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Work relations with measurement and feedback control on nonuniform temperature systems
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The relation between the work performed to a system and the change of its free energy during a certain
process is important in nonequilibrium statistical mechanics. In particular, the work relation with measurement
and feedback control has attracted much attention, because it resolved the paradox concerning Maxwell’s demon.
Most studies, however, assume that their target systems are isolated or isothermal. In this paper, by considering
a nonisothermal system, we generalize the Sagawa-Ueda-Jarzynski relation, which involves measurement and
feedback control, and apply it to a realistic model. Furthermore, when the temperature profile is quadratic,
we see that the system is governed by Tsallis statistical mechanics. In addition, we show that our formulation
provides the generalized version of the second law of information thermodynamics and a set of work relations
for isothermal systems.
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I. INTRODUCTION

Stochastic thermodynamics has been intensively studied
in the past two decades [1–7], and some notable relations
between the work performed to a system and its free en-
ergy change during a nonequilibrium process, such as the
Jarzynski equality [8,9] and the Crooks relation [10], were
found. Subsequently, statistical mechanics and information
were combined in Refs. [11–16], and the Jarzynski equality
was generalized for a system that involves measurement and
feedback control. These works are basically based on thermo-
dynamics and Boltzmann statistical mechanics.

On the other hand, multiplicative noise also ubiquitously
appears in physics and other fields of science, and then its ther-
modynamic properties are of considerable interest [17]. One
of the most interesting characteristics of stochastic dynamics
with multiplicative noise is that it leads to an anomalous
diffusion process, which has a close relation with Tsallis
statistical mechanics [18,19]. From the viewpoint of stochas-
tic thermodynamics, the Jarzynski equality was extended on
the basis of a nonuniform temperature system and Tsallis
statistical mechanics [19,20].

In this paper, we provide the work relations under mea-
surement and feedback control for a nonisothermal system
by generalizing the relation shown in Ref. [13]. This problem
setting appeared in Ref. [19], but, in this paper, we generalize
it to the case where the confining potential includes measure-
ment and feedback control. Then, we discuss the generalized
second law of information thermodynamics of our framework.
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We see that the generalized second law of information ther-
modynamics characterizes the relation between some physical
quantities and the mutual information. To clarify how the
Sagawa-Ueda-Jarzynski equality is modified, we apply our
framework to a specific model. In particular, we deal with
a stochastic particle confined in a harmonic potential with
a quadratically changing temperature profile. We emphasize
that our generalization could be important when we consider
a system that is driven by multiplicative noise and feedback
control simultaneously. Furthermore, we see that our formu-
lation sheds light on conventional stochastic thermodynamics.
That is, by taking the derivative with respect to a temperature
profile and the limit of an isothermal system, we can obtain a
set of work relations from the framework. We will exemplify
this fact using a specific system.

This paper is organized as follows. In Sec. II, we review the
Langevin equation of interest and the Sagawa-Ueda-Jarzynski
equality. We then establish an equality for nonuniform tem-
perature systems and discuss its applications in Sec. III.
Furthermore, we provide numerical simulation to verify our
statement. In Secs. IV and V, we investigate applications of
the equality. Finally, Sec. VI concludes this paper.

II. SAGAWA-UEDA-JARZYNSKI RELATION

We here focus on the review of Ref. [13], in which Sagawa
and Ueda generalized the Jarzynski equality by introducing
measurement and feedback control. As explained in Ref. [2],
there are mainly three different descriptions for stochastic sys-
tems: the Langevin equation, the Fokker-Planck equation, and
the Feynman path integral formulation. Throughout this paper,
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we mainly use the Langevin equation to specify systems of
interest for later convenience.

