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Feynman-Smoluchowski ratchet in an effective one-dimensional picture
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A simple two-dimensional (2D) model of the Feynman-Smoluchowski ratchet is studied. Motion of the wheel,
driven by stochastic hits of the surrounding molecules, is described as diffusion along the longitudinal coordinate
x; the stochastic motion of the pawl is represented in the transverse coordinate y. Different temperatures of the
reservoirs connected to the particular degrees of freedom, together with asymmetry of the energetic landscape of
the system, give rise to the ratchet effect. We apply mapping of the corresponding 2D Fokker-Planck equation
onto the longitudinal coordinate x. The mapped 1D equation is of the generalized Fick-Jacobs type with an
effective potential containing a part increasing or decreasing with x, connected with vorticity of the scaled driving
force and the stationary probability current. It is responsible for the final rectified motion in the longitudinal
direction.
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I. INTRODUCTION

One of the best-known devices invented to demonstrate
(im)possibility to gain work from the thermal motion of
molecules was suggested by Smoluchowski [1] as a thought
experiment 100 years ago. It consists of a ratchet wheel
connected to an axle with paddles [2]. Molecules of the
surrounding gas hit the paddles from both sides, rotating the
wheel stochastically in both directions. The random motion
of the wheel is intended to be rectified by use of a pawl,
protecting the wheel to rotate in one (“backward”) direction.

The described device does not work, as the pawl capable of
reacting to single hits of the molecules has to be microscopic,
too. Its position (height) with respect to the wheel is stochastic
as well, influenced by the (spring) force pushing the pawl
to the wheel and also its temperature. Combination of both
stochastic motions results in no net rectified motion of the
wheel, i.e., no used energy of the thermal motion of the
surrounding gas.

Still, Feynman showed [3] that the wheel should prefer
moving in one direction if both the gas surrounding the
paddles and the pawl are connected to reservoirs of different
temperatures. Of course, in this case, the device becomes a
kind of a heat engine, the thermal ratchet [2], changing the
thermal energy flowing from the hot reservoir to the cold
one through the ratchet to the mechanical work done on the
rotating wheel.

Mathematically, the system can be described as a two-
dimensional (2D) diffusion in a specific potential landscape.
The longitudinal coordinate x corresponds to the angle of
the rotating wheel; the transverse coordinate y represents the
height of the pawl. The potential U (x, y) is given by the
strength of the spring pushing the pawl to the wheel and also
the angle of the ratchet wheel x. In the simplest case, the
motion of the wheel and the pawl can be considered viscous,
in the overdamped limit, so the probability density of the
system ρ(x, y, t ) being in the position (x, y) at time t evolves

according to the Fokker-Planck equation

∂tρ(x, y, t ) = [Dx∂xe
−βxU (x,y)∂xe

βxU (x,y)

+Dy∂ye
−βyU (x,y)∂ye

βyU (x,y)ρ(x, y, t ), (1)

βx = 1/kBTx , βy = 1/kBTy are the inverse temperatures of
the reservoirs connected to the gas and the pawl, respectively;
Dx and Dy denote the diffusion constants in the corresponding
directions. If the temperatures Tx = Ty , Eq. (1) becomes the
Smoluchowski equation, describing diffusion in the potential
U (x, y) with no ratchet effect.

The crucial property of the potential is its asymme-
try, U (x, y) �= U (−x, y) for any choice of the origin of
the coordinate x, reflecting asymmetry of the teeth of the
ratchet wheel. To show only functionality of the Feynman-
Smoluchowski ratchet, we may modify the real potential
U (x, y) in a way making our analysis easier, preserving its
asymmetry. Ryabov et al. [4,5] succeeded to express the
leading term of the rectified velocity in the x direction (and the
related quantities) using the potential harmonic in the y coor-
dinate, U (x, y) = k(x)y2. It mimics the teeth of the ratchet by
asymmetric spring constant k(x) �= k(−x), depending on x.
In the presented works, the scaling of the transverse diffusion
constant was used and the homogenization method up to the
first order was applied, similar to the mapping of diffusion in a
2D channel onto the longitudinal coordinate [6–9] calculated
in the stationary regime [10].

Recently, this mapping procedure was generalized to pro-
jection of the 2D advection-diffusion equation

∂tρ(x, y, t ) = Dx

[
∂x (∂x − f (x, y))

+ 1

ε
∂y (∂y − g(x, y))

]
ρ(x, y, t ) (2)

onto the x coordinate [11] for an arbitrary driving
force (f (x, y), g(x, y)) (rescaled by an inverse temperature
1/kBT ), also including the nonconservative forces. Despite
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of non existing scalar potential in this case, the result of the
mapping is again the 1D Fick-Jacobs (FJ) equation [12],

∂tp(x, t ) = Dx∂xA(x)∂x

p(x, t )

A(x)
, (3)

generalized by a series of corrections Ẑn(x, ∂x ), controlled by
the small parameter ε,

∂tp(x, t ) = Dx∂xA(x)

[
1 −

∞∑
n=1

εnẐn(x, ∂x )

]
∂x

p(x, t )

A(x)
. (4)

It governs the marginal (1D) probability density

p(x, t ) =
∫

σ (x)
ρ(x, y, t )dy; (5)

the integration goes over the local cross-section σ (x).
If the driving force is conservative, i.e., f (x, y) =
−∂xU (x, y)/kBT , g(x, y) = −∂yU (x, y)/kBT , the function
A(x) = ∫

σ (x) e
−U (x,y)/kBT dy is a local partition function [9] at

a fixed x. The mapping of Eq. (2) with a nonconservative force
(f, g) showed that, also in this case, the function A(x) can be
consistently defined.

