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Mean-field theory of Bayesian clustering
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We show that model-based Bayesian clustering, the probabilistically most systematic approach to the
partitioning of data, can be mapped into a statistical physics problem for a gas of particles and as a result becomes
amenable to a detailed quantitative analysis. A central role in the resulting statistical physics framework is played
by an entropy function. We demonstrate that there is a relevant parameter regime where mean-field analysis
of this function is exact and that, under natural assumptions, the lowest entropy state of the hypothetical gas
corresponds to the optimal clustering of data. The by-product of our analysis is a simple but effective clustering
algorithm, which infers both the most plausible number of clusters in the data and the corresponding partitions.
Describing Bayesian clustering in statistical mechanical terms is found to be natural and surprisingly effective.
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I. INTRODUCTION

The need for clustering analysis in scientific data explo-
ration has grown significantly in recent years, due to the
emergence of large high-dimensional data sets in areas such as
high-energy physics, astrophysics, biology, and postgenome
medicine. The aim of clustering analysis is to allocate similar
data items, such as stars [1], galaxies [2], bacterial communi-
ties [3], or amino acid sequences [4], to the same category (or
“cluster”) in an unsupervised way. Inferring the true number
of clusters reliably is crucial for the discovery of new data cat-
egories. Most current clustering methods, such as Refs. [5–7],
make no assumptions about the data distribution and are based
on heuristic measures of similarity. Some allow for estimation
of the number of clusters but use empirical approaches to do
so and ad hoc evaluation criteria tested on benchmark data
sets.

Model-based clustering assumes that each data point
comes from one of a postulated number of populations with
known distributions. The archetypal example is the Gaussian
Mixture Model (GMM) [5], which assumes Gaussian dis-
tributions. In such models Maximum likelihood (ML) infer-
ence is typically used to find data partitions [8], but this is
prone to overfitting [5]. The number of clusters K is found
on adding a “penalty” term to the log-likelihood function,
such as Akaike’s Information Criterion (AIC) or Bayesian
information criterion (BIC) [8], sometimes with conflicting
results [2]. Bayesian inference of GMM-generated data cures
overfitting and provides a systematic way to find K [5].
However, computing the posteriors is analytically intractable,
and one tends to resort to either variational mean-field approx-
imation [5] or computationally intensive Markov chain Monte
Carlo (MCMC) [9].

A more general model-based Bayesian clustering protocol
(SPD) was introduced in Ref. [10]. Unlike GMM, it uses
priors on the partitions to compute a maximum a posteriori
probability (MAP) estimate of the data partitioning. Both
SPD and GMM Bayesian methods are usually evaluated by

clustering synthetic and benchmark real-world data. This is
not satisfactory; one would prefer our knowledge and our
confidence in clustering outcomes to be based on more than
empirical tests.

As a first step in this direction, in this paper we use statis-
tical physics to study model-based Bayesian clustering. This
strategy was used in the past to study optimization problems,
see, e.g., Ref. [11], and clustering [12,13], but not Bayesian
clustering. Starting from the SPD model, we show that data
partition inference can be formulated in terms of a quantity
that can be seen as the entropy of a gas of a particles (data
points), distributed over K reservoirs (clusters). In the regime
of a large number of particles we derive a mean-field theory
to describe this gas and show that its lowest entropy state
corresponds to the optimal MAP clustering of data.

II. MODEL OF DATA AND BAYESIAN CLUSTERING

Let us assume that we observe the sample X =
{x1, . . . , xN }, with xi ∈ Rd for all i, from the distribution

p(X|�,�) =
|�|∏
μ=1

∏
iμ∈Sμ

p
(
xiμ

∣∣θμ

)
. (1)

This distribution is generated by the set (or “partition”) � =
{S1, . . . , S|�|}, with disjunct index sets (or “clusters”) Sμ �= ∅,
such that Sμ ∩ Sν = ∅ for μ �= ν and ∪|�|

μ=1Sμ = [N ] with
[N ] = {1, . . . , N}. Any partition of data into K clusters can
be specified by binary “cluster allocation” variables ciμ =
1[i ∈ Sμ], where i ∈ [N ] and μ ∈ [K], forming an N × K

partitioning matrix c. This matrix satisfies by construction
the following constraints:

