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Symmetries in the path integral formulation of the Langevin dynamics
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We study dissipative Langevin dynamics in the path integral formulation using the Martin-Siggia-Rose
formalism. The effective action is supersymmetric and we identify the supercharges. In addition we study the
transformations generated by superderivatives, which were recently included in the cohomological structure
emerging in the dissipative systems. We find that these transformations do not generate Ward identities, which
are explicitly broken; however, they lead to universal sum-rule-type identities, which we derive from Schwinger-
Dyson equations. We confirm that the above identities hold in an explicit example of the Ornstein-Uhlenbeck
process.
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I. INTRODUCTION

Low-energy effective models are at the core of under-
standing various physical phenomena. In such a limit only
a small number of degrees of freedom is relevant and the
ignorance about the microscopic details is parametrized by
some effective variables. One manifestation of microscopic
dynamics comes through the thermal fluctuations arising from
the external heat bath. A way to model fluctuating variables
is to introduce stochastic terms in the evolution governed
by a differential equation. In the modern language stochastic
equations can be formulated in terms of path integrals. This
originated from the stochastic quantization procedure [1],
which formulates a Euclidean field theory as the equilibrium
limit of a statistical system coupled to thermal fluctuations. A
field-theoretic formulation of stochastic dynamics allows one
to employ powerful symmetry techniques to derive, e.g., sta-
tistical work relations. Perhaps the most fundamental stochas-
tic differential equation is the Langevin equation related to
diffusion processes. Its properties can be used to understand
more complicated stochastic evolution. In this work we will
study the over-damped Langevin dynamics with noise that
belongs to a subclass of potential or gradient systems [2].
It is well known that Langevin dynamics can be formulated
in terms of path integrals using Martin-Siggia-Rose (MSR)
construction. Therefore, we can view the Langevin dynam-
ics as a toy model that illustrates more general features of
stochastic systems. In fact, Burgers equation is an exam-
ple of Langevin dynamics that belongs to a more general
nongradient case. The effective action of over-damped, po-
tential Langevin equation, constructed from MSR, possesses
a number of symmetries [3–7]. A peculiar feature of these
symmetries is that they mix physical and the ghost fields
present in the theory. Therefore, it is usually stated that
the effective action for Langevin dynamics is supersymmet-
ric. It can be linked to the microscopic Schwinger-Keldysh
field theory which gives rise to Langevin dynamics in the
classical limit [8]. Exploring Schwinger-Keldysh approach
various microscopic constructions were proposed to elucidate
these supersymmetries [9–15]. Although similar in spirit they

have some differences. For example, an inherent feature of
[9–11,15] is the existence of a dynamical gauge field that
corresponds to thermal translations. In turn, the number of
supersymmetry generators is enlarged. We use this as a mo-
tivation to study the properties of these transformations in a
conventional set-up of Langevin dynamics with a fixed gauge
field. We find that some symmetries are broken; however,
the transformations still generate universal identities, from
which some new equilibrium relations can be deduced. Those
identities assume a form of a sum-rule for n-point correlation
functions. We exemplify our considerations using explicit
computations in the Ornstein-Uhlenbeck process [16].

II. PARTICLE ON A SCHWINGER-KELDYSH CONTOUR

The Schwinger-Keldysh formalism was developed to cal-
culate the nonequilibrium correlation functions. In equilib-
rium, to calculate correlation functions we use conventional
perturbation theory. However, in nonequilibrium we do not
have the usual control over the final state. The time-ordered
correlation function reads

iG(x, t ; x′, t ′) = 〈�(∞)|F T [S (∞,−∞)φ(x, t )φ†(x′, t ′)]|
×�(−∞)〉I , (1)

where S (∞,−∞) is the S matrix. Out-of-equilibrium the
assumption that the final state differs from initial state only
by a phase is broken. A method used to avoid dealing with the
quantum state at infinity is to evolve back to the initial state,

|�(−∞)〉I = S(−∞,∞)|�(∞)〉F , (2)

and introduce a two-branch contour together with a contour
ordering Tc. In fact, we do not even need to consider infinite
past if we know the density matrix at some finite time t0.
Then we can evolve our system up to some finite time and
back to t0. The evolution contour is now closed in time.
Finally, we can include finite temperature effects by adding
the imaginary time branch, which will implement the thermal
boundary conditions. We can use the contour to define an
effective functional that will generate the relevant correlation
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functions,

Z[H1,H2] =
∫

[dφ1][dφ2] exp[i(S[φ1,H1] − S[φ2,H2])]

