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Analysis of vibrational normal modes for Coulomb clusters
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We study various properties of the vibrational normal modes for Coulomb-interacting particles in two-
dimensional irregular confinement using numerical simulations. By analyzing the participation ratio and
spectral statistics, we characterize the vibrational modes for Coulomb clusters as localized, quasilocalized, and
delocalized. We also study a correlation function to understand the spatial structure of these different kinds
of modes and subsequently extract the associated characteristic length scales. We further demonstrate that, at
any given temperature, particles exhibiting larger displacement over a time interval comparable to the structural
relaxation time are strongly correlated with the low-frequency quasilocalized modes of the inherent structure
corresponding to the initial configuration. Establishing this correlation for Coulomb clusters paves the path to
identify the particular feature of the initial configuration that determines the previously observed heterogeneous
dynamics of the particles at low temperatures in these systems.
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I. INTRODUCTION

Finite systems with interacting particles are of fundamental
interest as they bridge the gap between the intriguing phe-
nomenology of a single particle in confinement and complex
many-particle effects in bulk (extended) systems. A system-
atic study of the properties of finite systems can help in
understanding the intricacies of interparticle interactions and
boundary effects. Theoretical and experimental studies have
shown that, depending on the geometry of the confinement
and the nature of the interparticle interactions, particles in
finite systems exhibit different structural and motional sig-
natures [1–5]. Disorder, which is intrinsic to all real mate-
rials, can also be introduced in the nanoclusters, primarily
through the irregularities in the geometry of the confinement.
Additionally, greater experimental tunability for finite systems
compared to its bulk counterpart makes these systems an ideal
playground for exploring the complex interplay of disorder
and interaction [6–10].

Among various finite systems, Coulomb interacting parti-
cles in traps, the finite-size analogs of Wigner crystals [11],
have drawn considerable theoretical [5,9,10,12–17] and ex-
perimental [18–23] attention in past few decades. Extensive
studies of the static and dynamic properties of Coulomb
interacting particles in parabolic confinements across a wide
range of temperatures T have established a thermal crossover
from solidlike to liquidlike phases. In these systems, when
the number of particles N is small, it has been found that
particles arrange themselves in concentric circular rings (shell
structure) in the ground state (T = 0). A Mendeleev-type Pe-
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riodic Table is also made for the arrangement of the particles
in parabolic trap [12]. On the other hand, for large systems
(N > 200), a triangular lattice structure appears in the cen-
tral region of the parabolic confinement and circular ring
structures are found for the particles near the boundary [15].
Further, it has also been established that such shell-structured
systems melt typically in two steps [12]: The first transition (at
a lower T ) corresponds to intershell rotations and the second
one, occurring at a higher T , corresponds to intershell diffu-
sion where particles wander freely within the shells and can
also hop from one shell to the other. Along with the melting,
properties of the vibrational spectra for Coulomb interacting
particles in parabolic confinement were also looked into in
great detail [24].

Melting in finite systems is mostly studied in confinement
having circular symmetry where one can exploit this symme-
try to identify the signatures of melting. So it is natural to ask
how the melting scenario gets altered in the absence of circular
symmetry. Recently, this question was addressed by studying
the static [9] and dynamic [5,17] properties of Coulomb
interacting particles in an irregular confinement which breaks
all spatial symmetries. It was shown that while the positional
order is highly depleted even at the lowest temperature, a
solidlike phase can still be identified from the presence of
strong bond-orientational order [5,9]. With increasing tem-
perature, such an orientationally ordered solid crosses over
to a disordered liquidlike phase. From the temperature depen-
dence of several observables such as Lindemann ratio, specific
heat [9], and generalized susceptibilities [5], a more-or-less
unique crossover temperature TX has also been identified.

Study of the dynamic properties of Coulomb interacting
particles in irregular confinement revealed the possibility of
observing the key signatures of glassy dynamics in the context
of finite systems with long-range interacting particles [5,17].
Extensive molecular dynamics simulations showed that the
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particles exhibit spatially correlated motion at low tempera-
ture (T < TX) and consequently the distribution of the dis-
placement of particles becomes non-Gaussian [17]. In par-
ticular, the tail of the distribution of the displacement of
particles turned out to be exponential for small T (<TX)
and stretched exponential (slower than exponential) decay
for T ∼ TX at intermediate and long times (compared to the
structural relaxation time) [5,17]. Analysis of the trajectory
of individual particles at low T revealed that the dynamics
of the particles is strongly heterogeneous: While many parti-
cles execute small-amplitude vibrational motion around their
equilibrium positions for long times, other particles become
highly mobile, carrying out longer displacements (compared
to the average interparticle distance) in the same timescale.
Though it is found that these mobile particles form tortuous
stringlike paths, their locations appear to have no preference
for the bulk or the boundary [17].

The consequences of the heterogeneous dynamics in
irregular Coulomb clusters were recently addressed [5,17], but
there are still open questions. Why do some particles become
highly mobile compared to others? Is the appearance of mo-
bile particles in certain spatial locations completely random?
Are there any characteristics of the system that can help to
predict which particle would exhibit larger displacement at
long times? The main objective of this paper is to address
these questions by investigating possible connections between
the properties of low-lying local minima in the energy land-
scape (called inherent structures, as we will see) and the
dynamic heterogeneity developed in the system after a long
time. Establishing any such correlation would certainly help
in understanding the observed heterogeneous dynamics of the
particles in Coulomb clusters.

Heterogeneous dynamics at low temperatures is quite ubiq-
uitous in disordered systems such as supercooled liquids [25].
For glassy dynamics, one of the central issues is to understand
the structural origin of the slow heterogeneous dynamics. It
has been found that analysis of the vibrational normal modes,
which encode information on how each particle proposes
to move when all of them undergo collective motion, can
be a fruitful approach in identifying the structural origin of
dynamical heterogeneity [26–32].

Recent computer simulation studies of supercooled liquids
suggest that the spatial regions where particles are more
susceptible to experience longer displacement result from
low-frequency quasilocalized modes, known as soft glassy
modes, of the system [26–29]. The existence, as well as
the nature of such soft modes, is a subject of much current
interest as they are believed to be intimately associated with
the anomalous low-temperature properties of amorphous
systems [28,33–37]. Recent experiments on colloidal
glasses [31,31,32,38] have reported the existence of
the soft modes, using normal-mode analysis. Since the
dynamical features of Coulomb interacting particles in
irregular confinement resemble those of glassy dynamics,
we ask if there is any connection between the low-frequency
normal modes and the observed heterogeneous dynamics
in Coulomb clusters. With this aim, in this work we study
the vibrational (or quenched) normal modes, as well as
instantaneous normal modes, of Coulomb interacting particles
in irregular confinement, using a computer simulation. Since

long-wavelength phononlike modes are not present in small
systems with an irregular boundary, complications arising
from the presence of both phononlike modes and soft glassy
modes in the same frequency range [34,39,40] are not present
in the system studied here.