Still, there are some peculiarities of the corresponding 1D
picture, if compared with the generalized FJ equation for
diffusion alone. Validity of Eq. (4) means that also a (quasi-)
equilibrium with the 1D density peq(x) ∼ A(x) exists. The
analysis [11] shows that although the quasiequilibrium den-
sities peq, ρeq are constant in time, the nonconservative force
drives a nonzero stationary flux circulating in the channel. The
function A(x) also becomes dependent on the parameter ε; its
higher-order corrections can give nontrivial contributions to
the standard entropic potential.

The effective 1D theory based on the mapping of Eq. (2)
was aimed mainly to describe a confined diffusion of particles
under hydrodynamical drag [13–15]. Nevertheless, Eq. (1)
can be easily converted to Eq. (2), identifying f (x, y) =
−βx∂xU (x, y), g(x, y) = −βy∂yU (x, y) and ε = Dx/Dy , so
the theory can be used for description of the Feynman-
Smoluchowski ratchet as well. Besides, for different tem-
peratures of the reservoirs, βx �= βy , the scaled force (f, g)
becomes nonconservative and the peculiarities of the 1D
theory mentioned above, related to existence of the station-
ary circulating (vortex) probability currents appearing in the
corresponding 2D picture, may become the key helping to
understand functionality of the ratchet.

The purpose of this work is to apply the mapping of Eq. (2)
and the corresponding Eq. (5) on the Feynman-Smoluchowski
ratchet. From one side, it is a model, which can be treated
analytically within a rather complicated effective theory; it
represents a useful nontrivial example for it. However, the 1D
picture brings a new insight on description how the ratchet
works. Our paper consists of two parts. In Sec. II, we revisit
the key points of the mapping of Eq. (2). This theory is
applied on the Feynman-Smoluchowski ratchet in Sec. III,
also analyzing the role of vorticity in breaking periodicity
of the 1D effective potential ∼ε, causing finally the rectified
motion of the ratchet.

II. MAPPING PROCEDURE

We revisit here briefly the mapping of Eq. (2) onto the
longitudinal coordinate x, adjusting the procedure [11] for our
needs to describe the Feynman-Smoluchowski ratchet in the
next section. First, we set the intrinsic diffusion constant Dx =
1; it only defines the timescale. Next, we define the integration
region σ (x) in Eq. (5), corresponding to the possible positions
of the pawl. Its lower limit is restricted by the teeth of the
ratchet, varying with some function h(x), the upper limit can
be set to infinity, as the higher positions y are achieved with
vanishing probability due to positive spring constant k(x) for
any x. So the transverse coordinate y ∈ σ (x) = (h(x),∞).
Equation (2) is supplemented by the boundary condition (BC),

[∂y − g(x, y)]ρ(x, y, t )|y=h(x) = εh′(x)[∂x − f (x, y)]

× ρ(x, y, t )|y=h(x), (6)

requiring the normal component of the flux density �j ,

jx (x, y, t ) = −[∂x − f (x, y)]ρ(x, y, t ),

jy (x, y, t ) = −1

ε
[∂y − g(x, y)]ρ(x, y, t ), (7)

at the boundary y = h(x) was zero. Notice that unlike
Ref. [11], this boundary represents now the lower limit,
which results in different signs in several formulas. Also the
parameter ε is defined by anisotropy of the diffusion constants
instead of scaling the transverse lengths; both concepts are
mathematically equivalent.

Integration of Eq. (2) over y ∈ σ (x) gives the mapped
equation of the form

∂tp(x, t ) = ∂x

[
∂xp(x, t ) + h′(x)ρ[x, h(x), t]

−
∫ ∞

h(x)
f (x, y)ρ(x, y, t )dy

]
, (8)

having used twice
∫ ∞
h(x) ∂xφ(x, y)dy = ∂x

∫ ∞
h(x) φ(x, y)dy +

h′(x)φ(x, h(x)), valid for any φ(x, y), and applying the def-
inition Eq. (5) and the BC Eq. (6). The key problem is to
express ρ(x, y, t ) and its values at y = h(x) using p(x, t ) to
obtain the equation of the form Eq. (4).

A. Zeroth-order approximation

The first step is always the FJ approximation, supposing
that ε → 0, i.e., relaxation of ρ(x, y, t ) to the local equilib-
rium distribution (at a fixed x) in the transverse (y) direction
is infinitely fast. For nonconservative forces, there is no scalar
potential, but still, one can define a function

G(x, y) = −
∫ y

h0

g(x, y ′)dy ′ − γ (x), (9)

such that the zeroth-order 2D density

ρ0(x, y, t ) = e−G(x,y) p(x, t )

A(x)
(10)

has the necessary properties of the relaxed distribution: if
substituted in Eq. (2), the singular term ∼1/ε gives zero
and also the BC Eq. (6) for ε → 0 is satisfied. The constant
h0 is an arbitrary reference distance from the x axis; we
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only require that h0 � h(x) for any x. Consistency with the
definition Eq. (5) is ensured by