× exp[iSIF(φ1, φ2)], (3)

where φi’s are defined on the upper and lower branches of
the contour and SIF is an interaction between different copies
of the system. Differentiating with respect to the sources
gives a matrix of Green’s functions. We see from Eq. (3) that
the Schwinger-Keldysh construction doubles the degrees of
freedom and creates certain redundancies in the description,
which can be understood as a gauge symmetry [10]. This
means that we can make redefinitions of fields and the phys-
ical observables remain unchanged. One possible choice of
such a redefinition is the Keldysh rotation,

φr = 1
2 (φ1 + φ2), φa = φ1 − φ2, (4)

Hr = 1
2 (H1 + H2), Ha = H1 − H2. (5)

r-type operators are conjugate to a-type sources and vice
versa. A consequence of such redefinitions is the existence
of symmetry charges that act on functionals. This symmetry
enforces a constraint on the correlation functions. For exam-
ple, if we align sources, then the cyclicity of the trace and
the unitarity imply that the partition function is independent
of H . Therefore, if a-type sources are set to zero, then
the variations with respect to r sources must vanish and
the partition function becomes topological. As a result, the
Schwinger-Keldysh partition function is invariant under one
[14] or two topological BRST charges [9–11,15], depending
on the approach, which enforce the above constraint. Apart
from this topological symmetry, the partition function has
an additional symmetry if the initial state is thermal, which
corresponds to the time evolution in imaginary time,

Z[H1(t1),H2(t2)] = Tr(U †
2 [H2(t2)]eβHU1[H1(t1 − iβ )]).

(6)

From Eq. (6) we can obtain the Kubo-Martin-Schwinger
(KMS) condition for the thermal correlators. This symmetry
is again generated by one or two KMS charges. It was noted
that the four symmetry generators form an algebra, which has
been previously encountered in the topological field theory
literature and goes by the name of the extended NT = 2 equiv-
ariant cohomology algebra [17]. Finally, the KMS symmetry
is combined with CPT invariance, which is spontaneously
broken to obtain dissipative effects.

Let us see how we can formulate a particle dynamics on
the Schwinger-Keldysh contour. We start with the action

S[ϕ] =
∫

dt

[
1

2
ϕ̇2 − V (ϕ)

]
, (7)

and we split the field into two components φ1 and φ2 residing
on a two-branch contour according to Eq. (4). In terms of these
new fields, the action takes the form

S[φr, φa] = −
∫

dt[φaφ̈r − V (φr + 2φa ) + V (φr − 2φa )],

(8)

where we performed an integration by parts. If we assume that
the fluctuations of the a component are small, we can expand
the potential terms to get

S[φr, φa] = −
∫

dt

[
φa

(
φ̈r + ∂V (φr )

∂φr

)]
. (9)

We notice that we can perform the integration over φa in the
partition function,

Z = N
∫

[dφr ]δ

(
φ̈r − ∂V (φr )

∂φr

)
, (10)

which gives the equation of motion for the r field,

φ̈r = −∂V (φr )

∂φr

. (11)

As we will see later this form of the action resembles the ef-
fective action obtained for Langevin dynamics without noise.
To obtain the noise contribution one has to carefully take
into account quantum fluctuations and take h̄ → 0 limit [8].
Therefore, we can view Langevin equation as coming from
the Schwinger-Keldysh construction and we expect it to be
invariant precisely under the NT = 2 symmetry, which we
will identify as the Parisi-Sourlas supersymmetry [6].

III. STOCHASTIC DIFFERENTIAL EQUATIONS,
MSR FORMALISM, AND SUPERSYMMETRY

In our analysis so far, we completely ignored the effects
of dissipation and fluctuations. Having in mind the Langevin
dynamics, we want to include these effects in the effective ac-
tion. It turns out one can do that using the Martin-Siggia-Rose
(MSR) prescription. In essence, one starts with a stochastic
differential equation (SDE) with noise,

E[φ(x)] = ν(x), (12)

where E(φ) is some differential operator and ν(x) is a random
variable. One must carefully define what does the whole
expression mean which is usually done by means of Itô or
Stratanovich calculus in a mathematically consistent way.
Assuming this, we want to calculate the correlation functions
for a stochastic process. An efficient tool to achieve this is
to construct a partition function and differentiate with respect
to sources. To do that in MSR formalism, one starts with the
following identity:

Z[ν] =
∫

[dE]δ(E(φ) − ν) =
∫

[dφ]J (φ)δ(E(φ) − ν).

(13)

J (φ) = det δE
δφ

is the Jacobian. In this framework, φ is not a
real function of x but rather a random variable itself.