The main outcomes of our analysis can be summarized
as follows. Analysis of the vibrational modes in terms of
participation ratio and concepts of random matrix theory
helps to characterize the normal modes in three broadly
different classes: localized modes, quasilocalized modes, and
delocalized modes. The existence of these quasilocalized
modes in disordered solids has been proposed in the liter-
ature [26,28,36,41,42], but we identify them in this present
study in a comprehensive manner in a confined system with
irregular boundary. Further, an introduction of a spatial corre-
lation function allow us to identify the typical length scale
associated with the quasilocalized modes. We find that the
particles with a large magnitude of polarization vectors in
the low-frequency quasilocalized modes subsequently exhibit
greater mobility over a long time. We also analyze the density
of states and participation ratio for instantaneous normal
modes which contain both stable and unstable modes. From
the temperature dependence of the fraction of unstable modes,
we estimate the crossover temperature for the system and find
good agreement with the previously reported value.

The rest of the paper is organized as follows. In Sec. II we
discuss the details of the model and methods used in our study.
In Sec. III we analyze the vibrational modes for our model
system in terms of density of states, participation ratio, and
tools of random matrix theory. On the basis of these quantities,
we classify the normal modes in localized, quasilocalized, and
delocalized modes. We also introduce a spatial correlation
function that helps to extract the characteristic length scales
associated with different kind of modes. In Sec. IV we show
that a small subset of the low-frequency quasilocalized modes
associated with a given configuration can give a good descrip-
tion of the particles that exhibit large displacements at longer
times. In Sec. V we discuss the instantaneous normal modes
for the Coulomb clusters. We summarize in Sec. VI.

II. MODEL AND METHODS

We consider N classical particles with Coulomb inter-
action, each having charge q and trapped by an irregular
confinement V ir

conf . Particles are restricted to move in two
spatial dimensions (say, the x-y plane). The potential energy
part of the Hamiltonian for such a system, in dimensionless
form, reads

H =
N∑

i<j=1

1

|�ri − �rj | +
N∑

i=1

V ir
conf (xi, yi ), (1)

where |�ri | =
√

x2
i + y2

i is the distance of the ith particle at the
location (xi, yi ) from the center of the confinement. In writing
Eq. (1) we set the unit of energy as E0 = q2(4πεξ )−1 = 1,
where we introduce the unit of length as ξ = q2(4πε)−1 and
ε represents the dielectric constant of the medium. The first
term in the Hamiltonian stands for the potential energy due
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to the Coulomb repulsion between the particles. The second
term in the Hamiltonian describes the energy due to the
two-dimensional irregular confinement potential, which has
the form

V ir
conf (x, y) = a[x4/b + by4 − 2λx2y2 + γ (x − y)xyr].

(2)

Here V ir
conf is defined through four parameters a, b, λ, and

γ . The overall multiplicative factor a, which makes the
confinement deep or shallow, controls the average particle
density. The parameter b = π/4 breaks the x-y symmetry, λ

controls the chaotic nature of the dynamics of a particle in
this potential, and γ breaks the reflection symmetry [43,44].
By tuning λ from zero to unity, one can generate periodic
to chaotic motion for a single particle in the trap [43]. In
our study, the chaotic dynamics along with the broken spatial
symmetries is considered as the footprint of disorder. We
consider λ ∈ [0.565, 0.635] and γ ∈ [0.10, 0.20] [44]. The
values of the two parameters λ and γ are chosen in the above-
mentioned range to generate self-similar copies of motional
signatures in the system. This allow us to collect statistics
on the quantities of our interest over those realizations of
disorder, each identified by a specific combination (λ, γ ),
for the purpose of disorder averaging [45]. Note that the
parameter a is expressed as a → q2(4πε)−1ξ−5a to ensure
that all the parameters {a, b, λ, γ } become dimensionless.

We are interested in understanding the generic features of
disordered systems. Thus, it is important to take special care
in choosing the appropriate confining potential so that we can
capture the universal behavior due to disorder. Much of the
existing literature shows that our choice of V ir

conf , given in
Eq. (2), actually replicates the universal behavior of generic
disordered systems in the chosen range of the parameter
[44–46].

To generate the equilibrium configurations for Coulomb
interacting particles in irregular confinement at different tem-
peratures T , we have carried out molecular dynamics (MD)
simulation [47]. To achieve a desired T , we have used
velocity-rescaling method [47] during the equilibration. After
equilibration, we have implemented the conventional velocity
Verlet algorithm [47] (without velocity rescaling) to integrate
the equations of motion. In our rescaled unit, t = 1 represents
the timescale at which the crossover from ballistic to diffusive
behavior takes place in particle dynamics, on average. Thus,
a particle senses the presence of others beyond the unit of
time. We have performed MD runs up to 2 × 106 steps with
a time step size of dt = 0.005, which yields a total time
t ∼ 100τα , where τα is the structural relaxation time, at
the highest temperature. In this work we consider N = 150
Coulomb interacting particles in irregular confinement, the
same as in Ref. [17]. While we present below all our results
for systems with N = 150 particles, we verified that our
key conclusions hold also in larger systems with N = 500
particles. This is demonstrated in Appendix B.

For a given configuration, the normal modes are obtained
by diagonalizing the matrix of the second derivatives of
the potential energy (or the Hessian matrix) with respect
to the coordinates of the particles in that configuration [48].
The eigenvalues λ of the Hessian matrix are related to the

frequency ω of the normal modes by the relation ω = √
λ and

the corresponding eigenvectors characterize the normal modes
of the configuration under consideration. If the configuration
is a representative of an equilibrium state of the system,
then the obtained normal modes are called the instantaneous
normal modes. On the other hand, if the configuration is an in-
herent structure (IS), an energy-minimized configuration cor-
responding to an equilibrium configuration, then the normal
modes are called the vibrational or quenched normal modes
(QNMs). To obtain the QNMs, we first quench each equi-
librium configuration, obtained from MD simulations, to its
corresponding IS, using the conjugate gradient method [49].
Since the obtained normal modes correspond to an IS, the
eigenvalues of the Hessian matrix are all positive.

III. ANALYSIS OF VIBRATIONAL (QUENCHED) MODES

At any given temperature, following the procedure
described in the preceding section, we compute the quenched
normal modes for an ensemble of ISs. From this collection
of modes, we evaluate the vibrational density of states of
the system, which represents the probability density for the
quenched normal modes of a given frequency.