∑K
μ=1 ciμ = 1 for all i ∈ [N ] and∑N

i=1 ciμ � 1 for all μ ∈ [K]. Conversely, any N × K matrix
c ∈ {0, 1}NK with binary entries that satisfies these constraints
induces a partition �(c) = {S1(c), . . . , SK (c)} of cardinality
K . If we also know the prior distributions of model param-
eters, p(θμ), p(c|K ), and p(K ), then we can use Bayes’s
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theorem (see Appendix A for details) to derive the posterior
distribution

p(c,K|X) = e−NF̂N (c, X)p(c|K )p(K )∑N

K̃=1 p(K̃ )
∑

c̃ e−NF̂N (c̃, X)p(c̃|K̃ )
, (2)

in which

F̂N (c, X) = − 1

N
log〈e

∑K
μ=1

∑N
i=1 ciμ log p(xi |θμ )〉�, (3)

with 〈f (�)〉� = ∫
[
∏K

μ=1 p(θμ) dθμ]f (�). Expression (2)
can be used to infer the most probable partition � for each
data sample. First, for each K ∈ [N ] one computes

ĉ |K = argmaxc{e−NF̂N (c, X)p(c|K )}. (4)

Then one uses (4) to determine the estimate �̂ of �:

�̂ = argmaxĉ |K{e−NF̂N (ĉ, X)p(ĉ|K )p(K )}. (5)

Clearly, a key role in our formulas is played by the function
(3), which can be seen as an entropy of a gas of N “particles”
(the data points) distributed over K “reservoirs” (clusters).
The particles can move from one reservoir to another; ciμ tells
us if particle i is in reservoir μ, and the coordinates xi act
as a “quenched” disorder [14]. We are then interested in the
minimum entropy state argmincF̂N (c, X).

III. MEAN-FIELD ANALYSIS OF BAYESIAN CLUSTERING

Let us first consider the case where the cluster parameters
are known. In this case the parameter prior p(θμ) is a δ

function, and (3) hence becomes

F̂N (c, X) = −
K∑

μ=1

Mμ(c)

N

∫
dx Q̂μ(x|c, X) log p(x|θμ), (6)

which is now written in terms of the number of particles in
cluster μ, Mμ(c) = ∑N

i=1 ciμ, and the density of particles in
cluster μ, defined as

Q̂μ(x|c, X) = 1

Mμ(c)

N∑
i=1

ciμδ(x − xi ). (7)

Suppose there are L distributions qν (x), such that for each
ν we find Nν particles with xi sampled from qν (x), with∑L

ν=1 Nν = N and limN→∞ Nν/N = γ (ν). For large N the
density (7) will then typically converge to

Qμ(x) =
L∑

ν=1

α(ν|μ) qν (x). (8)

Here α(ν|μ) = α(ν, μ)/α(μ) is a conditional probabil-
ity, defined by α(μ) = limN→∞ Mμ(c)/N and α(ν, μ) =
limN→∞ Mν,μ(c)/N , where Mμ(c) is the number of par-
ticles in cluster μ and Mν,μ(c) = ∑

iν∈Sμ (c)
1[xiν ∼ qν (x)]

is the number of those particles drawn from the dis-
tribution qν (x) that are allocated by c to cluster μ.
Clearly,

∑
μ�K α(ν, μ) = γ (ν),

∑
ν�L α(ν, μ) = α(μ) > 0

and
∑

ν�L

∑
μ�K α(ν, μ) = 1. If (8) holds for N → ∞, then

F̂N (c, X) will for N → ∞ converge to

F (α) =
K∑

μ=1

L∑
ν=1

α(ν, μ)D(qν‖pμ) +
L∑

ν=1

γ (ν)H (qν ). (9)

Here D(qν‖pμ) is the Kullback-Leibler distance between
qν (x) and p(x|θμ), and H (qν ) is a differential entropy [15].
The transparent and intuitive result (9) can be seen as a
mean-field (MF) theory of F̂N (c, X) (see Appendix C for
details). The L × K matrix α, with entries α(ν, μ), acts as
order parameter. More generally one would have P (F ) =∫

dα P (α) δ[F − F (α)], where

P (α) = lim
N→∞

∑
c,c̃

p(c|K ) q(c̃|L)
K∏

μ=1

L∏
ν=1

δ

×
[
α(ν, μ) − 1

N

N∑
i=1

c̃iνciμ

]
. (10)

Here p(c|K ) and q(c̃|L) are the assumed and the “true” dis-
tributions of partitions, respectively. We can limit ourselves to
working with expression (9), as opposed to the more involved
(10), if P (α) is a δ function.