We will assume that the noise fulfils

〈ν(x)ν(x ′)〉 = 2�

β
δ(x − x ′), (14)

i.e., the white noise, with a Gaussian distribution,∫
[Dν]ν(x)ν(x ′) exp

(
− β

4�
ν2

)
= 2�

β
δ(x − x ′). (15)

In the next steps, we introduce an auxiliary field φ̄ that will
give us the δ function in Eq. (13) and integrate over the noise.
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The partition function is

Z[H, H̄ , L, L̄]

=
∫

[Dc][Dc̄][Dφ̄][Dφ] exp

(∫
dx �(φ, φ̄, c, c̄)

+ H̄φ + Hφ̄ + Lc̄ + cL̄

)
, (16)

where we expressed the Jacobian as an integral over ghost
fields and introduced sources for every field. The effective
action � is given by

�(φ, φ̄, c, c̄) = −�

β
φ̄2 − iφ̄E(φ) + c

δE

δφ
c̄. (17)

It has three auxiliary fields—one real and two Grassmannian.
In addition to that, we see that the form of this action resem-
bles Eq. (9) upon identification φa → φ̄. This strongly sug-
gests that we can interpret stochastic dynamics as emerging
from microscopic Schwinger-Keldysh construction. Up to this
point our considerations are completely general. Now we will
restrict our attention to the Langevin dynamics. If Eq. (12) has
the form

E(φ) = ∂tφ + �
δ

δφ
U (φ), (18)

the SDE is an over-damped, purely dissipative Langevin
equation. This type of equation is valid for one-dimensional
domains [i.e., φ(t ) being a position of some particle at time t]
as well as for fields on multidimensional domains (the po-
tential U can depend also on spatial derivatives of φ; see
Sec. 2.1 of Ref. [5] for an example). We will adopt a notation
where x in integrals and arguments denotes all the variables,
among which there always is time t . The latter variable will
often be mentioned separately and denoted by t . This kind of
equation is a valid approximation when the inertia of a particle
is negligible in comparison to the linear damping force. One
physical realization of this dynamics describes the evolution
of the order parameter of a second-order phase transition in
axial ferromagnets.

The connection between Langevin dynamics and
Schwinger-Keldysh field theories suggests that the effective
action possesses an underlying NT = 2 symmetry structure
[9], which will lead to identities between various correlation
functions. This fact was noted a long time ago in the context
of dimensional reduction which was later used to unearth
various properties and methods to study Langevin dynamics.
Explicitly, as shown in Ref. [5], the action is invariant under
the following transformation:

Q : δφ = −c̄ε, δc = iφ̄ε, other variations vanishing,

Q̄ : δφ = cε, δc̄ =
(

iφ̄ − β

�
φ̇

)
ε, δφ̄ = −i

β

�
ċε, other variations vanishing. (19)

Apart from them, we can define two other operators that complete the algebra, following Ref. [9]:

D : δφ = cε, δc̄ = iφ̄ε, other variations vanishing,

D̄ : δφ = −c̄ε, δc =
(

iφ̄ − β

�
φ̇

)
ε, δφ̄ = i

β

�
˙̄cε, other variations vanishing. (20)

If we write the theory in a manifestly supersymmetric way
using superspace (see Appendix A), then these two opera-
tors play the role of (covariant) derivatives—therefore, we
call them superderivatives. To make connection with the
symmetry algebra of the Schwinger-Keldysh construction for
thermal initial states described in Ref. [9], we note that upon
identifications,

Q ≡ QSK,

D ≡ Q̄SK,

Q − D̄ ≡ QKMS,

D − Q̄ ≡ Q̄KMS, (21)

we recover the charges connected with Schwinger-Keldysh
formalism. The above were recently used to construct effec-
tive actions for dissipative hydrodynamics. A natural question
arises whether they are true symmetries of the full partition
function. We shall briefly present that, while Q and Q̄ are true
symmetries, D and D̄ are symmetries of the partition function
only for specific sources, which are explicitly invariant under
these transformations.

A. Symmetries of the Langevin dynamics

Symmetries of path integrals imply that various identities
are satisfied by correlation functions. We will analyze the
emergence of such identities in the Langevin dynamics. Be-
fore we do that let us recall the general procedure to derive
these identities using the Schwinger-Dyson approach. We start
with a general field theory defined by a path integral

Z[J ] =
∫

[dϕ] exp[−S(ϕ) + J · ϕ]. (22)

Here, ϕ denotes the set of all fields in our action and J · ϕ is a
source term.1 We proceed by making an infinitesimal change
of variables,

ϕ(x) = χ (x) + εF (x; χ ), (23)

where F (x; χ ) is a general functional of χ (x). It is enough
to work to the linear order in ε. The variation of the action

1The “dot” product indicates that J is a vector of sources—one
source per field—and some sign subtleties and constants can be
involved, like an overall i factor traditionally in Quantum Field
Theory or a minus sign for some Grassmanian source-field ordering.
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functional takes the form

S(ϕ) = S(χ ) + ε

∫
dx

δS

δχ (x)
F (x; χ ) + O(ε2). (24)

In addition to that, a general change of variables leads to a
nonzero Jacobian,

J = det
δϕ(x)