A. Density of states and participation ratio

We show the temperature dependence of the normalized
density of states (DOS) ρ(ω) in Figs. 1(a)–1(c), where

ρ(ω) =
〈

1

2N

2N∑
l=1

δ(ω − ωl )

〉
, (3)

by constructing the histogram of the frequencies ω for the
quenched normal modes for N = 150 particles in irregular
confinement. The normalization for the DOS is∫

ρ(ω)dω = 1. (4)

To improve the statistics, we collect all the QNMs obtained
from the available ISs for a given T . Results are shown
for three temperatures T = 0.006 [Fig. 1(a)], T = 0.020
[Fig. 1(b)], and T = 0.050 [Fig. 1(c)], corresponding to solid,
crossover, and liquid regimes, respectively. We see that the
ρ(ω) profiles for values of T corresponding to liquid and
crossover regimes are very similar, whereas the profile is
much more spiky in the solid. These plots also show that the
frequencies of a few high peaks in ρ(ω) remain nearly the
same for different T . At low T , the system explores the basins
of only a few distinct low-energy ISs and the lack of averaging
leads to a spiky structure for the density of states ρ(ω). At
higher T , the system makes transitions between the basins of
different ISs more frequently and this gives rise to a smoother
behavior for ρ(ω) after averaging. However, different ISs
are correlated with one another, leading to the occurrence of
spikes in ρ(ω) at approximately the same frequencies for both
low and high T .

To characterize the nature of different modes we compute
the participation ratio PR(ω) for each mode. The participation
ratio PR(ω) quantifies the localization properties of a normal
mode by measuring what fraction of particles contributes
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FIG. 1. (a)–(c) Density of states ρ(ω) of the quenched normal
modes as a function of frequency ω, for N = 150 particles in
irregular confinement for different temperatures. (d)–(f) Average
participation ratio PR(ω) as a function of ω for the spectra shown
in (a)–(c). The upper horizontal dotted line demarcates the boundary
between delocalized and quasilocalized modes, while the lower one
defines the boundary between quasilocalized and localized modes.
The inset of (f) shows PR(ω) for ω < 3.2 to emphasize that there are
certain modes (indicated by vertical dashed lines) at which PR(ω)
shows peaks that are robust to temperature.

significantly to a given mode. It is defined as

PR(ωl ) =
[
N

N∑
i=1

(�e l
i · �e l

i

)2

]−1

, (5)

where �e l
i , called the polarization vector, is the contribution of

the particle i to the normalized eigenvector �e l representing
the lth mode. For a perfectly delocalized mode where all
particles contribute equally to the eigenvector, the PR is
one. Similarly, for an ideal localized mode where only one
particle contributes to the eigenvector, the PR is 1/N . Thus,
for delocalized modes, the PR is of order unity, while for
localized (or quasilocalized) modes, it will scale inversely
with the system size, vanishing in the bulk limit.

Figures 1(d)–1(f) shows the average participation ratio,
where averaging is done by considering all the modes in
each histogram bin, as a function of mode frequency ω for
various spectra shown in Figs. 1(a)–1(c). We find that PR(ω)
is smaller for very-low- and high-frequency modes and rela-

tively high for intermediate frequencies. Thus, very-low- and
high-frequency modes are more localized compared to those
at the intermediate frequencies. In Figs. 1(d)–1(f) we find that
there are few robust low-lying modes for which PR(ω) shows
peaks which persist at all temperatures. These are the same
modes for which we find peaks robust to T in ρ(ω) as well
[Figs. 1(a)–1(c)]. Note that the maximum value of the average
participation ratio (∼0.43) is far below unity. Thus, the value
of the participation ratio alone is not sufficient to classify the
modes at a given frequency as localized or delocalized.

Although the participation ratio is higher for modes with
intermediate frequencies compared to that for low- and high-
frequency modes, in order to characterize them as localized,
delocalized, or even quasilocalized modes, we next use the
concepts of random matrix theory (RMT), namely, the statis-
tics of spacings between the successive eigenvalues of the
Hessian matrix [50,51]. The elements of the Hessian matrix
can be considered as random variables, as these depend on the
random positions of the particles. Thus, the Hessian matrix
can be treated as a random matrix ensemble [52,53] and we
next use the tools developed in the context of RMT to make a
clear distinction between the delocalized and localized modes
in our system.

B. Level spacing statistics

In the past, the concepts of RMT played an instrumental
role in discovering universality in a large variety of disordered
systems, such as disordered mesoscopic systems, complex
nuclei, quantum chaotic systems, and even glass-forming
systems [51,54–57]. Studies of the spectra of these systems,
which are in general system dependent, have established that
the statistical properties of the spectral fluctuations can be
associated with one of the three universality classes identified
in RMT [50,51,58,59]. Vibrational spectra, obtained from
computer simulations, of several disordered solids and liquid
systems have revealed that the spectral fluctuations follow
the Gaussian orthogonal ensemble (GOE) of RMT [57–60].
In particular, these studies have shown that the delocalized
modes conform to GOE statistics, while the localized modes
were found to obey Poissonian statistics [53,60]. We study this
issue here by computing the distribution of spacings between
the successive eigenvalues of the Hessian matrix for different
windows of participation ratios of the QNMs. Through this
study, we also address the question of whether the suggested
universality holds for trapped systems of long-range interact-
ing particles.

To identify the window of participation ratio within which
modes can be quantified as localized, quasilocalized, or de-
localized, we compute the level spacing distribution P (s) for
various ranges of PR values. The level spacing distribution
P (s) gives the probability of spacing s between successive
eigenvalues of the Hessian matrix. Thus si = (λi+1 − λi )/�,
where λi is the ith eigenvalue of the Hessian matrix (all
eigenvalues are arranged in ascending order) and � is the
mean-level spacing. We also keep

∫
P (s)ds = 1 and

∫
sP (s)

ds = 1.
Figure 2(a) shows P (s) as a function of s at T = 0.050. We

find that spacings between the eigenvalues follow a Poisson
distribution for modes having PR < 0.05 while they follow a
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FIG. 2. (a) Distribution P (s ) of the spacings s of the eigenvalues
corresponding to consecutive modes from three distinct windows of
the PR at T = 0.050. While solid lines represent the true Poisson
and the Wigner distributions, different types of points depict the
level spacing distributions P (s ) for modes in a particular range of
PR: Modes having PR < 0.05 broadly follow a Poisson distribution
(localized modes), modes having PR > 0.35 yield a Wigner distribu-
tion (delocalized modes), and modes with 0.05 < PR < 0.35 show
a deviation from both the Poisson and Wigner distributions lying
roughly midway between the two, which we identify as the quasilo-
calized modes. We also show the appropriate Brody distributions
(different types of dashed lines) associated with each type of mode
with the respective Brody parameter k (see the text for details). (b)
Distribution P (e) of the magnitude e of the polarization vectors for
all the modes in the same range of PR as in (a). For localized modes,
the distribution is sharply peaked around zero and falls very rapidly
[P (e) ≈ 120 for e ∼ 0, but we show P (e) only up to 45 for clarity].
For delocalized modes P (e) features a broad distribution, whereas
for the quasilocalized modes, there is a part where P (e) is sharply
peaked around zero and then there is a long tail.