We are interested in the state α for which the func-
tion F (α) is minimal. First, from D(qν‖pμ) � 0 it follows
that F (α) � ∑L

ν=1 γ (ν)H (qν ). The lower bound is satu-
rated when D(qν‖pμ) = 0, i.e., when qν (x) = p(x|θμ) for all
(μ, ν), and the mapping between the sets [L] and [K] labeling
these distributions is bijective. This can only happen when
L = K and α(ν, μ) = γ (ν)1[D(qν‖pμ) = 0], i.e., when the
“true” partitioning of the data is recovered.

Second, from D(qν‖pμ) � minμ̃ D(qν‖pμ̃) we deduce

F (α) �
L∑

ν=1

γ (ν) min
μ̃

D(qν‖pμ̃) +
L∑

ν=1

γ (ν)H (qν ). (11)

This lower bound is saturated when α(ν, μ) =
γ (ν)1[μ = argminμ̃D(qν‖pμ̃)] for all (μ, ν). For K � L,
this state can be seen as the result of the following
“macroscopic” clustering protocol: For all ν ∈ {1, . . . , L},
find the distribution p(x|θμ) with the smallest distance
D(qν‖pμ) to qν (x), and assign all members of ν to cluster μ.
If K < L, then this recipe will occasionally result in the data
from more than one distribution being assigned to the same
clusters, see Fig. 1(a), but for K = L, each cluster would hold
only one distribution. Hence, the protocol is able to recover
the true partitioning even when the distributions qν (x) and
p(x|θμ) are nonidentical.

The inequality D(qν‖pμ) � minν̃ D(qν̃‖pμ) gives
the lower bound F (α) � ∑K

μ=1 α(μ) minν̃ D(qν̃‖pμ) +∑L
ν=1 γ (ν)H (qν ), which is saturated when α(ν, μ) =

α(μ)1[ν = argminν̃D(qν̃‖pμ)] for all (μ, ν). This
state would result from to the following protocol:
For all ν ∈ {1, . . . , L}, find the distribution p(x|θμ)
with the smallest distance D(qν‖pμ) to qν (x), and
assign all members of μ to cluster ν. For K > L, this
algorithm could allocate more than one distribution
to the same cluster, see Fig. 1(b). Furthermore, since∑L

ν=1 α(μ)1[ν = argminν̃D(qν̃‖pμ)] = α(μ), the properties
of α(ν, μ) imply validity of the set of L linear equations∑K

μ=1 α(μ)1[ν = argminν̃D(qν̃‖pμ)] = γ (ν), which is
underdetermined and hence has either infinitely many
solutions or no solutions at all.
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(a) (b)

(c)

FIG. 1. Bayesian clustering: Data (red rectangles) from L differ-
ent distributions qν (x) are allocated to K clusters (blue rectangles).
(a) For K � L, data from qν (x) occupy at most one cluster μ.
(b) For K > L, data from qν (x) occupy at least one cluster. (c)
Minimum F ≡ minα F (α) of the mean-field entropy (blue line),
shown as a function of K and compared with the ground-state
entropy F̂N ≡ minc F̂N (c, X) (red crosses), computed for the data
of Fig. 2. The horizontal line corresponds to the lower bound∑

ν�L γ (ν )H (qν ) = 4.853905. Inset: The sum of F̂N and log(K ),
where log(K ) ≡ loge(K ) shown as a function of K . The minimum
of this sum is obtained when K = L.