δχ (x)
= 1 + ε

∫
dx

δF (x; χ )

δχ (x)
+ O(ε2). (25)

The invariance of the path integral Eq. (22) under changes of
variables means that the terms of order ε cancel out,∫

[dϕ]

[∫
dx

δF (x; χ )

δχ (x)
+ δS

δχ (x)
F (x; χ ) + J · F (x, χ )

]

× exp

[
−S(ϕ) +

∫
dxJ (x)ϕ(x)

]
= 0. (26)

Now, we can use a field-theoretic trick: in a path integral, a
field can be replaced by a variational derivative with respect
to the corresponding source. For example, if we only had one
field ϕ,∫

[dϕ]ϕ(y) exp

[
−S(ϕ) +

∫
dxJ (x)ϕ(x)

]

= δ

δJ (y)

∫
[dϕ] exp

[
−S(ϕ) +

∫
dxJ (x)ϕ(x)

]
. (27)

Combining the previous expressions and making the field-
derivative replacement2 χ �→ DJ , we obtain the identity∫

dx
[
F (x; DJ )

δS(DJ )

δχ (x)
− δF (x; DJ )

δχ (x)

− J (x)F (x; DJ )

]
Z[J ] = 0. (28)

We see that if∫
dx

[
F (x; DJ )

δS(DJ )

δχ (x)
− δF (x; DJ )

δχ (x)

]
Z[J ] = 0, (29)

then F (x; DJ ) generates a symmetry of the partition function.
Equation (28) leads to Ward identities expressed in terms of
currents, ∫

dx[J (x)F (x; DJ )]Z[J ] = 0. (30)

Ward identities can be satisfied if both terms in Eq. (29) vanish
separately or, in a more general case, if the term generated by
the variation of the action is canceled by the term coming from
the Jacobian. We note that it is a very common assumption that
the symmetry of the action implies unit Jacobian. However,
we will not make this assumption here. If F (x; DJ ) generates
the symmetry of the action but it has a Jacobian that is not
equal to one, then we say there is an anomaly,∫

dx[J (x)F (x; DJ )]Z[J ]

=
∫

dx
[
−δF (x; DJ )

δχ (x)

]
Z[J ] ≡ A. (31)

2DJ denotes here the set of variational derivative operators corre-
sponding to fields from χ . Elements of DJ are proportional to δ

δJi

(with Ji being component of J ) and proportionality constants take
care of signs for Grassmans and the overall source term normaliza-
tion.

We are now in a position to study the symmetries of the
Langevin dynamics. To do that, we will assume that the
infinitesimal transformation takes the form

ϕ = ϕ + εQϕ, Q ∈ {Q,D, Q̄, D̄}, (32)

where ϕ denotes the set of fields (φ, φ̄, c, c̄) and the genera-
tors Q are given by Eqs. (19) and (20). We first investigate
what is the transformation of the action Eq. (17) for over-
damped Langevin Eq. (18) those transformations (TTD—total
time derivative):

δQ� = 0,

δD� = 2ic ˙̄φ = δQ̄(φ̄2),

δQ̄� = 0 + TTD,

δD̄� =
(

2β

�
φ̇ − 2iφ̄

)
˙̄c + TTD

= δQ

(
− 2

β

�
φ̇2 − 2c ˙̄c

)
+ TTD. (33)

We see that Q and Q̄ generate symmetries of any time-
independent action, while D and D̄ do not. However, the
results of acting with D and D̄ on the action do not de-
pend on the details of the theory—they are independent of
the potential. So, the identities generated by this change of
variables should hold for every Langevin-type theory with
a time-independent potential U . In case of an explicit time
dependence in the equation, two of the above equations get
modified. As noted in Ref. [5], the transformation δQ̄ ceases
to be a symmetry, and in turn supersymmetry is broken out-
of-equilibrium. Also, the last transformation law assumes the
form

δD̄� =
(

2β

�
φ̇ − 2iφ̄

)
˙̄c − βc̄

∂

∂t

δ

δφ
U (φ, t ) + TTD (34)

and is no longer independent of the theory.3 Another state-
ment that we can make comes from the observation that the
leftovers generated from the D and D̄ acting on the action
functional can be obtained from symmetry transformations
Q̄ in the former case and Q in the latter. As a result it
leaves the full path integral invariant in the limit of vanishing
sources, provided that the measure is invariant. This follows
from an argument similar to the one used in the derivation of
the supersymmetic localization technique [18,19], which we
present in Appendix B.