Wigner distribution for modes with PR > 0.35. Thus, we can
characterize the modes with PR < 0.05 as localized modes
and those having PR > 0.35 as delocalized modes. For the
modes for which 0.05 < PR < 0.35, P (s) shows a significant
deviation from both the Poisson and Wigner distributions and
thus we identify these modes as quasilocalized, as we discuss
below.

To characterize the level spacing distribution P (s) further,
we have fitted each distribution, as identified in Fig. 2(a),
using the Brody function [58]

pk (s) = (k + 1)bske−bsk+1
, b =

[
�

(
k + 2

k + 1

)]k+1

. (6)

In the definition, k represents the nature of the distribution
P (s): k = 0 for the Poisson distribution while k = 1 for

the Wigner distribution [58]. We find a lower threshold of
k = 0.001 ± 0.0005 for the localized modes and an upper
threshold of k = 0.85 ± 0.01 [see Fig. 2(a)] for the delocal-
ized modes. For the quasilocalized modes, we find k = 0.50
± 0.03, which lies at the middle of the two extreme values
for k representing Poisson and Wigner distributions. This
validates our identification of the quasilocalized modes, some-
thing for which the Brody parameter k, describing the nature
of P (s), is equally far away from the Poisson distribution and
the Wigner distribution.

Though we justify our use of thresholds in the PR at 0.35
and 0.05 to demarcate the boundary between delocalized and
quasilocalized modes and between quasilocalized and local-
ized modes, respectively, we admit that these cutoff values
are chosen on some ad hoc basis. However, we assert that
our conclusions remain unaltered if these cutoffs are changed
within some margin. This is illustrated with an example in
Appendix B.

C. Distribution of the magnitude of polarization vectors

One independent way to check whether the above sep-
aration of all the modes into localized, quasilocalized, and
delocalized is consistent or not is to compute the distribution
P (e) of the magnitude e of the polarization vectors for the
modes in each region mentioned above. Figure 2(b) shows
that for localized modes, P (e) is sharply peaked around zero,
implying that the contribution of most of the particles to the
eigenvector in these modes is practically zero. Only a few
particles have a larger magnitude for the polarization vectors
and thus contribute to the tail of the distribution. On the other
hand, for modes with PR > 0.35, representing the delocalized
part of the spectrum, P (e) is peaked around a nonzero value
and shows a broader distribution. Interestingly, for the modes
which are in between these two regimes, i.e., 0.05 < PR <

0.35, P (e) has two parts: a peak near zero (though the height
of this peak is lower compared to that for localized modes)
and then a long tail for finite values, implying that there are
particles which have very small polarization vectors along
with many particles with larger magnitude of the polarization
vectors. Thus, quasilocalized modes have a localized and a
delocalized part in the distribution P (e).

For the quasilocalized modes, particles with a larger mag-
nitude of the polarization vectors tend to form clusters in
space. To quantify the average spatial extent of such a clus-
tered region, we compute the correlation between the magni-
tude of the polarization vectors of all the pairs of particles. We
define

ec(�r ) = 〈n(�ri )n(�ri + �r )〉, (7)

where, for a given mode, n(�ri ) = |�e(�ri )| is the magnitude of
the polarization vector of the ith particle at the position �ri .

In Fig. 3(a) we show the r dependence of the correlation
ec(r ) for the localized, quasilocalized, and delocalized modes
as identified above. Here the distance r between any pair
of particles is expressed in units of the average interparticle
distance r0. We find that for localized and quasilocalized
modes ec(r ) decays exponentially with r , ec(r ) ∝ exp[−r/ξ ].
While for localized modes ec(r ) decays very rapidly, it falls
slowly for quasilocalized modes. On the other hand, for
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FIG. 3. (a) The r dependence of the correlation ec(r ) between
the magnitude of the polarization vectors of a pair of particles a
distance r apart for the localized, quasilocalized, and delocalized
modes at T = 0.050 are shown for a system with N = 150 particles.
Closed circles represent the actual data points while the solid line
is the exponential fit to the data points. Also shown are polarization
vectors for N = 150 particles in a typical (b) localized mode, (c)
quasilocalized mode, and (d) delocalized mode. The PR values for
each mode is noted in the plot. In (b)–(d) dots represent the positions
of the particles in the quenched configuration and the arrows depict
the polarization vector for each particle. The length of each arrow is
multiplied by a factor of 5 for visual clarity.

delocalized modes ec(r ) shows a very weak r dependence;
it remains almost flat. By fitting the individual curves for
localized and quasilocalized modes, we find that ξloc ∼ r0

while ξqloc ∼ 12r0. We find that the r dependence of ec(r ) for
different types of modes is almost independent of T . Thus, our
study provides quantitative identification of the quasilocalized
modes in disordered and long-range interacting systems. In
Appendix B we further demonstrate that the qualitative fea-
tures of the distribution P (e) and correlation ec(r ) remain
unchanged upon small tweaking of the boundary between the
quasilocalized and delocalized modes.

In Figs. 3(b)–3(d) we show the polarization vectors for
N = 150 particles for a typical localized mode [Fig. 3(b)],
quasilocalized mode [Fig. 3(c)], and delocalized mode
[Fig. 3(d)]. We can see that for the localized mode, only a
few particles contribute to the mode, while for the delocalized
one, almost all the particles contribute to some extent. For the
quasilocalized mode, there are several particles which have a
relatively large magnitude for the polarization vector and the
rest of the particles have small but nonzero contributions to
the mode.
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FIG. 4. (a) Probability distribution P (n) of cluster size n for
different values of the cutoff et for the magnitude of the polariza-
tion of vector e for the quasilocalized modes at T = 0.050 in a
semilogarithmic plot. Here N = 150 is the total number of parti-
cles. (b) Probability distribution P (n) of cluster size n for various
T in a semilogarithmic plot with et = 0.06. The dashed vertical
line indicates the value of n (=61) beyond which P (n) decreases
monotonically.

In Fig. 3(c) we see that the particles which contribute to
the quasilocalized modes, due to the larger magnitude of their
polarization vectors, appear to be spatially clustered. Thus, we
naturally ask what the typical size of such a cluster is and how
that corroborates the length scale ξqloc estimated from ec(r ).