A(x) =
∫ ∞

h(x)
e−G(x,y)dy. (11)

The function γ (x) is a calibration function, which cancels in
Eq. (10); its relevance will become obvious later. Our method
requires us to expand it in ε,

γ (x) =
∞∑

n=0

εnγn(x). (12)

Applying Eq. (10) for ρ(x, y, t ) in Eq. (8), we obtain

∂tp(x, t ) = ∂x

[
∂xA(x) + h′(x)e−G[x,h(x)]

−
∫ ∞

h(x)
f (x, y)e−G(x,y)dy

]
p(x, t )

A(x)

= ∂xA(x)

[
∂x + A′(x)

A(x)
+ h′(x)

A(x)
e−G[x,h(x)]

− 〈f 〉(x)

]
p(x, t )

A(x)
; (13)

the prime denotes the x derivative and the symbol

〈φ〉(x) = 1

A(x)

∫ ∞

h(x)
φ(x, y)e−G(x,y)dy (14)

for any function φ. Equation (13) can be converted to the
FJ form Eq. (3) by fixing the calibration function γ0(x) to
eliminate all the terms in the square brackets of Eq. (13) but
∂x . Expressing the derivative G′(x, y) as

−G′(x, y) = −∂xG(x, y) =
∫ y

h0

[∂xg(x, y ′) − ∂y ′f (x, y ′)

+ ∂y ′f (x, y ′)]dy ′ + γ ′(x)

= w(x, y) + f (x, y) − f (x, h0) + γ ′(x), (15)

γ0(x), contained in the term

A′(x)

A(x)
= −h′(x)

A(x)
e−G[x,h(x)] −

∫ ∞

h(x)

G′(x, y)

A(x)
e−G(x,y)dy

= 〈w + f 〉(x) − f (x, h0) − h′(x)

A(x)
e−G[x,h(x)]

+
∞∑

n=0

εnγ ′
n(x) (16)

of Eq. (13), is set by the condition

γ ′
0(x) = f (x, h0) − 〈w〉(x). (17)

The higher-order γn(x) do not influence the obtained zeroth-
order FJ equation.

A new function was introduced here, the “vortex force,”

w(x, y) =
∫ y

h0

[∂xg(x, y ′) − ∂y ′f (x, y ′)]dy ′, (18)

which is nonzero only for nonconservative force (f, g).
The zeroth order of G(x, y),

G0(x, y) =
∫

[〈w〉(x) − f (x, h0)]dx −
∫ y

h0

g(x, y ′)dy ′

= G(x, y) +
∞∑

n=1

εnγn(x) (19)

represents the (minus) work done by the force f minus an
averaged 〈w〉 along the line y = h0 from some reference point
to (x, h0) and then by the force g to the point (x, y). For
the conservative forces, G0(x, y) becomes the scalar potential
βU (x, y), ∂xG0(x, y) = −f (x, y), ∂yG0(x, y) = −g(x, y),
consistently with w(x, y) = 0 according to the definition
Eq. (18). For the nonconservative forces, the x derivative

−∂xG0(x, y) = f (x, y) + w(x, y) − 〈w〉(x)

= f (x, y) + �w(x, y) (20)

contains an extra contribution from the vortex force �w =
w − 〈w〉. Similar to Eq. (11), we also define

A0(x) =
∫ ∞

h(x)
e−G0(x,y)dy = A(x)e− ∑∞

n=1 εnγn(x). (21)

The functions G and A in the transverse averaging, Eq. (14),
can be replaced by the ε- independent G0 and A0, as the
exponentials of the higher-order γn in the numerator and the
denominator cancel one another.

B. Higher-order corrections

Having the zeroth-order (FJ) equation derived, we present
the recurrence procedure generating the corrections Ẑn. The
true 2D density ρ(x, y, t ) is expressed as

ρ(x, y, t ) = e−G(x,y)
∞∑

n=0

εnω̂n(x, y, ∂x )
p(x, t )

A(x)
; (22)

ω̂n(x, y, ∂x ) are some operators generating the nth-order cor-
rections to ρ0(x, y, t ), Eq. (10), if applied on any 1D solution
p(x, t )/A(x). Consistently with Eq. (10), ω̂0(x, y, ∂x ) = 1.
The higher-order operators are found recursively using the
advection-diffusion Eq. (2) with ρ substituted from Eq. (22),

0 =
∞∑

n=0

εn

{
∂t − ∂x[∂x − f (x, y)] − 1

ε
∂y[∂y − g(x, y)]

}

× e−G(x,y)ω̂n(x, y, ∂x )
p(x, t )

A(x)
; (23)

the operators of partial derivatives act on anything to the right.
Notice that e−G(x,y)ω̂n(x, y, ∂x )A−1(x) does not depend on
time, so the time derivative ∂t commutes with it and acts
directly on p(x, t ). For ∂tp(x, t ), we apply Eq. (4). Finally,
Eq. (23) with purely spatial operators on the right-hand side
has to be satisfied for any p(x, t )/A(x), i.e., on the level of
operators, in each order of ε. Collecting the terms standing
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at the same powers of εn, we obtain recurrence operator
equations fixing the higher ω̂n(x, y, t ) by sequel. Having the
next order ω̂n calculated, the corresponding Ẑn(x, ∂x ) is found
from Eq. (8) with ρ(x, y, t ) expressed using Eq. (22),

∂tp(x, t ) = ∂xA(x)

(
∂x +

∞∑
n=1

εn

{
γ ′

n(x)

+ h′(x)

A0(x)
e−G0[x,h(x)]ω̂n[x, h(x), ∂x]

− 〈f ω̂n〉(x, ∂x )

})
p(x, t )

A(x)
; (24)

the formulas derived above for the zeroth order have been
already used here.