Although it is slightly different from the original problem
setting in Ref. [13], we consider the following Langevin
equation [21,22]:

ẋ(t ) = 1

mγ
f (x(t ); λfb(t ; xm(t ))) +

(
2kBTiso

mγ

)1/2

ξ (t ), (1)

where

f (x(t ); λfb(t ; xm(t ))) := − ∂

∂x
φ(x(t ), λfb(t ; xm(t ))), (2)

φ(x(t ), λfb(t ; xm(t ))) is the potential that depends on the pro-
tocol λfb(t ; xm(t )) in which a particle moves, and ξ (t ) satisfies
〈ξ (t )〉 = 0 and 〈ξ (t )ξ (t ′)〉 = δ(t − t ′). Here, m, γ , kB, and
Tiso are the mass of a particle, its friction, the Boltzmann
constant, and the temperature of a system. We also note that
λfb(t ; xm(t )) is the protocol depending on xm(t ), which is a
memory based on measurement. Mathematically, the memory
can be rewritten as

xm(t ) =
{
x(tm ) + Bmξm(tm ) (t � tm ),
x0

m (t < tm ),
(3)

where x0
m is the initial value and tm is the time of a mea-

surement. Though there is no limitation on the distribution
of ξm(tm ), we often assume that ξm(tm ) is drawn from the
Gaussian distribution. For example, when ξm(tm ) is drawn
from the Gaussian distribution whose mean is zero and vari-
ance is unity, that is, ξm ∼ N (·; 0, 1), then we have

p(xm(tm )|x(tm )) = N
(
xm(tm ); x(tm ), B2

m

)
, (4)

where N (x; μ, σ 2) is the Gaussian distribution on x whose
mean and variance are, respectively, μ and σ 2. Throughout
this paper, we ignore the dynamical effect of the memory
and consider only a single measurement for simplicity. The
generalizations on the dynamical effect of the memory and
multiple measurements are almost straightforward [23].

By considering the above system, Sagawa and Ueda
showed the following equality in Ref. [13]:〈

e−σ−I pmi 〉 = 1, (5)

where σ := β(W − �F ), W is the work performed to the
system, �F is the change of the free energy during the given
process, β := (kBTiso)−1, and I pmi is the pairwise mutual
information given by

I pmi = ln
p(x(tm ), xm(tm ))

p(x(tm ))p(xm(tm ))
. (6)

Note that the conventional mutual information is given by
Imi := 〈I pmi〉. Throughout this paper, the bracket 〈·〉 repre-
sents a corresponding expectation value; in the case of Eq. (5),
it is given by 〈·〉 := ∫

D�Fp(�F)[·], where �F := {x(t )|t :
tini → tfin} denotes the trajectory of a forward process.

We note that Eq. (5) is the generalization of the Jarzynski
equality [8] under measurement and feedback control and
often called the Sagawa-Ueda-Jarzynski relation. Invoking the
Jansen inequality, Sagawa and Ueda obtained the second law
of information thermodynamics [11,13,15]; furthermore, its
validity was confirmed experimentally [24].

III. WORK RELATIONS FOR TSALLIS STATISTICAL
MECHANICS WITH MEASUREMENT AND FEEDBACK

CONTROL

We derive the Sagawa-Ueda-Jarzynski equality for a non-
isothermal system by following Ref. [19]. We first construct
a general framework. Then, we apply our framework to a
specific model which has a quadratic potential and a quadratic
temperature profile discussed in Ref. [19].

A. General case

We consider a feedback control system under a spatially
varying temperature profile Tni(x). That is, the system is
described by

ẋ(t ) = 1

mγ
f (x(t ); λfb(t ; xm(t )))

+
(

2kBTni(x(t ))
mγ

)1/2

ξ (t ). (7)

The key point of Eq. (7) is that it has the mechanism of feed-
back control in Eq. (1) and Tni(x), which is noise that depends
on x. The corresponding stochastic equation of Eq. (7) is then
given by

dx(t ) = 1

mγ
f (x(t ); λfb(t ; xm(t )))dt

+
(

2kBTni(x(t ))
mγ

)1/2

dξ (t ). (8)

By considering the homeomorphic function fy (x) :
x(t ) �→ y(t ), we derive an equivalent isothermal system to
Eqs. (7) and (8) as follows:

ẏ(t ) = 1

mγ
feff (y(t ); λfb(t ; xm(t ))) +

(
2kBTeff

mγ

)1/2

ξ (t ),

(9)

where

feff (y(t ); λfb(t ; xm(t ))) := − ∂

∂y
φeff (y(t ); λfb(t ; xm(t ))).

