× cos[λn(x0 + 1)]e−(B/2)λ2
nt , (C1)

where the eigenvalues are

λn = π
(
n + 1

2

)
(xf + 1)

, n = 0, 1, . . . . (C2)

Now, by using the relation (7), the first-passage distribution is

f (xf , t |x0) = B

xf + 1

∞∑
n=0

(−1)n cos[λn(x0 + 1)]

× λne
−(B/2)λ2

nt , (C3)

which can be also written in terms of the Jacobi ϑ1 function

ϑ1(u, q ) = 2
∞∑

n=0

(−1)nq (n+1/2)2
sin[(2n + 1)u] (C4)

as

f (xf , t |x0) = B

2(xf + 1)

d

dx0
ϑ1

×
(

π (x0 + 1)

2(xf + 1)
, e−[π2B/2(xf +1)2]t

)
. (C5)

For the case of the first-return distributions, the fact that
the departure and target positions are the same complicates
the calculations. The problem is ill-defined, in the sense that
we cannot impose simultaneously absorbing and reflecting
boundary conditions at the same point. If we take x0 = xf −
ε, then

cos[λn(x0 + 1)] = cos

[
xf + 1 − ε

xf + 1
π

(
n + 1

2

)]

= (−1)nλnε + O([(n + 1/2)ε]2), (C6)

which is a good approximation if nε is small, or equivalently if
n < nM ≡ 1/ε. However, if we restrict ourselves to values of

the time t bigger than tm ∼ 2
B

(xf +1)2

π2(nM+1/2)2 , then the contribution
of most of the addends for n > nM to the sum on (C3) is neg-
ligible, since the exponential decay dominates the prefactors.
Hence, for t > tm,

f (xf , t |x0) � B

xf + 1
ε

∞∑
n=0

λ2
ne

−(B/2)λ2
nt . (C7)

Using the Jacobi ϑ2 function, defined as

ϑ2(u, q ) = 2
∞∑

n=0

q (n+1/2)2
cos[(2n + 1)u], (C8)

the return distribution is

f (xf , t |x0) � − ε

xf + 1

d

dt
ϑ2(0, e−[π2B/2(xf +1)2]t ). (C9)

The latter function behaves like t−3/2 for small times, which
implies that we cannot take ε → 0 naively, since we then have
nM → ∞ and tm → 0 but the resulting function (C9) has an
infinite norm. To overcome this problem, we can just take 1

N
as

the minimal time, the time step of the discrete model studied
by means of Monte Carlo simulations, and approximate the
return distribution as the normalization function of the latter
expression, namely,

f (x0, t |x0) � −1

ϑ2(0, e−[π2B/2N (xf +1)2] )

d

dt
ϑ2

× (0, e−[π2B/2(xf +1)2]t ) (C10)

for t > 1/N and zero otherwise.
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