Using the above reasoning in combination with Eq. (26),
we see that∫

[dϕ]

[∫
dx δsH + J (x) · δdϕ(x)

]

× exp

[
−S(ϕ) +

∫
dxJ (x)ϕ(x)

]
= 0, (35)

3However, if the driving protocol involves linear coupling of field φ

to some time-dependent source H (t, x ), the discussion still holds as
this coupling is technically identical to a source term in our effective
action.
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where δs, H , and δd can be either

δd = δD, δsH = δQ̄(φ̄2)

or

δd = δD̄, δsH = δQ

(
−2

β

�
φ̇2 − 2cc̄

)
.

Now, one can observe that the first term of Eq. (35) can vanish
as a full supersymmetric variation, if the following is satisfied:

δs (J · ϕ) = 0. (36)

This is of course not possible for a generic source term.
However, it can happen if one chooses a proper combination
of sources or, alternatively, one might say that we choose to
source a supersymmetric operator. In that case, we can replace
the source term by ∫

dx j (x)O(ϕ), (37)

where now j is a single source function and O(ϕ) is some
function of fields that fulfills

δsO(ϕ) = 0. (38)

Since now both terms of Eq. (35) must vanish independently,
we get some type of identity similar to Ward identities,∫

[dϕ]

[∫
dx j (x)

δ

δϕ(x)
O(ϕ) · δdϕ(x)

]

× exp

[
−S(ϕ) +

∫
dx j (x)O(ϕ)

]
= 0. (39)

However, these identities are only valid for operators super-
symmetric operators O, so we chose to work further with the
more general Eq. (35)

IV. IDENTITIES SATISFIED BY LANGEVIN DYNAMICS

We have seen how the supercharges and superderivatives
transform the Langevin path integral. We now explore if they
lead to new identities that emerge. In the case of supercharges

the question is well understood. The path integral is invariant
under the transformations Q and Q̄ which results in the
corresponding Ward identities. Traditionally, Ward-Takahashi
identities are identities between correlators of fields, derived
from symmetry along with assumption that a path integral
measure transforms with unit Jacobian, i.e., there is no quan-
tum anomaly. They can be, however, stated in terms of iden-
tities between variational derivatives of the partition function;
see, for example, Ref. [5]. We are going to use those forms in
our calculations. The WT identities for symmetries Eq. (19)
read

GQ =
∫

dx H̄ (x)
δ

δL(x)
Z + iL̄(x)

δ

δH (x)
Z = 0, (40)

GQ̄ =
∫

dx H̄ (x)
δ

δL̄(x)
Z − i

β

�
H (x)∂t

δ

δL̄(x)
Z

−L

[
i

δ

δH (x)
Z − β

�
∂t

δ

δH̄ (x)
Z

]
= 0, (41)

where x = (t, x1, x2, . . .), and the number of spatial variables
xi depends on the specific problem.

A natural question that emerges is whether the transforma-
tions coming from superderivatives also generate identities.
Of course, for any transformation there exists a Schwinger-
Dyson type of identity Eq. (28), but we would like to see
if there are simplifications or universalities that apply to
this expression. One motivation for the existence of such
a simplification comes from the analysis of Ref. [9]. This
work proposes to introduce a dynamical gauge field and to
enlarge supersymmetric algebra by including also operators
D, D̄. This extension requires that the measure is invariant
under D and D̄. However, this is a subtle point and to justify
it we will explicitly check it in a specific example of the
Ornstein-Uhlenbeck process. Another observation that we can
make follows from Eq. (33). The noninvariance under D

and D̄ comes purely from the kinetic term and leaves the
potential term invariant. As a result, for any choice of the
(time-independent) potential the following two identities have
to to be satisfied:

∫
dx − 2i

δ

δL̄(x)
∂t

δ

δH (x)
Z =

∫
dx

[
−H̄ (x)

δ

δL̄(x)
+ i

(
δ

δH (x)

)
L(x)

]
Z, (42)

∫
dx 2

(
β

�
∂t

δ

δH̄ (x)
− i

δ

δH (x)

)
∂t

δ

δL(x)
Z =

∫
dx

[
H̄ (x)

δ

δL(x)
− i

β

�
H (x)∂t

δ

δL(x)
+ L̄(x)

(
i

δ

δH (x)
− β

�
∂t

δ

δH̄ (x)

)]
Z.

(43)

Those two identities are different in character than standard
Ward identities. The key difference is that there are no sources
other than those in Z on the left-hand sides (LHS) of Eqs. (42)
and (43). It means that no functional differentiation can
remove the integrals from LHS. As a result the generated
identities will have a sum rule form connecting local values
of correlators from right-hand side (RHS) of identities to
integrals over the whole domain coming from the left-hand
side (in Fourier space it translates to a integral over all
frequencies). Interestingly, since Z[J ] is present both on the

LHS and the RHS of identities, infinite amount of sum rules
for higher-order correlators can be generated.