We now consider the case where the cluster parameters
are unknown, and p(θμ) > 0 for all {θμ}. For N → ∞, the
entropy (3) is now strictly dominated via steepest descent by
the following set of saddle point equations (see Appendix B
for details):

∂

∂θμ(�)

1

N

N∑
i=1

ciμ log p(xi |θμ) = 0. (12)

Solving (12) for Gaussian distributions p(xi |θμ) ≡
N (x|mμ,�−1

μ ), with mean mμ and inverse covariance
matrix �μ, gives us (see Appendix B):

F̂N (c, X) =
K∑

μ=1

Mμ(c)

2N
log

[
(2πe)d

∣∣�−1
μ (c, X)

∣∣], (13)

where �−1
μ (c, X) is the empirical covariance matrix of the

data in cluster μ.
Since (13) represents an average of K entropies of Gaus-

sian distributions, which for N → ∞ will converge to the
following mean-field entropy (see Appendix C):

F (α) =
K∑

μ=1

α(μ)
1

2
log

[
(2πe)d

∣∣�−1
μ (α)

∣∣], (14)

in which �−1
μ (α) denotes the covariance matrix

�−1
μ (α) =

L∑
ν=1

α(ν|μ)〈[x − mμ(α)][x − mμ(α)]T 〉ν, (15)

with mμ(α) = ∑L
ν=1 α(ν|μ)〈x〉ν , and the short-hand

〈{· · · }〉ν = ∫
dx qν (x){· · · }. Note that (14) also equals

F (α) =
∑
μ,ν

α(ν, μ)D[qν‖Nμ(α)] +
L∑

ν=1

γ (ν)H (qν ), (16)

where Nμ(α) ≡ N (x|mμ(α),�−1
μ (α)). Moreover, as shown

in Appendix D,

F (α) �
K∑

μ=1

α(μ)H (Qμ) �
L∑

ν=1

γ (ν)H (qν ). (17)

The second inequality in (17) has two consequences. First,
if K � L, then for any state α that corresponds to either of the
scenarios depicted in Figs. 1(a) and 1(b), we will have F (α) �
minK minα̃ F (α̃) = ∑

ν�L γ (ν)H (qν ). The lower bound is
satisfied when L = K and qν (x) is Gaussian. The “true”
parameters α thus represent a locally stable state. Second,
when K > L, the entropy F (α) can only increase with L.
This follows from (16) and D(qν‖Nμ(α)) � 0. If qν (x) is not
Gaussian, then F (α) � ∑L

ν=1 γ (ν) 1
2 log [(2πe)d |cν |], where

cν is the covariance matrix of qν (x) (see Appendix D). Equal-
ity corresponds to the state shown in the Fig. 1(a) with L = K ,
i.e., here the “true” data partitioning is recovered.

The first inequality in (17) has an appealing geometric
interpretation. The entropy H (Qμ) of each cluster μ can for
large N be estimated by [d/Mμ(c)]

∑N
i=1 ciμ log ρiμ(c) + log

[Mμ(c) − 1] + const, where ρiμ(c) = mini∈Sμ(c)\i ‖xi − xj‖
(i.e., the Euclidean distance between particle i and its near-
est neighbor) [16]. The average entropy

∑K
μ=1 α(μ)H (Qμ)

is hence estimated by (d/N )
∑K

μ=1

∑N
i=1 ciμ log ρiμ(c) +∑K

μ=1 [Mμ(c)/N ] log [Mμ(c)/N ] + const. This is minimized
by any state c which simultaneously maximizes the entropy
−∑K

μ=1 [Mμ(c)/N ] log [Mμ(c)/N ], i.e., “disperses” parti-
cles maximally over clusters, and minimizes the nearest
neighbor distances {ρiμ(c)}, i.e., favors high particle “densi-
ties” in each cluster.

The lower bound
∑L

ν=1 γ (ν)H (qν ) in (17) is saturated on
choosing any bijective map α : ν → μ, since this immediately
gives us F (α) = ∑L

ν=1 γ (ν)H (qν ). Such maps are special
instances of the more general family

α(ν|μ) = 1[ν ∈ Sμ]γ (ν)∑
ν̃∈Sμ

γ (ν̃)
, (18)

where � = {S1, . . . , SK} is any partitioning of [L] into K

subsets. Finding minα F (α) over all possible matrices of the
form (18) by enumeration of all partitions of [L] into K

subsets is feasible only for small L, since the number of such
partitions is given by the Stirling number of the second kind
S (L,K ) which grows as KL for large L [17].