As shown in Ref. [11], the recurrence procedure for the
nonconservative forces gives the operators ω̂n with nonzero
terms not containing ∂x . They can be split as

ω̂n(x, y, ∂x ) = ωn(x, y) + ω̃n(x, y, ∂x )∂x, (25)

where ωn(x, y) are just functions. These terms violate the
structure of the generalized FJ equation as known from the
mapping of diffusion in conservative fields [9]. They can be
eliminated in Eq. (24) by setting the calibration function

γ ′
n(x) = 〈f ωn〉(x) − h′(x)

A0(x)
e−G0[x,h(x)]ωn[x, h(x)]. (26)

Then Eqs. (24) and (4) can be compared, giving

Ẑn(x, ∂x ) = 〈f ω̃n〉(x, ∂x )

− h′(x)

A0(x)
e−G0[x,h(x)]ω̃n[x, h(x), ∂x]. (27)

The advection-diffusion Eq. (2) can be mapped onto the
generalized FJ Eq. (4) for nonconservative forces, too, for the
price that the functions G(x, y) and A(x) become dependent
on ε and contain the calibration functions γn(x). It makes
the recurrence procedure, calculating ω̂n(x, y, ∂x ) noticeably
more complicated than for the diffusion alone. We derive here
only the first-order correction, giving the leading terms of
quantities describing functionality of the ratchet.

Collecting the terms ∼ε0 in Eq. (23), we obtain the opera-
tor equation determining ω̂1,

∂y[∂y − g(x, y)]e−G(x,y)ω̂1(x, y, ∂x )

= [(∂t − ∂x[∂x − f (x, y)])]e−G(x,y)ω̂0(x, y, ∂x )

= e−G(x,y) 1

A(x)
∂xA(x)∂x − ∂x[∂x − f (x, y)]e−G(x,y),

ω̂0(x, y, ∂x ) = 1. It acts on (any) p(x, t )/A(x), so ∂t , com-
muting with the spatial operator e−G(x,y), is replaced by
A−1(x)∂xA(x)∂x , according to the FJ Eq. (3), valid in
the zeroth order. Also G and A can be replaced by the

zeroth-order functions G0 and A0; we obtain

∂ye
−G0(x,y)∂yω̂1(x, y, ∂x )

= e−G0(x,y)

[
A′

0(x)

A0(x)
− f (x, y) − 2�w(x, y)

]
∂x

− [e−G0(x,y)�w(x, y)]′ (28)

after some algebra and using Eq. (20). Double integration over
y gives

ω̂1(x, y, ∂x ) = Ĉ1(x, ∂x ) −
∫

dyeG0(x,y)
∫ ∞

y

{
e−G0(x,y ′ )

×
[
A′

0(x)

A0(x)
− f (x, y ′) − 2�w(x, y ′)

]
∂x

− [e−G0(x,y ′ )�w(x, y ′)]′
}
dy ′; (29)

the first integration constant has to provide convergence of the
result in y → ∞, the second one, Ĉ1(x, ∂x ), is set to satisfy
consistency of Eq. (5),

p(x, t ) =
∞∑

n=0

εn

∫ ∞

h(x)
dye−G(x,y)ω̂n(x, y, ∂x )

p(x, t )

A(x)
, (30)

for any 1D solution p(x, t ) in any order of ε, hence we get
〈ω̂n〉(x, ∂x ) = 0 for n > 0. Of course, Ĉn is constant in y, but
it is an operator in x.

The result Eq. (29) demonstrates the structure of ω̂1 de-
scribed above. Aside from the term proportional to ∂x , which
is standard in the mapping of diffusion or in a scalar field,
there is a new term not containing ∂x , appearing here for a
nonzero vortex force w. To obtain the mapped equation of the
form Eq. (4), γ1(x) is fixed according to Eq. (26), then Ẑ1 is
expressed from Eq. (27).

Collecting the terms standing at higher powers of ε, to get
equations for ω̂2, etc., requires us also to expand e−G(x,y) and
A(x) in Eqs. (23) and (4), making the equations like Eq. (28)
much more complicated. A rather compact formulation en-
abling us to apply the projection in the higher orders, too, was
suggested in Ref. [11].

Validity of Eq. (4) means, that an effective potential
Ueff(x) = −kBT ln A(x) in the 1D picture can be defined,
despite of non existing 2D scalar potential for nonzero vortex
forces. Then a quasiequilibrium is found, with peq(x)/A(x) =
const., as well as a stationary flow, given by a nonzero net flux

J =
∫ ∞

h(x)
jx (x, y)dy

= A(x)

[
1 −

∞∑
n=1

εnẐn(x, ∂x )

]
pst (x)

A(x)
, (31)

constant in time and space. The quasiequilibrium exhibits
peculiarities for the nonconservative forces; the backward
mapped 2D density

ρst(x, y) ∼ e−G(x,y)

[
1 +

∞∑
n=1

εnωn(x, y)

]
, (32)
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calculated according to Eqs. (22) and (25), does not have the
form of Gibbs distribution. Using it in Eq. (7), the flux density

jx (x, y) ∼ e−G(x,y)

⎡
⎣ ∞∑

n=1

εn∂xωn(x, y)

+
⎛
⎝�w(x, y) +

∞∑
j=1

εjγ ′
j (x)

⎞
⎠ ∞∑

n=0

εnωn(x, y)

⎤
⎦,

jy (x, y) ∼ −1

ε
e−G(x,y)

∞∑
n=1

εn∂yωn(x, y), (33)

appears nonzero for w(x, y) �= 0. The nonconservative forces
drive stationary circulating currents in the quasiequilibrium
[11], giving the zero net flux, Eq. (31). A similar picture is
also observed for stationary flow, only J is nonzero.