A. Implications for correlators

The identities Eqs. (42) and (43) are written in a form
that allows one to generate arbitrary amount of identities
between correlators. It is, however, useful to see what kinds
of identities for n-point functions can be obtained from them.
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First, we can just put all sources to zero, which causes the
RHS of both to vanish [ ˙̄φ(x) = ∂t φ̄(x)]:

∫
dx 2i〈c(x) ˙̄φ(x)〉 = 0, (44)

∫
dx 2

〈(
β

�
φ̇(x) − iφ̄(x)

)
˙̄c(x)

〉
= 0. (45)

To see in a clearer way what kinds of sum rules can be ob-
tained form the identities we take Eq. (42) and apply operator

δ
δL(y) to both sides and set the sources to zero to get
∫

dx − 2
δ

δL(y)

δ

δL̄(x)
∂t

δ

δH (x)
Z

∣∣∣∣
J=0

= δ

δH (y)
Z

∣∣∣∣
J=0

.

(46)

Now, to get rid of δ
δL(y)

δ

δL̄(x)
, we can use GQ of Eq. (41),

δ

δL̄(x)

δ

δH̄ (y)

δ

δH (z)
GQ

∣∣∣∣
L̄=0,H̄=0

= δ

δH (z)

(
δ

δL̄(x)

δ

δL(y)
+i

δ

δH̄ (y)

δ

δH (x)

)
Z

∣∣∣∣
L̄=0,H̄=0

= 0. (47)

Plugging the above into Eq. (46) gives

2i

∫
dx

δ

δH (x)

δ

δH̄ (y)
∂t

δ

δH (x)
Z

∣∣∣∣
L,L̄,H̄=0

= δ

δH (y)
Z

∣∣∣∣
L,L̄,H̄=0

, (48)

which in terms of correlation functions is

2i

∫
dx 〈φ̄(x)φ(y) ˙̄φ(x)〉 = 〈φ̄(y)〉. (49)

Since 〈φ̄(y)〉 = 0 (as a consequence of GQ = 0), we see that
integral on LHS of the above vanishes. If we introduce Fourier
transforms of fields

φ(k) =
∫

dxe−ik·xφ(k), (50)

we get a sum-rule-type relation,

∀q

∫
dk ω〈φ̄(−k)φ(q )φ̄(k)〉 = 0, (51)

where ω denotes first component of k – the conjugate of t .
Alternatively, relation Eq. (48) can be rewritten as a response
function identity,∫

dx
δ

δH (x)

d

dt

δ

δH (x)
〈φ(y)〉 = 0. (52)

The Ward identity Eq. (41) leads to the equilibrium rela-
tions between observables. New identities Eqs. (42) and (43)
provide additional constraints among correlation functions.
These constraints should be placed among results following
from generalizations of linear responses to higher orders
[20,21]. Usually nonlinear responses depend on the details
of the dynamics. Therefore, universal nonlinear relations are
rather remarkable. A priori it is not evident that such a relation
should exist. We see that the relation Eq. (52) does not relate

correlations to responses as is the case with the fluctuation-
dissipation theorem. Instead it places a constraint that inte-
grated nonlinear response vanishes. Furthermore, by acting
with more derivatives we can generate universal relations
valid for higher-order response functions. The consequences
of this constraint are beyond the supersymmetric formalism
used here. Nevertheless, we can show that the relation holds
in an explicit example of the Gaussian potential.

B. Gaussian theory: Ornstein-Uhlenbeck process

The Ornstein-Uhlenbeck process, describing among others
thermal noise in RLC circuits, is the simplest of Langevin
dynamics and under analytic control. It is defined as

E[φ(t )] = ˙φ(t ) + �φ(t ) = ν(t ), (53)

i.e., it is one-dimensional Gaussian model, in a sense that the
fields appear in the effective action at most in second powers.
We can calculate the partition function by doing the Gaussian
integrals in bosonic and fermionic fields separately,

Z[J ] = Z[H̄ ,H, L̄, L] = Zb[H̄ ,H ]Zf [L̄, L]. (54)

The result is given by

Zb[H̄ ,H ] = exp

[ ∫
dτdτ ′e−�|τ−τ ′| 1

2β
H̄ (τ )H̄ (τ ′)

− iθ (τ − τ ′)e−�(τ−τ ′ )H̄ (τ )H (τ ′)
]
, (55)

Zf [L̄, L] = exp

[
−

∫
dτdτ ′L(τ )θ (τ − τ ′)e−�(τ−τ ′ )L̄(τ ′)

]
,

(56)

with θ being a Heaviside step function and i—imaginary unit.
Upon using the partition function Eq. (56) one can eval-

uate all identities directly and find them to be satisfied—see
Appendix C.