(10)

Here, we note that the force and potential in Eq. (9) are
replaced by the effective ones that will be given later. Then
the equivalent stochastic equation with Eq. (9) is written as

dy(t ) = 1

mγ
feff (y(t ); λfb(t ; xm(t )))dt +

(
2kBTeff

mγ

)1/2

dξ (t ).

(11)

By applying the Itō formula [25] to Eq. (8), we obtain

dy(t ) =
[

∂y

∂x

(
1

mγ
f (x(t ); λfb(t ; xm(t )))

)

+ 1

2

∂2y

∂x2

(
2kBTni(x(t ))

mγ

)]
dt

+ ∂y

∂x

(
2kBTni(x(t ))

mγ

)1/2

dξ (t ). (12)
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Note that we have used (dt )2 = 0 and (dξ (t ))2 = dt , where
dξ (t ) represents the white noise whose covariance is unity.
To obtain an isothermal system that has the same form with
Eq. (11), we consider the conditions given by

∂y

∂x
=

(
Teff

Tni(x)

)1/2

, (13)

∂2y

∂x2
= − T

1/2
eff

2(Tni(x))3/2

∂Tni(x)

∂x
. (14)

Thus we have

dy(t ) =
(

1

mγ
f (x(t ); λfb(t ; xm(t )))

+ kB

2mγ

∂Tni(x(t ))
∂x

)(
Teff

Tni(x(t ))

)1/2

dt

+
(

2kBTeff

mγ

)1/2

dξ (t ). (15)

The above expression, Eq. (15), is an isothermal system
equivalent to Eq. (8).

Next, we define the effective work and free energy differ-
ence that are consistent with the above transformation. Then
the effective potential for this system is

φeff (y(t ); λfb(t ; xm(t )))

=
∫ y(t )

0
dy ′

(
∂

∂x ′ φ(x ′; λfb(t ; xm(t )))

+ kB

2mγ

∂Tni(x ′)
∂x ′

)(
Teff

Tni(x ′)

)1/2

=
∫ x(t )=f −1

y (y(t ))

0
dx ′

(
∂

∂x ′ φ(x ′; λfb(t ; xm(t )))

+ kB

2mγ

∂Tni(x ′)
∂x ′

)(
Teff

Tni(x ′)

)
. (16)

Note that x ′ and y ′ are connected via y ′ = fy (x ′). The effec-
tive work for this system is given by

Weff (y(·), xm(·))

=
∫ tfin

tini

dt
∂

∂t ′
φeff (y(t ); λfb(t ′; xm(t ′)))

∣∣∣∣
t ′=t

(17)

=
∫ tfin

tini

dt
∂

∂t ′

∫ x(t )=f −1
y (y(t ))

0
dx ′

×
(

∂

∂x ′ φ(x ′; λfb(t ′; xm(t ′)))
)(

Teff

Tni(x ′)

)∣∣∣∣
t ′=t

. (18)

Here, we described Weff by using y(·). In the original coordi-
nate x(·), Weff is simply written as

Weff (x(·), xm(·))

=
∫ tfin

tini

dt
∂

∂t ′

∫ x(t )

0
dx ′

×
(

∂

∂x ′ φ(x ′; λfb(t ′; xm(t ′)))
)(

Teff

Tni(x ′)

)∣∣∣∣
t ′=t

. (19)

Note that the mechanical work is given by

W (x(·), xm(·))

=
∫ tfin

tini

dt
∂

∂t ′

∫ x(t )

0
dx ′

×
(

∂

∂x ′ φ(x ′; λfb(t ′; xm(t ′)))
)∣∣∣∣

t ′=t

(20)

=
∫ tfin

tini

dt
∂

∂t ′
φ(x(t ); λfb(t ′; xm(t ′)))

∣∣∣∣
t ′=t

. (21)

Then, the difference is the modification associated with the
nonuniformity in temperature.

The difference of the free energies is given by

�Feff := Feff (φeff (y(tfin); λfb(tfin; xm(tfin))))

− Feff (φeff (y(tini ); λfb(tini; xm(tini )))), (22)

where Feff is given by

Feff (φeff (y; λ)) := − 1

βeff
ln

∫
dy exp(−βeffφeff (y; λ)).