In the next section, we apply this theory on a model of the
Feynman-Smoluchowski ratchet. The peculiarities appear to
be related closely to its functionality. In the 1D picture, the
functions γn(x) become corrections to the effective potential,
which brake periodicity of the system and drive it in one
direction.

III. RYABOV’S MODEL

We apply here the effective 1D theory to the model of
Ryabov et al. [4,5]. The lower boundary h(x) = 0, hence the
parameter h0 = 0 can also be used. The effect of asymmetric
teeth of the ratchet wheel is modeled by a spring constant
k(x), varying with position of the wheel, i.e., the longitu-
dinal coordinate x. The landscape is given by the potential
U (x, y) = k(x)y2.

Due to different temperatures Tx and Ty , the scaled force

f (x, y) = −βx∂xU (x, y) = −βxk
′(x)y2,

g(x, y) = −βy∂yU (x, y) = −2βyk(x)y, (34)

obtained from Eq. (1), becomes nonconservative. According
to the definition Eq. (18), the vortex force

w(x, y) = (βx − βy )k′(x)y2 (35)

is nonzero, proportional to the difference of temperatures
Ty − Tx . The functions G(x, y) and A(x) are

G(x, y) = βyk(x)y2 − γ (x),

A(x) =
√

π

4βyk(x)
eγ (x), (36)

with an unknown yet calibration function γ (x). It does not
prevent us from expressing the transverse average

〈w〉(x) = (βx − βy )k′(x)

2βyk(x)
(37)

unambiguously according to Eq. (14), as the exponentials
eγ (x) in e−G and A are canceled.

To obtain the zeroth-order FJ equation, the γ0(x) is fixed
from Eq. (17),

γ ′
0(x) = f (x, 0) − 〈w〉(x) = − (βx − βy )k′(x)

2βyk(x)
. (38)

After integration over x (with an irrelevant integration con-
stant), we find the zeroth-order functions

G0(x, y) = βyk(x)y2 + (βx − βy )

2βy

ln k(x),

A0(x) = √
π/4βy k−βx/2βy (x); (39)

the last one enters the FJ Eq. (3).
The ratchet effect appears in the first-order correction [4,5],

so we continue to calculate ω̂1, Ẑ1, and γ1 to find its leading
contribution. Substituting for f , g, and �w = w − 〈w〉 in
Eq. (28) from the relations Eqs. (34)–(37), we derive

∂ye
−G0∂yω̂1 = e−G0

{(
1 − βx

2βy

)
k′

k
(2βyky

2 − 1)∂x

+
(

βx

βy

− 1

)[
k′2

k2

(
β2

y k
2y4 + βx − 2βy

2
ky2

− βx + βy

4βy

)
− k′′

2k
(2βyky

2 − 1)

]}
(40)

(omitting the obvious arguments). Double integration over y

according to Eq. (29) can be completed analytically; it results
in ω̂1 of the form Eq. (25). Both parts,

ω̃1(x, y) = (βx − 2βy )k′

4βyk

(
y2 − 1

2βyk

)
,

ω1(x, y) = (βy − βx )

8βy

[
k′2

k2

(
βyky

4 + βx + βy

βy

y2

− 2βx + 5βy

4β2
y k

)
− 2k′′

k

(
y2 − 1

2βyk

)]
, (41)

have the y-independent terms fixed to satisfy the normaliza-
tion condition Eq. (30). Then the corrections γ1 and Ẑ1 are
calculated using Eqs. (26) and (27),

γ ′
1(x) = (βx − βy )βxk

′(x)

8β3
yk

2(x)

[
(βx + 4βy )k′2(x)

2βyk2(x)
− k′′(x)

k(x)

]
,

Ẑ1(x) = (2βy − βx )βxk
′2(x)

8β3
yk

3(x)
. (42)

Notice that if βx = βy , the formulas for A0(x), ω̂1(x, y, ∂x )
and Ẑ1(x, ∂x ) reproduce the corresponding relations for the
mapped Smoluchowski equation [9], taking α(x) = βyk(x).
The functions ω1(x, y) and γ1(x), proportional to the differ-
ence (βx − βy ) are new here; we show that they are responsi-
ble for appearance of the ratchet effect. The integral of γ ′

1(x),
Eq. (42),

γ1(x) = βx (βx − βy )

16β3
y

[(
1 + βx

βy

) ∫
k′3(x)

k4(x)
dx − k′2(x)

k3(x)

]
,

(43)

can also break periodicity of the system; for some periodic
k(x) = k(x + L), the primitive function in Eq. (43) exhibits
a nonzero increment over one period L. The function γ1(x)
represents the first-order correction of G(x, y) and ln A(x),
i.e., the effective (entropic + real) 1D potential. The nonzero
increment over L makes it a slanted washboard potential,
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x
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k x
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a 0.6