One can also compute minα F (α) via the following
“greedy” algorithm. Start with any partition � and compute
F (α). For all x ∈ [L]: Consider all possible moves which do
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FIG. 2. Data used in our numerical experiments. We generated
L = 8 clusters with 1000 data points each, of which 100 are
shown here. The data in each cluster (i, j, k) are generated from
a distinct Gaussian distribution, with mean (�i,�j, �k), where
i, j, k ∈ {0, 1} (� = 20), and with covariance matrix sampled from
the Wishart distribution with 4 degrees of freedom and precision
matrix 1.

not create empty clusters, and execute the one which gives
the largest decrease in F (α) and then update �. Continue the
last two steps until convergence of F (α) is observed. This
macroscopic algorithm can also be implemented “microscop-
ically.” At each step: For all i ∈ [N ], consider all possible
moves of the particle i from its current cluster Sμ(c) to a
new cluster Sν (c) and select the one which reduces F̂N (c, X)
most. To evolve from a nonordered state as in Fig. 1(b) to
an “ordered” state as in Fig. 1(a), this microscopic algorithm
has to move on average at least N (K − 1)/K particles (see
Appendix E). Each move was selected from among N (K − 1)
possible moves, so the numerical complexity is at least of
order N2(K − 1)2/K .

IV. RESULTS OF NUMERICAL EXPERIMENTS

Our mean-field theory for was derived under the assump-
tion that F̂N (c, X) is self-averaging for N → ∞. To investi-
gate the correctness of its predictions for finite sample sizes
N , we studied low entropy states of (13) as obtained by the
gradient descent algorithm on the data of the Fig. 2. For each
K ∈ [17] we ran the algorithm from 100 different random
initial states c (0), and computed F̂N (c (∞), X) and the mean-
field entropy F (α) (14) for each.

For K � L, most final states c (∞) allocate data from the
same distribution correctly to the same cluster, see Fig. 1(a).
The values of F̂N (c (∞), X) are those predicted by F (α),
and indeed correspond to local minima and saddle points of
F (α) (see Appendix F). Also, according to Fig. 1(c), the value
F̂N = minc F̂N (c, X) as estimated from c (∞) is predicted
accurately by F = minα F (α). Residual differences between
F̂N and F reflect finite-size effects. These can be computed
exactly when K = L, and when c (∞) represents the true
partitioning of the data: The average and variance of F̂N

are in that case given by
∑L

ν=1 γ (ν)H (qν ) + Kd(d + 1)/4N

and d/2N , respectively (see Appendix G). Finally, we note
that the number of particles “moved” by the algorithm in
going from c (0) to c(∞) is consistent with the lower bound
N (K − 1)/K , so the algorithmic complexity is quadratic in
N ; see Fig. 3.

If K > L, then the states c (∞) will allocate data from
the same distribution to multiple clusters; see Fig. 1(b).
Such states are already present for small K � L, and

 0.5

 0.7

 0.9t

 1.1

 1.3

 2  3  5  7  9

K
 11  13  15  17

FIG. 3. Total (normalized) number of “moves” t used by the
gradient descent algorithm to travel from a random unbiased partition
to a final partition, i.e., the effective algorithmic runtime, shown as a
function of the assumed number of clusters K . The minimum and
maximum time (red crosses) obtained in 100 runs on the data of
Fig. 2 are compared with the average lower bound (K − 1)/K (blue
line).

proliferate as K is increased (see Appendix F). The lower
bound

∑L
ν=1 γ (ν)H (qν ) is now violated, and the gap be-

tween this bound and the value of F̂N as obtained by gra-
dient descent increases with K; see Fig. 1(c). While some
of the F̂N (c (∞), X) values are consistent with F (α) (see
Appendix F), the mean-field theory fails to predict
minc F̂N (c, X) in this regime, due to the noncommutation of
the N → ∞ limit and the min operator.

Our estimate of F̂N = minc F̂N (c, X) can also be used to
infer the true number of clusters L. Assuming uniform prior
distributions of partitions p(c|K ) = [K!S (L,K )]−1 and clus-
ter sizes p(K ) = N−11[K ∈ [N ]] in the Bayesian formulas
(2)–(5), the total entropy F̂N + 1

N
log[K!S (L,K )] ≈ F̂N +

log(K ) has its minimum at the correct value K = L; see inset
in Fig. 1(c).