To define a cluster, based on the magnitude of the polar-
ization vectors for the quasilocalized modes, we need two
parameters: (a) a cutoff et for the magnitude of the polariza-
tion vectors e such that particles having e � et are eligible
to be part of a cluster and (b) a cutoff distance rc of a
particle from a cluster to decide whether it also belongs to
that particular cluster. With these two inputs we can group
the particles in disjoint clusters of different sizes n. A cluster
of size n implies that there are n particles which belong to
that cluster and thus, for two-dimensional systems, the typical
length scale associated with such a cluster can be considered
as

√
n. In our analysis, rc is chosen as the position of the first

minimum of the pair correlation function.
The immediate question of what an appropriate choice

for et would be arises. In order to address this, we present
the probability distribution P (n) of cluster size n, for a
range of choices of et in Fig. 4(a). We see that for a small
magnitude of et , say, et = 0.03, P (n) exhibits a second peak
at a macroscopic value of n ∼ 110, in addition to a stronger
peak for the smallest n. With the increase of et , the height
of the peak at large n decreases and the peak moves down
to smaller values of n as well, finally making P (n) feature
only a monotonic decay for et � 0.08. We also note here that
P (n) features an intriguing hump at intermediate values of
n for a range of et (�0.08). Its origin is under investigation,
and we do not have a clear understanding. Let us now consider
et = 0.06, a value which is about 10% of the average interpar-
ticle distance, a typical threshold used to determine melting by
(diffusive) delocalization in Lindemann’s description [9,61].
For this value of et = 0.06, P (n) develops for the first time a
tendency towards the formation of a large cluster, as signaled
by the peak at large n, as shown in Fig. 4(b). This figure
also illustrates that P (n) is fairly insensitive to T ; it remains
unaltered as the temperature is changed over a fairly large
range. Thus, for et = 0.06, it is more probable to find a typical
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cluster size n ∼ 61, which spans over a large part of the
system (note that N = 150 in our analysis), or not having
any cluster at all (we do not qualify a cluster of size n = 1
as a cluster). Such a scenario is similar to the one shown
in Fig. 3(c). Thus, the typical length scale associated with
the larger cluster becomes

√
61r0 ∼ 8r0 which is in good

agreement with the value ξqloc ∼ 12r0 we found from ec(r ).
Are there additional physical inputs to support the above

choice of et = 0.06 as a reasonable cutoff? We note that the
above choice is very close to N−1/2 ∼ 0.08, N = 150 being
the total number of particles in the system. Such a choice
is motivated by the fact that if all N particles participate in
a mode equally (representing a perfectly delocalized mode),
then each particle would have the magnitude of polarization
vectors N−1/2. Our choice of et = 0.06 is close to N−1/2 as
well and appears to be a reasonable cutoff based on above
observations.

Having argued for our identification of optimal et , we must
also admit that a small variation around this value changes
the nature of P (n) smoothly and continuously. Figure 4(a)
shows P (n) versus n for several values of et ∈ [0.03, N−1/2]
at T = 0.050. The continuous evolution of this distribution
raises uncertainty in the robustness of the cluster size of the
quasilocalized modes. As discussed in Appendix B, the form
of the cluster size distribution and its dependence on the
choice of et remain qualitatively unchanged as the values of
the cutoffs used to define quasilocalized modes are changed
within a limited range.

Thus, by analyzing the level spacing statistics and the
correlation function ec(r ), we can divide the whole quenched
normal-mode spectrum into three sections: localized, quasilo-
calized, and delocalized modes. Now the questions are what
the role of these modes is in dictating the long-time dynamics
of the particles and whether we can identify the particles
which exhibit large displacements at long times by looking at
the normal modes associated with the initial configuration. A
striking correlation between the regions of motion in the low-
frequency modes and the regions of high mobility (signifying
larger displacement) [62] has been postulated in both two- and
three-dimensional supercooled liquids. We set out to examine
such correlations in our system.

IV. CORRELATING NORMAL MODES WITH
DISPLACEMENTS OF MOBILE PARTICLES

In order to study the time �t dependence of the correlation
of displacement and normal modes at a given T , we have
defined two generalized lists Cd and Ce, each of length N ,
where N is the total number of particles in the system. For
a given time interval �t , Cd (i, t0 + �t ) = 1 if i represents a
fast particle in that interval; otherwise Cd (i, t0 + �t ) = 0. At
any given �t , we consider the top 20% of the particles with
the largest magnitude of displacement as fast particles. On the
other hand, Ce(i, t0) contains information on the magnitude
of the polarization vectors |ei

l | in a certain number Ne of
quenched normal modes, obtained for the IS corresponding
to the configuration at the initial instant t0. More explicitly,
we calculate Ei = 1

Ne

∑Ne

l=1 |ei
l |2 and define Ce(i, t0) = 1 for

those ith particles for which Ei lies in the top 20% bracket
of its value. Now we can define a time-dependent correlation
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FIG. 5. Time dependence of the correlation CN (�t ) between the
fast particles and particles having larger values of Ei (i.e., for the
sum of the magnitude of the polarization vectors over the certain
quasilocalized modes; see the text) for different T . Here Ne is the
number of eigenmodes considered to compute Es

i . (a) Only the first
ten (Ne = 10) quasilocalized (QL) modes are considered. (b) All the
low-frequency (ω � 1) QL modes are considered. The inset of (b)
shows the time dependence of the correlation CN (�t ) for the same
parameters as in (a) but displacement of a particle is computed under
harmonic approximation. Arrows in (a) and (b) represent the value
of CN (�t ) at �t = τα , the structural relaxation time, for a given T .
Also shown are snapshots showing the typical correlation CN (�t )
for (c) �t = 0.50 and (d) �t = 800.0 for T = 0.006.

function

CN (�t ) =
∑N

i=1〈Cd (i,�t )Ce(i, t0)〉
Nf

, (8)

where 〈·〉 represents an average over independent time ori-
gins t0 and Nf is the number of particles considered to
be fast (in this case the top 20% of N having the largest
displacements). From the definition, CN (�t ) = 1 only when
both lists have the same particles, implying maximum corre-
lation, and CN (�t ) = 0 when the two lists have no common
particle.

Figure 5(a) shows the time dependence of the correlation
CN (�t ) for different T . Here we consider Ne = 10, only
the first ten quasilocalized modes. For all T , we find that
CN (�t ) is smaller for �t < 5 and then the correlation starts
to increase. For low temperature (T � 0.006), we see a good
correlation between the fast particles and those with large
polarization vectors in the initial low-energy quasilocalized
modes for long-time intervals as CN (�t ) tends to saturate;
it fluctuates around a mean value at long-time intervals.
However, at high temperatures (T > 0.010), CN (�t ) decays
after attaining a maximum value at some intermediate time
which decreases with increasing T . While we see that the
correlation between the low-energy quasilocalized modes and
fast particles is not perfect (it reaches only up to 0.5), the
presence of such a correlation is statistically profound and
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is present for all temperatures. In fact, the persistence of
such correlation even at temperatures as large as T ∼ 0.050,
which is more than two times the crossover temperature TX

(∼0.020), is very intriguing.
The reason for the final saturation of the CN (�t ) at low

T can be attributed to the fact that the system explores very
few distinct inherent structures because of lower thermal
energy; it remains in the basin of a favorable inherent structure
for a long time. At short times, particles execute random
vibrational motion around their equilibrium positions and that
random motion cannot be described by only a few low-energy
quasilocalized modes; all the eigenmodes are necessary for
representing such uncorrelated motion. Consequently, for a
given temperature, CN (�t ) attains a small value for small
�t . However, at long times, we see that it is the initial
quasilocalized modes that dictate the displacements of the
fast particles. Thus, we see that the initial low-lying modes
are capable of identifying particles which will undergo large
displacements at long-time intervals.