FIG. 1. The spring stiffness k(x ) according to Eq. (44) ordered
consecutively for a = 0 (black), 0.1 (red), 0.2 (violet), 0.3 (blue), 0.4
(cyan), 0.5 (green), and 0.6 (yellow, the lightest marginal line).

driving the system in one direction along the x axis. We
demonstrate it on a function

k(x) = (2 − cos x)(1 + a cos x − a sin x), (44)

depicted in Fig. 1 for various values of a. Motivation for our
specific choice of k(x) is rather technical. We want to show
the symmetry breaking term in γ1 in an analytic form and this
function enables us to express the integral in Eq. (43) by a
simpler formula, if compared, e.g., with the commonly used
function k(x) = k0 + sin x + η sin 2x. The crucial property
of k(x) is its asymmetry, controlled here by the parameter
a ∈ (0, 1/

√
2); a = 0 represents the symmetric sinusoidal

geometry and for a > 1/
√

2, k(x) would become negative for
some x.

To evaluate the integral in γ1(x) for our k(x), it is advanta-
geous to apply double integration by parts,∫

k′3

k4
dx = −1

3

(
k′2

k3
+ k′′

k2
−

∫
k(3)

k2
dx

)
,

∫
k(3)

k2
dx = τ1(a) arctan

[
a − (1 − a) tan(x/2)√

1 − 2a2

]

+ τ2(a) arctan

[√
3 tan

x

2

]

− τ3(a) ln

(
1 + a cos x − a sin x

2 − cos x

)

− [τ4(a)(1 + cos x) − τ5(a) sin x]

(1 + 4a + 7a2)2(1 + a cos x − a sin x)

+ [τ6(a)(1 + cos x) − 18a(1 − 8a2) sin x]

3(1 + 4a + 7a2)2(2 − cos x)
,

where the coefficients τ abbreviate

τ1(a) = 12a(1 − 4a − 54a2 − 44a3 + 190a4 + 132a5

− 285a6 − 200a7)(1 − 2a2)−3/2(1 + 4a + 7a2)−3,

τ2(a) = 4a(5 − 23a − 276a2 − 317a3 + 179a4)√
3(1 + 4a + 7a2)3

,

τ3(a) = 6a(1 + a)(1 + 11a)(1 − 8a2)

(1 + 4a + 7a2)3
,

0 2 4 6 8 10 12 14
x

0

0.01

0.02

0.03

0.04

Γ1 x

a 0.4Βx 0.7

Βx 1.5

a 0.2

Βx 0.7

FIG. 2. The function γ1(x ), Eq. (43) for k(x ) defined by Eq. (44)
with a = 0.2 (red lower lines), a = 0.4 (black upper lines) and βx =
1.5 (solid lines), βx = 0.7 (dashed lines); βy = 1 in all cases. The
offset (integration constant) of γ1(x ) is irrelevant.

τ4(a) = 2a3(26 + 59a − 38a2 − 91a3 − 4a4)

(1 − a)(1 − 2a2)

τ5(a) = 2a2(7 + 23a − 6a2 − 9a3 − 19a4 − 44a5)

(1 − a)(1 − 2a2)
,

τ6(a) = 1 + 18a + 105a2 + 110a3.

The terms with arctan give the nonzero increment of γ1(x)
over the period L = 2π ; subtracting its limits at π− and −π+,

�γ1 = γ1(π − 0+) − γ1(−π + 0+)

= πβx (β2
x − β2

y )

48β4
y

[τ2(a) − τ1(a)]. (45)

Of course, γ1(x) remains analytic at x = ±π . It continues
risen by ±�γ1 in the neighboring cells; see Fig. 2. The mean
slope depends on asymmetry of U (x, y), represented here by
the parameter a. For the symmetric k(x), a = 0, τ1 = τ2 =
�γ1 = 0. Notice that the tilt of “teeth” in k(x) inverts from
the right to the left with growing a for our function Eq. (44);
also the increment �γ1 changes from negative (a = 0.2) to
positive (a = 0.4) for βx > βy . Exchanging the temperatures,
the sign of �γ1 changes, too, according to Eq. (45).

The function −γ1(x) represents the first-order correction
to an effective 1D potential ∼ − ln A(x), which becomes
increasing or decreasing on the scale of many periods L.
It either cumulates the diffusing particles on one side until
reaching the quasiequilibrium in general, peq(x) ∼ A(x), or it
drives a stationary flux J , Eq. (31). Describing the Feynman-
Smoluchowski ratchet, the last case is applicable. The con-
stant net flux J corresponds to the rotating ratchet wheel with
averaged velocity v = �x/�t = JL/Nc; Nc is a normaliza-
tion constant, corresponding to the number of particles in one
cell of the channel for diffusion. The stationary 1D density
pst (x) is obtained by solving Eq. (31) for a constant J . In
the first order, Ẑ1 is just a function (not containing ∂x) and
so the square bracket can be taken as the effective diffusion
coefficient [16,17] D(x) � 1 − εẐ1. The solution is of the
form

pst(x)

A(x)
= e−εγ1(x) pst(x)