An interesting and important question, from a practical
and a theoretical point view, is how Bayesian clustering
is affected by the “separation” between different clusters.
The simplest nontrivial case is to consider the clustering
of d-dimensional data sampled from two isotropic Gaussian
distributions N (m1, 1) and N (m2, 1). Here one can use the
Euclidean distance ‖m1 − m2‖ = �, measured relative to the
natural scale

√
d, as a measure of the degree of separation [18]

between the “clusters” centered at m1 and m2. For large d,
most of the vectors x sampled from N (m, 1) will be found in
the “sphere” of radius

√
d centered at m, reflecting “concen-

tration” phenomena observed for large d. In particular if we
assume that x is sampled from N (m,�), then 〈‖x − m‖2〉 =
Tr �, and for λ, ε > 0:

Prob(‖x − m‖2 � Tr � + dε)

= Prob[e
λ
2 ‖x−m‖2 � e

λ
2 (Tr �+dε)]

� 〈e λ
2 ‖x−m‖2〉e− λ

2 (Tr �+dε)

= e− 1
2 [log |1−λ�|+λ(Tr �+dε)]. (19)

The upper bound in the above expression was obtained
using Markov’s inequality and properties of Gaussian in-
tegrals. For the choice � = 1, the above inequality, after
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(

FIG. 4. Bayesian clustering of data x ∈ Rd generated from the Gaussian distributions N (m1, 1) and N (m2, 1), with separation � =
‖m1 − m2‖. The data sample, split equally between the constituent distributions, is of size N = 2000 and has d = 10. The data were generated
for cluster separations �/

√
d ∈ { 1

2 , 1, 3
2 , 2, 5

2 }. Top: Data projected into two dimensions. The separation � of the clusters is increasing from
the left to the right. Bottom: The sum F̂N + log(K ) (red crosses connected by lines), where F̂N ≡ minc F̂N (c, X) and log(K ) ≡ loge(K ),
shown as a function of the assumed number of clusters K , and compared with the mean-field prediction minα F (α) (blue crosses). For K = 2,
the mean-field prediction minα F (α) = d

2 log(2πe) is plotted with the finite-size corrections (error bars indicate one standard deviation).

optimizing the upper bound with respect to λ, gives us
Prob[‖x − m‖2 � d(1 + ε)] � e− d

2 (log 1
1+ε

−ε).
Let us now consider the MF entropy minα F (α) for the

distributions N (m1, 1) and N (m2, 1), with separation ‖m1 −
m2‖ = �. For the assumed number of clusters K = 1 this
entropy is given by

F1 = d

2
log(2πe)

+ 1

2
log

∣∣∣∣∣1 +
2∑

ν=1

γ (ν)(mν − m)(mν − m)T
∣∣∣∣∣, (20)

where m = ∑2
ν=1 γ (ν) mν and γ (ν) is the fraction of data

sampled from N (mν, 1). For K = 2 we obtain

F2 = d

2
log (2πe), (21)

which corresponds to the situation where the true cluster-
ing of data is recovered. Furthermore, on choosing m1 = 0
and γ (ν) = 1

2 we obtain F1 = d
2 log(2πe) + 1

2 log[1 + ( �
2 )2].

Thus in this case F1 � F2, as required. However, if log(2) �
1
2 log[1 + ( �

2 )2], then F2 + log(K ) � F1 (note that we mini-
mize minα F (α) + log(K ) to infer true number of clusters),
so that here we are unable to recover the correct number
K = 2 of clusters due to the cluster separation � being too
small. This happens when � � 2

√
3 ≈ 3.46. We expect that

a similar analysis can be also performed for more general
scenarios.

Numerical experiments are in qualitative agreement with
the predicted separation boundary � = 2

√
3, as can be seen

in Fig. 4. In this figure we also compare the mean-field
theory results [(20) and (21)] with the results of numerical
simulations. For K = 1 the discrepancy between theory and
simulations is a finite-size effect. In contrast, for K = 2 it
is a combination of finite-size effects and the inability of

the mean-field theory to account for correlations between the
data in clusters for small separations �. Such correlations
are also responsible for a breakdown of the mean-field theory
when K > L (see Fig. 1). For larger separations � the theory
is in good agreement with the simulations, see Fig. 4, and
discrepancies again reflect only finite-size effects.