Figure 5(b) shows the time dependence of the correla-
tion CN (�t ) for different T when all the low-frequency
(ω � 1) quasilocalized modes are considered. While the time
dependence shows qualitatively similar behavior, the value of
the correlation becomes smaller at any given time interval.
The qualitative similarity between Figs. 5(a) and 5(b) hints
that it is only the low-energy quasilocalized modes that are
responsible for the heterogeneous dynamics at long times in
the system.

The smaller values of CN (�t ) at small �t and its satu-
ration at low T and large �t can also be explored from the
harmonic approximation [63], which is considered to be a
good approximation for describing the very-low-T behavior
of solids. Under this approximation, each particle executes
small-amplitude vibrational motion where the typical ampli-
tude is proportional to

√
T . To compute CN (�t ) under a

harmonic approximation, we first obtained the configurations
of the particles for each T using the method described in
Appendix A [see Eq. (A7)] and then followed the same steps
as described above. The inset of Fig. 5(b) shows CN (�t )
at different T where the displacements of the particles are
computed under the harmonic approximation. Even in this
case, we see that CN (�t ) is small for small �t and shows
saturation at long times for all T . Within the harmonic ap-
proximation, we do not expect CN (�t ) to decrease at long
times as particles are always confined inside the basin of an
IS and thus the dynamics remains correlated with the initial
eigenmodes. Figures 5(c) and 5(d) show snapshots depicting
the typical correlation CN (�t ) for short-time (�t = 0.50) and
long-time (�t = 800.0) intervals.

We would like to emphasize that the importance of low-
frequency quasilocalized modes in describing the heteroge-
neous dynamics at long times has already been discussed in
the context of supercooled liquids [26,27,29–32]. However, in
this work, by introducing the correlation function CN (�t ), we
have quantified the importance of such low-frequency modes
in describing the long-time dynamics even in the case of finite
systems of Coulomb interacting particles. Further, we estab-
lish that it is not just the low-frequency modes but the low-
frequency quasilocalized modes which are responsible for the
observed heterogeneous dynamics in Coulomb clusters. For
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FIG. 6. (a) The t dependence of the overlap function QIS(t )
computed considering the quenched configurations for different T .
We find that at small T , it decays very slowly, while for T � 0.02,
QIS(t ) decays to zero at long times. (b) The T dependence of the
average structural relaxation time τα , obtained from the area under
the QIS(t ) traces for temperatures where QIS(t ) decays to zero at
long times. Solid lines represent the best fit to the numerical data and
are shown for two different functional forms (see the text for details).
The best-fit parameters are c = 48.1, d = 0.04, m = 1.31, a = 27.6,
and b = 0.06.

this reason, independent identification of the quasilocalized
modes is necessary, which we developed in Sec. III.

In Figs. 5(a) and 5(b) we see that CN (�t ) attains a max-
imum value at some intermediate time which shifts towards
lower values with increasing T . What does this timescale
signify? Is it related to the structural relaxation time τα of
the system? Note that the distinction between slow and fast
particles is most relevant around τα . So we next compute the
structural relaxation time τα at different T for the system.

For bulk systems, τα is generally estimated from the long-
time behavior of the self part of the intermediate scattering
function Fs (k, t ) [64,65], where the value of k is usually
taken as the wave number for which the static structure factor
exhibits the first peak. Since, for small finite systems, such as
our irregular confinement, a description in terms of quantities
in reciprocal space (k space) is not a natural choice [5], we use
the overlap function [64], which is defined in terms of position
space coordinates. While τα can also be estimated using
the equilibrium MD configurations, an estimate using the
quenched configurations has the advantage that it helps to get
rid of the contribution of small-amplitude vibrational motion
in the overlap function and thus bring out the true long-time
dynamical behavior of the system which is free of spurious
effects. Thus, to estimate τα , we compute the temperature
dependence of the overlap function QIS(t ), considering the
quenched configurations only. Denoting by �r i

IS(t ) the position
of the ith particle in the IS corresponding to the equilibrium
configuration at time t , we define QIS(t ) as [64]

QIS(t ) =
〈

1

N

N∑
i=1

w(|�r i
IS(t0 + t ) − �r i

IS(t0)|)
〉
, (9)

where w(r ) = 1.0 if r < rc and zero otherwise. The angular
brackets denote averaging of results over the time origin t0
and also over different realizations of the disorder. We choose
rc = 0.15r0. Figure 6(a) shows the t dependence of QIS(t ) for
different T . We find that at small T it decays very slowly,
while for T � 0.015, QIS(t ) decays to zero at long times.
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We estimate τα from the area under the trace of QIS(t )
versus t for temperatures where QIS(t ) decays to zero at long
times. The value of τα thus obtained for different T is shown
in Fig. 6(b) [also in Figs. 5(a) and 5(b) through the starting
position of the vertical arrows].We see that the time at which
CN (�t ) attains a maximum value at high T is comparable to
the structural relaxation time at that T [Figs. 5(a) and 5(b)].
This is also consistent with the physical expectation that the
system remains in the basin of a low-energy inherent structure
for a duration of the order of the structural relaxation time.

We also find that τα increases quite rapidly with decreasing
T [Fig. 6(b)]. To understand the T dependence of τα , we fit
the data in Fig. 6(b) with several functional forms and the
best fit has been identified using the χ2 analysis. Given the
small number of data points as well as the quality of the
statistics, our estimates cannot choose between an Arrhenius
behavior (τα (T ) = a exp[b/T ] with a = 27.6 and b = 0.06)
and an Avramov-Milchev-type (τα (T ) = c exp[(d/T )m] with
c = 48.1, d = 0.04, and m = 1.31) [66] behavior. We find
that these two functional forms capture the T dependence
of τα rather accurately for lower temperatures. We also con-
firm that our results do not conform to the Vogel-Fulcher-
Tammann form [64] or a power-law behavior [65] with a
similar degree of accuracy.

So far we have analyzed the dynamics of particles in
irregular confinement with respect to the quenched normal
modes. We can also evaluate the Hessian matrix using the
instantaneous equilibrium configurations and normal modes
obtained in this way are called the instantaneous normal
modes (INMs). Below, we discuss some of the features of the
INMs.