A0(x)
= ρ0 − J

∫ x

x0

e−εγ1(x ′ ) dx ′

A0(x ′)D(x ′)
, (46)
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FIG. 3. Averaged velocity of the wheel, v = JL/Nc, scaled by
the transverse inverse temperature βy (solid lines, the left scale)
depending on the parameter of asymmetry a for the temperatures
βx = 0.7 and 1.5; βy = 1 and ε = 1. The dashed lines (almost
identical with the solid ones, the right scale) depict the increment
of γ1(x ) per one period, �γ1. The numerical solutions (using the
algorithm of Ref. [4]) are depicted for βy = 1 (vertical bars), 4
(“x”-es), and 10 (circles), keeping βx/βy = 1.5.

x0 denotes here some (arbitrary but fixed) reference point. The
integration constant ρ0, which is the averaged 2D density at
x = x0, is closely related to J . Requiring periodicity of the
stationary density, pst(0) = pst(L), we get

(1 − e−ε�γ1 )ρ0 = J

∫ L

0

dx

A0(x)D(x)
e−εγ1(x). (47)

The normalization constant

Nc =
∫ L

0

[
ρ0 − J

∫ x

0

e−εγ1(x ′ ) dx ′

A0(x ′)D(x ′)

]
A0(x)eεγ1(x)dx (48)

set to unity fixes unambiguously solution of the problem.
It expresses that the probability of finding the pawl and
the wheel in any possible configuration within one period
(“tooth”) is 1. Eliminating ρ0, using γ1(x + L) = γ1(x) +
�γ1 and periodicity of A0(x), D(x), Stratonovich’s for-
mula [18,19] generalized [20–25] by the varying effective
diffusion coefficient D(x) is obtained,

J = (1 − e−ε�γ1 )

×
[∫ L

0
A0(x)eεγ1(x)dx

∫ x+L

x

e−εγ1(x ′ )dx ′

A0(x ′)D(x ′)

]−1

. (49)

The effective driving potential �γ1 (dashed lines) and the
corresponding velocity of the wheel v = 2πJ (solid lines),
calculated from our theory and depending on the parameter
of asymmetry a, are plotted in Fig. 3. The scaling parameter
ε is ratio of the real diffusion constants Dx/Dy of the wheel
and pawl here (not only an auxiliary parameter), but we take
ε = 1 without studying technical properties of the ratchet
device. The plots of the velocity and �γ1 versus a are almost
identical after scaling by an appropriate multiplication factor.
We can define an effective driving force Fef connected with

(a)

(b)

�3 �2 �1 0 1 2 3
0.0

0.5

1.0

1.5

0 0.1 0.2

x

y

ρ

�3 �2 �1 0 1 2 3
0.0

0.5

1.0

1.5

x

y

FIG. 4. Stationary density ρst(x, y ), (colors or gray levels) and
the corresponding flux densities �jst(x, y ) (streamlines) for a = 0.2,
βx = 0.7, βy = 1, and ε = 1. The size of the black arrows reflects
magnitude of �jst. Results of the backward mapping, Eq. (51) (panel
a) are compared with the numerical solution (using COMSOL soft-
ware) of the 2D problem for the same parameters (panel b).

�γ1 = FefL; then v = μefFef, where the effective mobility
μef is well approximated by the (zeroth-order) Lifson-Jackson
formula [26],

μef =
[

1

L2

∫ L

0
A0(x)dx

∫ L

0

dx

A0(x)D(x)

]−1

. (50)

Our mapping procedure also enables us to reconstruct
the 2D picture of the stationary state. Using the backward
projection Eq. (22) up to the first-order Eq. (41), applied to
pst(x)/A(x), Eq. (46), we obtain the formula for the corre-
sponding 2D stationary density,

ρst(x, y) = e−G(x,y)[1 + εω̃1(x, y)∂x + εω(x, y)]
pst(x)

A(x)
.

(51)

The flux density �j = (jx, jy ) is calculated by substituting
Eq. (51) for ρ in the definition relations Eq. (8). Figure 4(a)
shows the stationary regime for βx/βy = Ty/Tx = 0.7 and
a = 0.2. The probability density ρst is depicted by colors or
gray levels, and the streamlines and arrows describe the corre-
sponding fluxes. The results are compared with the numerical
solution of the full 2D problem, using the software package
COMSOL, Fig. 4(b). We see that even the first-order (leading)
terms give a relevant picture, describing the essence of the
ratchet effect. The different temperatures Tx �= Ty give rise
to a nonzero vortex force w, Eq. (35). It drives a couple of
whirls, rotating in opposite directions in the narrowing and
the widening part of one cell. The whirls are different because
of asymmetry of the teeth, i.e., the spring constant k(x), what
results finally in a nonzero net flux J .

Regardless of a considerable agreement of the pictures
obtained from Eq. (51) and the numerical solution in Fig. 4,
the calculation and comparison of the ratchet effect obtained
by both methods is a delicate task. The component jx of the
flux density as a function of y, plotted for several values of
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FIG. 5. The x component of flux density jx (x, y ) for several
values of x; a = 0.2, βx = 0.7. The full lines come from Eq. (51),
the dashed lines depict the numerical solution. The corresponding
net flux J = 3.565×10−5 for any x.

x in Fig. 5, gives the integral J close to zero; the net flux
J is only a tiny part of the fluxes flowing in the whirls.
So the numerical solution requires us to compute ρ and its
derivative jx with maximum precision. At this point, we found
that the algorithm developed by Ryabov et al. [4] is more
effective for this specific task than the universal solver of the
COMSOL package. Therefore, it was used for calculation of
the numerical data in Fig. 3.