The magnitude of the finite-size effects can be esti-
mated when K = L for any d/N < 1, by the following
argument. For the empirical covariance matrix �̂ of a
sample of M d-dimensional data vectors generated from
the Gaussian distribution N (m,�) the random quantity
log |�̂| will for large M be described by the distri-
bution N [log |�| + τ (M,d ), σ 2(M,d )], where τ (M,d ) =∑d

�=1 ψ ( M−�+1
2 ) − d log( M

2 ) and σ 2(M,d ) = ∑d
�=1

2
M−�+1

[19]. Assuming that K = L and that the clustering is perfect
allows us to compute, by following steps similar to those
followed in the Appendix G, the average and variance of the
entropy (13). They are found to be given by minα F (α) +∑L

ν=1 γ (ν) τ (γ (ν)N, d ) and 1
4

∑L
ν=1 γ 2(ν) σ 2(γ (ν)N, d ), re-

spectively.
When evaluated for real data sets, the entropy function

(13) may also have value as an exploratory tool. To show
this, we consider the Wisconsin Diagnostic Breast Cancer
(WDBC) data set [20], which describes characteristics of cell
nuclei in the images of cells extracted from tumors [21] and
contains N = 569 data points of dimension d = 30. This data
set has two (linearly separable) classes, which we assume to
be the “true” clusters, one is “benign,” represented by 357 data
points, and the other is “malignant,” represented by 212 data
points [21]. A first simple unsupervised method which one
might apply to this data set is hierarchical clustering, which
uses pairwise distances between the data points to build a
hierarchy of clusters, see, e.g., Ref. [22]. The agglomerative
version of this algorithm, with Euclidean distances, separates
this data into clusters of sizes 549 and 20 at the K = 2 clusters
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(

(

FIG. 5. The sum F̂N + log(K ), where F̂N ≡ minc F̂N (c, X), as
computed for the Wisconsin Diagnostic Breast Cancer data [20] (red
crosses connected by lines), shown as a function of the assumed
number of clusters K . These results suggest that the true number
of clusters in this data set is at least K = 4.

level of hierarchy, into clusters of sizes 549, 19, and 1 at
the K = 3 clusters level of hierarchy, into clusters of sizes
438, 111, 19, and 1 at the K = 4 clusters level of hierarchy,
etc. Hence, on assuming (correctly) that K = 2, one cannot
recover the true clusters of the WDBC data with this algo-
rithm. Alternatively, the K-means clustering algorithm, see,
e.g., Ref. [5], which minimizes the squared Euclidean distance
between the points in a cluster, “finds” in the WDBC data set
(again on assuming K = 2) clusters of sizes 438 and 131. On
comparing these with the true clusters, we observe that K-
means “misclassifies” 83 data points in total. It is interesting
that the clusters found by K-means were also present in the
four clusters generated via hierarchical clustering.

Using instead the gradient descent minimization of (13) as
a clustering protocol suggests that there are more than K = 4
clusters1 in the WDBC data set (see Fig. 5). For K = 2 the
algorithm outputs clusters of sizes 328 and 241, which is,
compared with the hierarchical and K-means results, much
closer to the true sizes 357 and 212 of the WDBC data
set. Now 57 data points were misclassified, which can be
explained by the nonsphericity of clusters in this data set. In
particular, for any data covariance matrix �̂ the ratio S (�̂) =
Tr2(�̂)/dTr(�̂2) can be used as a measure of “sphericity” of
data, see, e.g., Ref. [23]. We note that 1/d � S (�̂) � 1, and
that the lower bound 1/d is saturated only when a few eigen-
values dominate all others for large d, i.e., when only a few
“directions” in Rd contribute to the variability in the data. The
upper bound is saturated when all eigenvalues are equal, i.e.,
all directions in Rd contribute equally to the variability. The
sphericity values of the “benign” and “malignant” clusters in
the WDBC data set are given by 0.034 and 0.036, respectively,
so the data in these clusters is highly nonspherical. This indeed
suggests that the entropy function (13), derived on assuming
arbitrary multivariate Gaussian distributions of a data in the
clusters, is better equipped to deal with this scenario than
hierarchical or K-means clustering.

1For K > 4, this approach favors small clusters, i.e., we are in
nonasymptotic regime, which suggests that a full Bayesian frame-
work is more appropriate for this data.