(23)

Therefore, the Sagawa-Ueda-Jarzynski equality for this
system is given by

〈
e−σeff −I

pmi
eff

〉 = 1, (24)

where

σeff := βeff (Weff − �Feff ), (25)

I
pmi
eff := ln

p(ym(tm ), y(tm ))
p(ym(tm ))p(y(tm ))

, (26)

with ym := fy (xm ). We have thus shown the general frame-
work of the Sagawa-Ueda-Jarzynski equality for a nonisother-
mal system. We note that �Feff depends on xm(t ), and then
its expectation value must be taken in Eq. (24). This is one of
the most important properties when we consider measurement
explicitly.

B. Example I

Here, we provide a simple example to illustrate how the
general formula, Eq. (24), is applied. Let us consider a non-
isothermal system whose potential and temperature profile
are, respectively, given by

φ(x(t ); λfb(t ; xm(t ))) = λfb(t ; xm(t ))
2

x2(t ), (27)

Tni(x(t )) = Teff

(
1 + κT x2(t )

2kBTeff

)
, (28)

where κT is the parameter that specifies the form of the
temperature profile. We note that this system is the same as
the model studied in Ref. [19]. But the key point is that, in
our study, the protocol λfb(t ; xm(t )) depends on the measure-
ment xm(t ) given by Eq. (3), and thus as we see later some
equations are modified by using the measurement and mutual
information.
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First, the effective potential, Eq. (16), for this system is
computed as

φeff (y(t ); λfb(t ; xm(t )))

=
∫ x(t )=f −1

y (y(t ))

0
dx ′

(
λfb(t ; xm(t )) + 1

2
κT

)
x ′

×
(

1 + κT x ′2

2kBTeff

)−1

=
(

λfb(t ; xm(t )) + 1

2
κT

)
kBTeff

κT

ln

(
1 + κT x2(t )

2kBTeff

)
.

(29)

Then the effective work, Eq. (17), for this system is written as

Weff =
∫

dt

(
∂

∂t ′
λfb(t ′; xm(t ′))

∣∣∣∣
t ′=t

)

× kBTeff

κT

ln

(
1 + κT x2(t )

2kBTeff

)
. (30)

As a result, we have

βeffWeff =
∫

dt Ẇeff
2

κT x2(t )
ln

(
1 + κT x2(t )

2kBTeff

)

=
∫

dt
Ẇeff

kBTeff

Teff

Tni(x(t )) − Teff
ln

Tni(x(t ))
Teff

, (31)

where Ẇeff := 1
2 ( ∂

∂t ′ λfb(t ′; xm(t ′))|t ′=t )x
2(t ).

Next, we consider the free energy difference between tini

and tfin. To this end, we first compute the stationary distribu-
tions at tini and tfin. The Fokker-Planck equation equivalent to
Eq. (7) is given by

∂

∂t
p(x, t ) = ∂

∂x

(
λfb(t ; xm(t ))x

mγ
p(x, t )

+ kB

mγ

∂

∂x
[Tni(x)p(x, t )]

)
. (32)

By adopting the Ito integral for the Langevin equation [17],
we can derive its stationary distribution as follows:

pst (x) =
(

κT

2πkBTeff

)1/2
�(1 + λfb(t ; xm(t ))/κT )

�(1/2 + λfb(t ; xm(t ))/κT )

×
(

1 + κT x2

2kBTeff

)−λfb(t ;xm (t ))/κT −1

. (33)

We thus can compute the free energy using the stationary
distribution (33) as follows:

e−βeff Feff (φeff (y(t );λfb (t ;xm (t ))))

∝
∫

dy e−βeff φeff (y(t );λfb (t ;xm (t )))

=
∫

dy

[
cosh

([
κT

2kBTeff

]1/2

y

)]−2 λfb (t ;xm (t ))
κT

−1

= π1/2 �(1/2 + λfb(t ; xm(t ))/κT )
�(1 + λfb(t ; xm(t ))/κT )

. (34)

Note that x(t ) = ( 2kBTeff
κT

)1/2 sinh(( κT

2kBTeff
)1/2

y(t )). Thus the
free energy difference is computed as

〈
e−βeff �Feff

〉 =
〈
�(1/2 + λfb(tfin; xm(tfin))/κT )
�(1 + λfb(tfin; xm(tfin))/κT )