V. INSTANTANEOUS NORMAL MODES

The instantaneous normal modes, which play an important
role in understanding the solid and liquid states [48,67,68],
are an extension of the conventional harmonic normal-mode
approach. The INM spectrum carries information about the
average curvature of the instantaneous (equilibrium) potential
energy landscape. Since at any finite temperature an arbitrary
configuration may not be at the potential minimum, the asso-
ciated Hessian matrix in general will not be positive definite
and thus can contain negative eigenvalues. Therefore, we can
categorize the INMs as stable (positive eigenvalues or real
frequencies) and unstable (negative eigenvalues or imaginary
frequencies) modes. We obtain the normalized INM density
of states ρ(ω) by averaging over many independent configu-
rations at a given T . Figure 7(a) shows the density of states
ρ(ω) for the INM as a function of frequency at different tem-
peratures. For the lowest T (=0.002), ρ(ω) shows a sharply
peaked structure, implying that only a few modes at particular
frequencies can exist in the ordered state. There are also a few
unstable modes, shown on the negative frequency axis.

With increasing temperature, a relatively continuous mode
spectrum is observed, indicating the disordered arrangement
of the particles in the system. It is interesting to note that there
are certain modes (in the low-ω region) which are quite robust
to T . Figure 7(b) shows the average participation ratio as a
function of mode frequency ω for various spectra shown in
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FIG. 7. (a) Density of states of instantaneous normal modes as a
function of frequency shown for N = 150 particles in irregular con-
finement at different T . The unstable modes (imaginary frequencies)
are shown on the negative frequency axis. (b) Average participation
ratio PR(ω) as a function of ω for the various spectra shown in (a).
Results are enhanced by obtaining statistics over six independent
realizations of irregularity parameters. (c) The T dependence of the
fraction of unstable modes fu obtained from INMs. Thick lines are
the linear fit to the actual data points. The crossing of these two lines
gives an estimate for the crossover temperature TX (∼0.023) for the
system. Also shown is the PR for the (d) QNM and (e) INM at low T

(=0.006) and high T (=0.050) for ω < 3.5. The peaks which persist
for all T (indicated by vertical dashed lines) appear at the same ω

values for the INM and QNM.

Fig. 7(a). We find that the PR is higher for intermediate modes
in the spectrum and lower for both low- and high-frequency
modes. This is similar to what we observed for QNMs.

The unstable part of the density of states (as shown on
the negative frequency axis), indicating the liquidlike behav-
ior, becomes wider with increasing T . Thus, the fraction of
unstable modes fu increases, compared to the total number
of modes, as T goes from 0.002 to 0.050. These results
qualitatively reflect the thermal evolution of our system from
a solidlike to a liquidlike state. Such an identification of solid
to liquid transition in terms of INMs was recently studied
experimentally for charged particles in a harmonic (parabolic)
trap [68].

We show the T dependence of the fraction of unstable
modes fu in Fig. 7(c). One can estimate the crossover tem-
perature TX from the T dependence of fu. There is a change
in slope around T ∼ 0.023 which we identify as TX. The
value of TX found this way remains very close to the value
obtained from earlier studies (TX = 0.02) [5,9]. For INMs,
while there are few low-frequency modes which are robust to
T , interestingly, we find that such robust peaks appear around
the same ω values for both INMs and QNMs. Figures 7(d)
and 7(e) show such similarities in the appearance of the robust
peaks in terms of PR at two selected temperatures for QNMs
and INMs.
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VI. CONCLUSION

We have computed the normal-mode spectrum for
Coulomb interacting particles in irregular confinement. We
have classified the full quenched normal-mode spectrum,
based on the participation ratio and the concepts of random
matrix theory, in three groups: (a) localized modes, where the
number of particles contributing to the mode is very small,
(b) delocalized modes, implying that the number of particles
taking part in the mode is large (comparable to the system
size), and (c) quasilocalized modes, which are in between the
localized and delocalized parts of the spectrum. Our analysis
shows a correlation between the low-frequency quasilocalized
modes of the Hessian matrix of the IS corresponding to the
initial configuration and the dynamics of the particles over
a timescale of the order of the structural relaxation time. In
particular, we show that the particles with larger contribution
to the sum of the squares of the polarization vectors of a small
subset of low-frequency quasilocalized modes associated with
the initial configuration are more likely to experience longer
displacement at later times. Thus, we have identified the
characteristic feature of a given configuration that gives rise
to the heterogeneous dynamics in Coulomb clusters.

From the analysis of the instantaneous normal modes, we
estimate the crossover temperature, which is close to what was
reported from the analysis of static and dynamic properties
of the same system [5,9]. In recent studies on instantaneous
normal modes, the main focus was the fraction of unstable
modes which are closely associated with the self-diffusion
constant [48,67] of the system. Thus, it would be interesting to
study the temperature dependence of the diffusion constant for
our system from the perspective of the instantaneous normal
modes.

We expect our qualitative findings to hold for a broader
range of disordered systems, consisting of long-range inter-
acting particles, which are within the purview of random
matrix theory. However, analysis of the vibrational modes for
symmetric confinement, such as the widely studied problem
of particles in a circular trap, can differ even qualitatively.
This is not surprising, as the nature of dynamics in the two
traps has been shown to differ substantially [5,17].
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APPENDIX A: DETAILS OF THE HARMONIC
APPROXIMATION

Here we derive the equations used to compute the position
of the particles under the harmonic approximation. Within
this framework, we write the total potential (potential due
to interparticle interactions and also from the confinement)
V (�r1, �r2, . . . , �rN ) ≡ V ({�ri}), Taylor expanded up to second

order about a local minimum configuration {�r 0
i }, as [63]

V ({�ri}) � V ({�r 0
i }) + 1

2

N∑
i,j=1

2∑
α,β=1

K
α,β

i,j uα
i u

β

j , (A1)

where

K
α,β

i,j =
[

∂2V

∂rα
i ∂r

β

j

]
{�r 0

i }
. (A2)

Here uα
i is the α [=1, 2 ≡ (x, y)] component of the displace-

ment of the ith particle from its position �r 0
i at the local

minimum. Thus, the equation of motion for the ith particle
becomes

üα
i = −

N∑
j=1

2∑
β=1

K
α,β

i,j u
β

j . (A3)

All particles are assumed to have equal mass, which is set
to unity. Let us make the change of variables uα

i → qa =
q2(i−1)+α , where a = 1, 2, . . . , 2N , so that Eq. (A3) becomes

q̈ = −Kq, (A4)

where q is a 2N × 1 column matrix and K is a 2N × 2N

matrix. Now, applying an orthogonal transformation matrix
S, we diagonalize K in a new basis, say, h, so that h = Sq,
and we finally obtain the equations of motion in an h basis as

ḧ = −Lh. (A5)

Here L = S K S−1 is a diagonal matrix. This diagonalization
of K, the force-constant matrix (also called the Hessian
matrix), yields the normal modes as eigenvectors en

a and
corresponding squared normal-mode frequencies as eigen-
values λn = ω2

n. Here n is the normal-mode eigenindex and
a represents the components of the eigenvectors. Thus, the
solution of Eq. (A5) is

ha (t ) = ha (0) cos ωat + ḣa (0)

ωa

sin ωat. (A6)

We can now use the inverse transformations (h → q → u)
in order to obtain the trajectories of the particles

rα
i (t ) = r

0,α
i +

2N∑
b=1

eb
2(i−1)+α

[
hb(0) cos ωbt + ḣb(0)

ωb

sin ωbt

]
.