V. SUMMARY AND OUTLOOK

In this paper we studied the transformations of NT = 2 al-
gebra acting on the Langevin dynamics formulated in terms of
a supersymmetric path integral. We found that two operators
D and D̄, despite not being symmetries of the action, generate
additional and universal identities since they change action in
a potential-independent way. In the previous studies identities
among the correlation functions were identified to be equiva-
lent with the equilibrium relations among the correlation func-
tions. In addition to that, such identities have consequences in
the nonequilibrium dynamics. In this case, the supersymmetry
is violated; however, it can be partially recovered by adding to
the dynamical action a term which corresponds to Jarzynski’s
work [22]. A natural extension of this work is to check how
time-dependent potentials modify the new relations coming
from transformations due to superderivatives.

We have shown that if we eliminate ghost fields, then the
relations we obtain result in a nonlinear and nonlocal con-
straint on response functions. This is an important difference
with respect to the relations coming from supersymmetric
Ward identities. It can be traced to the fact that a general
nonlinear response depends on the underpinning dynamics.
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However, the relations that we obtain capture only the univer-
sal correlation functions, independent of the dynamics. To ex-
plore physical consequences of such relations one needs to go
beyond the supersymmetric formalism employed in this note.

Another direction that can be studied in more detail is
the Langevin dynamics with colorful noise. It was shown
[23] that the structure that emerges in this case resembles
closely Langevin dynamics with the noise and the identities
following from supersymmetry hold in these generalised case.
However, we stress that the inclusion of time dependence
and colorful noise is not automatic. It may happen that the
regularization procedure or the properties of the fermionic
determinant imply a breaking of identities (42) and (43).

We have demonstrated that the supersymmetric identities
hold in Ornstein-Uhlenbeck process. These systems has been
studied with different theoretical approaches and it is also eas-
ily accessible experimentally. Therefore, it can serve as a play-
ground to get more intuition about the relations we derived.

Finally, the same structure is present in constructions of
the effective actions for fluids. The simplest fluid is described
by Burgers equation, which is a Langevin dynamics that is
not potential. A detailed analysis of the identities derived here
could shed new light on various correlates in fluid dynamics.
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APPENDIX A: SUPERSPACE FORMULATION

Since in the text we make a few references to superspace
objects (superderivatives, superspace translations), we briefly
show the superspace formulation of our theory of interest.
The superspace is a space spanned by physical dimesions
and some number of grassmann directions which are basis
elements of a skew-symmetric grassman algebra—in our case
θ, θ̄ . We begin with the superfield—object that encodes our
fields:

� = φ + θ c̄ + cθ̄ + θ θ̄ iφ̄. (A1)

To have the proper source term, namely,∫
dxdθ̄dθ J� =

∫
dx H̄φ + Hφ̄ + Lc̄ + cL̄, (A2)

our super source J must be

J = −iH + L̄θ + θ̄L + θ θ̄H̄ . (A3)

The symmetry generators are listed in the table below:

D = ∂θ̄ , D̄ = ∂θ − β

�
θ̄

d

dt
,

Q = ∂θ , Q̄ = ∂θ̄ + β

�
θ

d

dt
,

Q̄ = ∂θ̄ + β

�
θ

d

dt
, D̄ = ∂θ − β

�
θ̄

d

dt
. (A4)

Now partition function Eq. (16) for a system of our interest
can be written as

Z[H, H̄ , L, L̄] =
∫

[D�] exp

{∫
dxdθ̄dθ

−�

[
1

β
D̄�D� + U (�)

]
+ J�

}
. (A5)

Now it is clear why we call D, D̄ “superderivatives”—they
appear in the superspace kinetic term.

APPENDIX B: SUPERSYMMETRIC LOCALIZATION

The idea behind supersymmetric localization resembles a
saddle-point approximation of integrals; however, it yields
exact results provided that the partition function is invariant
under a supersymmetry. Let us assume that we have a theory
defined by a path-integral over both bosonic (φ) and fermionic
(ψ) fields,

Z =
∫

[Dφ][Dψ] exp (S[φ,ψ]), (B1)

where S is the supersymmetric action and the path integral
measure transforms under change of variables given by δs

with a unit Jacobian. Also, let δs be a fermionic symmetry
transformation and δ2

s = B—a bosonic transformation and
V [φ,ψ] a functional of fields, such that BV = δ2

s V = 0 and
bosonic part of δV is positive. Then the supersymmetric
localization principle states that deforming our action with a
term proportional to V does not change partition function,

d

dμ

∫
[Dφ][Dψ] exp (S[φ,ψ] + μδsV [φ,ψ]) = 0. (B2)

This is a consequence of the relation,

d

dμ

∫
[Dφ][Dψ] exp (S[φ,ψ] + μδsV [φ,ψ])

= −
∫

[Dφ][Dψ]δs (V [φ,ψ] exp(S[φ,ψ]