〉

× �(1 + λfb(tini; xm(tini ))/κT )
�(1/2 + λfb(tini; xm(tini ))/κT )

. (35)

Therefore, the Sagawa-Ueda-Jarzynski equality (24) for this
system is written as

〈
e
− ∫ tfin

tini
dt

Ẇeff
kBTeff

Teff
Tni (x)−Teff

ln Tni (x)
Teff e−I

pmi
eff

〉

=
〈
�(1/2 + λfb(tfin; xm(tfin))/κT )
�(1 + λfb(tfin; xm(tfin))/κT )

〉

× �(1 + λfb(tini; xm(tini ))/κT )
�(1/2 + λfb(tini; xm(tini ))/κT )

. (36)

Finally, let us remark on the system that we have dealt
with. The stationary distribution, Eq. (33), is also written as
the extended exponential defined by Tsallis [18,26]; that is,

pst (x) ∝ eq (z), (37)

where

eq (z) = [1 + (1 − q )z]1/(1−q ), (38)

q = λfb(t ; xm(t )) + 2κT

λfb(t ; xm(t )) + κT

, (39)

z = − (λfb(t ; xm(t )) + κT )x2

2kBTeff
. (40)

Thus our extension can be interpreted as an extension of the
Sagawa-Ueda-Jarzynski equality based on Tsallis statistical
mechanics.

C. Example II

To perform a numerical simulation, we consider a simple
process as follows. First, we consider the potential given

φ(x) = 1
2λ(t )x2, (41)

where

λ(t ) = λi (ti � t � ti+1). (42)

This process is sometimes called the cycle process because
the forms of the potentials at the initial and final states are the
same; as a result the change of the free energy �Feff is zero.
In this case, we have

βeffWeff =
2∑

i=0

λi+1 − λi

κT

ln

(
1 + κT x(ti )2

2kBTeff

)
. (43)

In the numerical simulation, we set kB = 1, Teff = 1, λ0 =
λ2 = 1, λ1 = 2[1 + xm(tm )2], t0 = 0, t1 = 1, t2 = 2, and t3 =
3. We measure the state x(tm ) at tm = t1 and the measurement
error is assumed to be standard white noise; that is, xm(tm ) ∼
N (xm(tm ); x(tm ), 1.0).

We performed the process 107 times to compute the
ensemble average 〈·〉 and obtained 0.997 ± 0.001 for the
left-hand side of Eq. (43). In addition, we varied κT =
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0.8

0.9

1

1.1

1.2

0.002 0.004 0.006 0.008 0.01

〈
〉

κT

MC
1.0

FIG. 1. Numerical results of Eq. (24) for κT =
0.001, 0.002, . . . , 0.01. The vertical axis is dimensionless. We
set kB = 1, Teff = 1, λ0 = λ2 = 1, λ1 = 2[1 + xm(tm )2], t0 = 0,
t1 = 1, t2 = 2, and t3 = 3.

0.001, 0.002, . . . , 0.01 and summarized the results in Fig. 1.
These numerical simulations support the validity of one of our
main claims, Eq. (24).

IV. GENERALIZED SECOND LAW OF INFORMATION
THERMODYNAMICS

We consider generalizing the second law of information
thermodynamics [11,13,15]. By employing the concavity of
the exponential function, Eq. (24) yields

βeff〈Weff〉 − βeff〈�Feff〉 + 〈
I

pmi
eff

〉
� 0. (44)

This is the second law of information thermodynamics for a
nonisothermal system. We mention a property concerning the
mutual information. When the change of variables y = fy (x)
is homeomorphic, that is, continuous and uniquely invertible,
mutual information is invariant under the transformation; that
is, 〈I pmi

eff 〉 = 〈I pmi〉 holds [27] (see the Appendix).
We have derived the inequality, Eq. (44); then, it is natural

to consider the condition for the equality. The inequality
derived from Eq. (5) provides an equality in the quasistatic
process. Thus, if we can derive an optimal protocol, Eq. (44)
is expected to be an equality in the case of the quasistatic
process. But in general it is difficult to derive an optimal
protocol because as demonstrated in Ref. [28] we have to
solve a nonlinear equation that is defined via a stationary
distribution. Furthermore, it is also difficult to show that
such an optimal protocol satisfies the equality. Note that, by
ignoring the third term of the left-hand side, Eq. (44) reduces
to the generalized second law of thermodynamics concerning
a nonisothermal system.