However, the results of the mapping, based on Eq. (51),
represent only the leading terms, the first-order correction
of the FJ Eq. (3). Small discrepancies between Figs. 4(a)
and 4(b), caused by neglecting of the higher-order corrections
in pst and ρst, are well visible in Fig. 5. The plots of jx

obtained from Eq. (51) (solid lines) differ from the numerical
data (dashed lines) especially in between the neighboring
whirls, e.g., at x = 0.2. Taking only the first order explains the
difference between the theoretical velocity for βx = 1.5 (solid
line) in Fig. 3 and the numerical results (vertical bars) for
the same parameters. Increasing βy > 1 and holding the same
ratio βx/βy has the same effect as taking the scaling parameter
ε = 1/βy < 1; see Eqs. (43) and (45). The neglected higher
orders become less important and the numerical values of ve-
locity v multiplied by βy approaches the theoretical line with
growing βy , see the crosses (βy = 4, βx = 6) and the circles
(βy = 10, βx = 15) in Fig. 3. The higher-order corrections γn,
necessary to achieve a better agreement, can be systematically
derived by a straightforward although laborious extension of
the theory introduced in Ref. [11].

The picture obtained within our analysis is in a qualitative
agreement with the numerical study [27] of a more realistic
potential of the ratchet. The lower boundary was shaped by a
periodic function h(x) > 0 and the interaction of the pawl and
wheel was described by the potential

U (x, y) = λ

y − h(x)
+ Fpy, (52)

considering their repulsion in a thin contact layer of thickness
∼λ, Fp is a constant force pushing the pawl to the wheel.
Expressing f = −βx∂xU , g = −βy∂yU and using Eq. (18),

we find the vortex force

w(x, y) = (βx − βy )
λh′(x)

[y − h(x)]2
, (53)

calculated from the reference distance h0 → ∞. Nonzero w

drives asymmetric stationary circulating probability currents,
given by asymmetry of h(x), resulting finally in the rectified
motion of the device. The general formalism, presented in the
Sec. II, also enables us to formulate the 1D effective theory for
such models of the ratchets. The problems with calculation
of the effective driving potential −γ1(x) are only technical,
to complete the integrals containing exp[−βyU (x, y)] for the
potentials like Eq. (52).

A common simple model of the ratchet device con-
siders the spring constant k(x) = k and the potential
U (x, y) = U (y) independent of x; with only the boundary at
y = h(x) > 0 binding both degrees of freedom. It represents an
interesting limit in our theory, where the potential U (x, y) has
to describe properly the hard-wall repulsion in the infinites-
imal layer at the boundary. If, e.g., λ → 0 in Eq. (52), the
corresponding w(x, y) becomes zero, resulting in no ratchet
effect. It suggests that the details of doing the limit from soft
to the hard wall are important. We leave the detailed study of
this problem to the future work.

IV. CONCLUSION

The main aim of the present paper was to show that
the Feynman-Smoluchowski ratchet can be understood as a
diffusive system driven by a nonconservative driving force.
The vortex force w(x, y), Eq. (18), appears here nonzero due
to different temperatures Tx and Ty of the reservoirs connected
to the ratchet wheel and the pawl, respectively. It drives a
couple of competing stationary whirls in the narrowing and
widening part of the cell, corresponding to one tooth of the
wheel. Due to asymmetry of the potential landscape U (x, y),
the whirls differ from one another and the final net flow J ,
related to the velocity of the ratchet v, results as a net effect
gained at the interface of the whirls.

We demonstrated that the 1D description offers an ef-
fective tool to study such phenomena. Mapping of the full-
dimensional problem onto the longitudinal coordinate x, cor-
responding to the angle of the rotating wheel, leads again
to the generalized Fick-Jacobs equation, Eq. (4). Unlike the
previous mapped diffusive systems, the function A(x) here
is dependent on the scaling parameter ε, too. So the related
1D effective (real + entropic) potential Uef(x) ∼ − ln A(x)
can be expanded in ε; its coefficients −γn(x) are calculated
recursively together with the operators of backward mapping
ω̂n(x, y, ∂x ) and the corrections to the FJ equation Ẑn(x, ∂x ).
As we demonstrated on the first-order coefficient γ1(x),
Eq. (43), for U (x, y) = k(x)y2 (Ryabov’s model [4,5]), these
corrections to the effective potential can break the periodicity
of the system and give a nonzero increment of energy �γ

per one period L. The original periodic potential becomes
a slanted washboard potential in the 1D description; the
effective driving force Fef = �γ /L drives the system (wheel)
in one direction with velocity v = μefFef, Eq. (50), which is
observed as the ratchet effect.
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The 1D effective description enables us to handle the
Feynman-Smoluchowski ratchet as any diffusive system
driven by an external driving force. The presented calculation
of Fef and the corresponding velocity v was done here only up
to the first order, so the results may deflect from the numerical
values for some parameters of the model. Still, the mapping
procedure, fully described in Ref. [11] can give the corrections
to the force �γn/L up to any order ∼εn. The future task
may include the higher orders to an approximative formula,

improving our first-order calculation and making the results
applicable to a wider range of parameters of the model.
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