+μδsV [φ,ψ])) = 0, (B3)

where the last equality follows from the fact, that functional
integral of full supersymmetric variation vanishes [18], see
Eq. (3.4). Equation (B2) shows also that a deformation of
action proportional to a symmetry charge does not contribute
to the path integral. Let us explore the localization technique
further. If we let μ → ∞, Z reduces to an integral over critical
points of δsV and a small fluctuation (of WKB type) around
them. The set of critical points of δsV is called localization
locus and the part coming from small fluctuations—1-loop
determinant. For many supersymmetric theories, especially
on compact manifolds, the localization principle allows us to
reduce the path-integral to a finite dimensional integral. For
practical reasons one usually uses V in the form

V =
∑

i

ψi · (δsψi ), (B4)

where the sum runs over all fermions in the theory and “·”
denotes some scalar product (depending on a theory, it may
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require for example the use of Hermitian conjugation). Then,

δsV |bos =
∑

i

(δsψi ) · (δsψi ), (B5)

which is manifestly positive and quadratic so that the locus is
given by

(δsψi )|ψ=ψ0, φ=φ0 = 0. (B6)

Here, we denote locus field configuration as ψ0, φ0. These
fields will dominate the path integral in the limit μ → ∞. To
compute potential corrections, cocalled 1-loop corrections, we
redefine fields

ψi = ψ0,i + μ−1/2ψ̃i (B7)

and then what survives the large t limit is

Z =
∫

loc
[Dφ0][Dψ0] exp (S[φ0, ψ0])

∫
[Dφ̃][Dψ̃]

× exp

(
δ2

δφδφ
δsV |φ0

)

=
∫

loc
[Dφ0][Dψ0] exp (S[φ0, ψ0])SDet[δsV (φ0)]−2,

(B8)

where the last line is just changing notation to more compact
one. Let us also note that this method allows us to compute
correlation functions of supersymmetric operators, i.e., ones
for which

δsO = 0, (B9)

where O is the operator. This can be easily seen by observing
that deforming action in Eq. (B1) by a source term for such an
operator,

S[φ,ψ] → S̃[φ,ψ, J ] = S[φ,ψ] +
∫

dxJO, (B10)

does not affect any of the assumptions mentioned before
Eq. (B2). One could in principle use this technique to compute
values of some operators composed of fields (φ, φ̄, c, c̄) of
Eq. (17). However, condition Eq. (B9), where δs = αδQ +
βδQ̄ is some linear combination of symmetry generators
Eq. (19) limits practical applications of this method.

APPENDIX C: EVALUATION OF AN IDENTITY
FOR THE ORNSTEIN-UHLENBECK PROCESS

We shall sketch necessary steps in the computation of
supersymmetric identities in the Ornstein-Uhlenbeck process
on the example of Eq. (42). From Eq. (56), we see

δ

δH (t )
Z =

∫
dt1 − iθ (t1 − t )e−�(t1−t )H̄ (t1)Z, (C1)

δ

δL̄(t )
=

∫
dt2 θ (t2 − t )e−�(t2−t )H̄ (t2)Z. (C2)

With that, we can write the LHS of Eq. (42) as

2
∫

dt1dt2dt L(t2)H̄ (t1)θ (t2 − t )e−�(t2−t )

∗ d

dt
[θ (t1 − t )e−�(t1−t )H̄ (t1)]

=
∫

dt1dt2 L(t2)H̄ (t1)[e−�|t1−t2| − 2θ (t2 − t1)e−�(t2−t1 )].

(C3)

In evaluating the above we took into account that d
dt

θ (t ) =
δ(t ) and evaluated t integrals in both terms coming from the
time derivative. Next, we compute the RHS of the identity
Eq. (42) as∫

dt1dt2 e−�(t1−t2 )θ (t1 − t2)[L(t1)H̄ (t2) − L(t2)H̄ (t1)]. (C4)

Now, one can observe that the term with θ in Eq. (C3) can be
subtracted from one of Eq. (C4) terms to yield a symmetric
combination. That means the the identity can be put in the
following form:∫

dt1dt2 L(t2)H̄ (t1)e−�|t1−t2|

=
∫

dt1dt2 e−�(t1−t2 )θ (t1 − t2)[L(t1)H̄ (t2) + L(t2)H̄ (t1)].

(C5)

To see that the last equation indeed holds for every functions
L, H̄ is rather straightforward—one must change integration
variables in first term in (t1 ↔ t2) and see that it results in
integrating sources with

e−�(t1−t2 ) if t1 > t2,

e−�(t2−t1 ) if t2 > t1,
(C6)

which is explicitly the same as on the RHS,4 which was to be
shown. Using similar transformations, one can show that the
identity Eq. (43) holds as well.

4Set t1 = t2 is zero measure and does not affect the integral.
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