(A7)

Thus, to generate the configurations of N particles at any
time t under harmonic approximation, we need to choose
these initial coordinates r

0,α
i appropriately. We have to con-

sider a configuration of the system which minimizes the
potential energy and thus satisfies the requirements for har-
monic theory. From any given equilibrium MD configuration,
we can generate such an energy minimized configuration
(or inherent structure) for the system using the conjugate
gradient method [49]. To make sure that the obtained config-
uration is a stable one, the lowest eigenvalue of the dynamical
matrix is checked to be positive.

At any given temperature T , hb(0) and ḣb(0) can be esti-
mated using the equipartition theorem. Under the harmonic
approximation, we know that 〈h2

b〉 = kBT

ω2
b

and 〈ḣ2
b〉 = kBT .
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FIG. 8. (a) Average participation ratio PR(ω) as a function of ω

for the quenched normal modes [same as in Fig. 1(b)]. The upper
horizontal dotted line shows the cutoff that demarcates the bound-
ary between delocalized and quasilocalized modes, as discussed in
Appendix B. (b) Distribution P (s ) of the spacings s of the consec-
utive eigenvalues for modes having a different window for the PR
as shown in (a). We also present the appropriate Brody distribution
associated with each type of mode with the respective Brody pa-
rameter k. These figures illustrate the fact that an alteration of the
boundary between delocalized and quasilocalized modes does not
alter the qualitative conclusions of Figs. 1(b) and 2(a).

So the typical values for the projection of displacement hb

and velocity ḣb on the normal-mode eigenvector for a mode

having frequency ωb are
√

kBT /ω2
b and

√
kBT , respectively.

Thus, by knowing {�r 0
i }, hb(0), and ḣb(0), we can compute the

position of the particles at any later time t , under the harmonic
approximation, using Eq. (A7).

APPENDIX B: EFFECTS OF CHANGING THE CUTOFF
VALUES OF THE PARTICIPATION RATIO AND THE

SYSTEM SIZE

We discussed results in the main text, considering
quenched modes with PR � 0.35 to be delocalized. The
choice of this cutoff had an ad hoc basis. We wish to
demonstrate in this appendix that tuning this threshold by a
reasonable margin might change some quantitative estimates,
but our key conclusions remain unaltered. For this purpose, we
consider here the modes with PR � 0.30 as delocalized [see
Fig. 8(a)]. This amounts to a 14% reduction of the threshold
value (compared to the results in the main text) of the PR
to qualify modes as extended. As expected, this modification
degrades the quality of delocalized modes, and we examine
below the extent of such changes, both quantitatively and
qualitatively, on different quantities discussed in the main text.

With the choice of the cutoff, the degree k of the level
spacing distribution P (s) changes according to (a) k = 0.62
for the delocalized modes [see Fig. 8(b)], instead of k = 0.85
for the earlier cutoff PR = 0.35, and (b) similarly for the
quasilocalized modes, we find k = 0.44 with this cutoff of the
PR, whereas k = 0.50 for these modes with the cutoff used
in the main text. We note that a true delocalized mode should
yield k = 1 for the Wigner distribution [58]. Hence, with this
altered cutoff, the delocalized modes depart further from a true
Wigner distribution, though the nature of P (s) hardly suffers
any qualitative changes.

Figure 9(a) depicts the effect of the choice of the cutoff on
the distribution P (e) of the magnitude e of the polarization
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FIG. 9. (a) Distribution P (e) of the magnitude e of the polar-
ization vectors for localized, quasilocalized, and delocalized modes
obtained using the cutoff values of PR, as discussed in Appendix B,
at T = 0.050. For localized modes, the distribution is the same as
that in Fig. 2(b). (b) The r dependence of the correlation ec(r )
between the magnitude of the polarization vectors of pairs of par-
ticles separated by distance r , for the localized, quasilocalized, and
delocalized modes, for the same range of PR as in (a). Closed circles
represent the actual data points, while solid lines are exponential fits
to the data points. (c) Probability distribution P (n) of cluster size n

for various T in a semilogarithmic plot with the cutoff et = 0.06 for
the magnitude of the polarization of vector e for the quasilocalized
modes (with the cutoff range of PR). (d) Probability distribution
P (n) of cluster size n for different values of et at T = 0.050 in a
semilogarithmic plot.

vectors for localized, quasilocalized, and delocalized modes
at T = 0.050. While the value of e for which P (e) becomes
maximum for the delocalized modes shifts slightly towards
a lower value [compared to that in Fig. 2(b)], the nature of
the distributions for different modes remains the same as that
in Fig. 2(b). Similarly, the r dependence of the correlation
ec(r ) between the magnitude of the polarization vectors of two
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FIG. 10. (a) Average participation ratio PR(ω) as a function of
ω for the quenched normal modes for N = 500 particles. The upper
horizontal dotted line shows the cutoff that demarcates the bound-
ary between delocalized and quasilocalized modes, as discussed
in Appendix B. (b) Distribution P (s ) of the spacings s between
consecutive eigenvalues for modes (N = 500) having different win-
dows for the PR as shown in (a), at T = 0.05. We also present the
appropriate Brody distribution associated with each type of mode
with the respective Brody parameter k.
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particles separated by a distance r for different types of modes
[Fig. 9(b)] and the probability distribution P (n) of the cluster
size n for various T [Fig. 9(c)] and different et [Fig. 9(d)] does
not exhibit any significant qualitative change compared to the
results described in the main text.

While in the main text we presented results for systems
with N = 150 particles, we have verified that the key conclu-
sions persist also for systems with N = 500 particles. This
is explicitly shown in Figs. 10(a) and 10(b). Figure 10(a)
shows the average participation ratio PR(ω) as a function of
ω for the quenched normal modes for N = 500 particles at
different T . The distribution P (s) of the spacings s of the
consecutive eigenvalues for modes having the same window

for the participation ratio as shown in Fig. 10(a) is shown in
Fig. 10(b) and we have identified the localized (k = 0.018),
quasilocalized (k = 0.42), and delocalized (k = 0.79) modes
even for N = 500. However, we emphasize that an increasing
system size typically weakens the signature of glassiness in
our confinements, as discussed in an earlier publication [5].
This happens because a large fraction of particles (with
increasing N ) located near the central region of the trap makes
up a perfect triangular lattice at low T , which weakens the
extent of glassiness found for N = 150. The triangular lattice
of central particles remains undistorted due to a large distance
from the irregular boundary, causing weakening of disorder
strength and hence of glassiness.
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