V. RELATIONS FOR AN ISOTHERMAL SYSTEM

We mainly consider a nonisothermal system in this paper;
however, our formulation provides a set of work relations
on an isothermal system at Teff . For simplicity, we consider
that the nonuniformity of Tni(x) is characterized by a single
parameter κT ; that is, when κT = 0, then Tni(x) does not
depend on x. A typical example is Eq. (28).

We define a(κT ) and b(κT ) by

a(κT ) = 〈
e−βeff Weff −I

pmi
eff

〉
, (45)

b(κT ) = 〈e−βeff �F 〉, (46)

respectively. Then Eq. (24) is rewritten as a(κT ) = b(κT ).
Computing the derivatives with respect to κT , we have

∂n

∂κn
T

a(κT ) = ∂n

∂κn
T

b(κT ), (47)

for each integer n. Furthermore, taking the limit κT → 0, we
obtain

lim
κT →0

∂n

∂κn
T

a(κT ) = lim
κT →0

∂n

∂κn
T

b(κT ). (48)

We note that Eq. (48) provides a set of work relations on an
isothermal system at Teff .

VI. CONCLUSION

We have investigated a nonisothermal system with mea-
surement and feedback control, and derived the generalized
Sagawa-Ueda-Jarzynski equality. Moreover, we have applied
our framework to a specific model and provided a concrete
expression. Then, we have discussed the generalized second
law of information thermodynamics. We expect that our con-
tributions can be applied to various kinds of systems including
mesoscopic systems and biological systems, and the validity
can be discussed. Finally, we have also derived a set of work
relations for isothermal systems.
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APPENDIX: HOMEOMORPHIC FUNCTION

In Ref. [27], it is addressed that the mutual information
is unchanged under a transformation that is homeomorphic
(continuous and uniquely invertible maps).

To clarify the statement, let random variables X and Y be
drawn from p(x) and p(y), respectively; that is,

X ∼ p(x), (A1)

Y ∼ p(y). (A2)

Furthermore, we consider two homeomorphic functions F (·)
and G(·):

X′ = F (X), (A3)

Y ′ = G(Y ). (A4)

Letting JF (x ′) and JG(y ′) be the Jacobian matrices, the mea-
sure function on x ′ and y ′ is described as

μx ′,y ′ (x ′, y ′) = JF (x ′)JG(y ′)μx,y (x, y). (A5)

Similarly, we have

μx ′ (x ′) = JF (x ′)μx (x), (A6)

μy ′ (y ′) = JF (y ′)μy (y). (A7)
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The mutual information between X and Y is given by

I (X; Y ) =
∫

dx dy μx,y (x, y) ln
μx,y (x, y)

μx (x)μy (y)
. (A8)

Then, the mutual information between X′ and Y ′ is computed
as

I (X′; Y ′) =
∫

dx ′ dy ′ μx ′,y ′ (x ′, y ′) ln
μx ′,y ′ (x ′, y ′)

μx ′ (x ′)μy ′ (y ′)

(A9)

=
∫

dx dy μx,y (x, y) ln
μx,y (x, y)

μx (x)μy (y)
(A10)

= I (X; Y ). (A11)

The above discussion is limited to the logarithmic function
ln(·), which appears in the definition of the mutual informa-
tion (A8), but this discussion can be generalized to a general

function f (·). If we define If (X; Y ) as

If (X; Y ) =
∫

dx dy μx,y (x, y)f

(
μx,y (x, y)

μx (x)μy (y)

)
, (A12)

then we have

If (X′; Y ′) =
∫

dx ′ dy ′ μx ′,y ′ (x ′, y ′)f
(

μx ′,y ′ (x ′, y ′)
μx ′ (x ′)μy ′ (y ′)

)

(A13)

=
∫

dx dy μx,y (x, y)f

(
μx,y (x, y)

μx (x)μy (y)

)
(A14)

= If (X; Y ). (A15)

This formula (A15) can be applied to Eq. (24) to replace I
pmi
eff

with I pmi, Eq. (6).
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