V. SUMMARY

In conclusion, in this paper we have demonstrated that
mapping Bayesian clustering of data to a statistical mechan-
ical problem is not only possible, but in fact also quite
intuitive and fruitful. It enables us to identify objectively
the most plausible number of clusters in a data set, and to
obtain transparent interpretations and explanations of why and
how conventional clustering methods (which are quite often
based on ad hoc definitions) may or may not fail to detect
clusters correctly, dependent on the quantitative features of the
data.

One possible extension of this work, currently in progress,
is a more general analytical treatment of this Bayesian
clustering problem, in which the distribution P (F ) =∫

dα P (α) δ[F − F (α)] is no longer assumed to converge to
a δ distribution for large N . This will allow us to tackle also
the nontrivial regime where N, d → ∞ with N/d finite, and
to correct the present mean-field theory in the K > L regime.

ACKNOWLEDGMENT

This work was supported by the Medical Research Council
of the United Kingdom (Grant No. MR/L01257X/1).

APPENDIX A: MODEL OF DATA
AND BAYESIAN CLUSTERING

Let us assume that we observe the sample X =
{x1, . . . , xN }, where xi ∈ Rd for all i, drawn from the distri-
bution

p(X|�,�) =
|�|∏
μ=1

∏
iμ∈Sμ

p
(
xiμ

∣∣θμ

)
, (A1)

generated by the partition � = {S1, S2, . . . , S|�|}, where
the index sets Sμ �= ∅ obey Sμ ∩ Sν = ∅ for μ �= ν, and
∪|�|

μ=1Sμ = [N ], with the short-hand [N ] = {1, . . . , N}. Fur-
thermore, we assume that each parameter θμ is sampled
randomly and independently from the distribution p(θμ), and
that we are also given the prior distribution of �, P (�). This
allows us to write down the joint distribution

p(X,�,�) = p(X|�,�)p(�)
|�|∏
μ=1

p(θμ), (A2)

where � = {θ1, . . . , θ |�|}. On integrating out the parameters
θμ in the above we obtain the distribution

p(X,�) = 〈p(X|�,�)〉�|�p(�), (A3)

where 〈f (�)〉�|� = ∫
f (�){∏|�|

μ=1 p(θμ) dθμ}. From this
follows the conditional distribution

p(�|X) = p(X|�)p(�)∑
�̃ p(X|�̃)p(�̃)

(A4)

with

p(X|�) = 〈p(X|�,�)〉�|�. (A5)
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Let us next consider the “partition function”∑
�

p(X|�)p(�)

=
N∑

K=1

∑
�

p(X|�)p(�)1[|�| = K]

=
N∑

K=1

∑
�

p(X|�)p(�|K )p(K ), (A6)

where we have defined the two distributions:

p(�|K ) = p(�)1[|�| = K]∑
�̃ p(�̃)1[|�̃| = K]

(A7)
p(K ) =

∑
�

p(�)1[|�| = K].

Furthermore, if we define �K to be a partition � with |�| =
K , i.e., �K = {S1, . . . , SK}, then∑

�

p(X|�)p(�)

=
N∑

K=1

p(K )
∑
�K

p(X|�K )p(�K |K ) (A8)

and the distribution of �K is given by

p(�K |X) = p(X|�K )p(�K |K )p(K )∑N

K̃=1 p(K̃ )
∑

�̃K̃
p(X|�̃K̃ )p(�̃K̃ |K̃ )

. (A9)

The mode of this distribution is located at

�̂K = argmax�K
{p(X|�K )p(�K |K )}, (A10)

from which, in turn, it follows that the mode of the distribution
(A4) is located at

�̂ = argmax�̂K
{p(X|�̂K )p(�̂K |K )p(K )}. (A11)

To see this one considers

�̂ = argmax�{p(X|�)p(�)}
= argmax�{{p(X|�1)p(�1)}, . . . {p(X|�K )p(�K )}, . . .

{p(X|�N )p(�N )}},
where {p(X|�K )p(�K )} is a set generated by {�K}. Clearly,
max�K

{p(X|�K )p(�K )} = p(X|�̂K )p(�̂K ), in which
�̂K = argmax�K

{p(X|�K )p(�K )}, from which follows that

�̂ = argmax�̂K
{p(X|�̂K )p(�̂K )}

= argmax�̂K
{p(X|�̂K )p(�̂K |K )p(K )}. (A12)

Any partition �K of the data into K clusters can be spec-
ified by the binary “allocation” variables ciμ = 1[i ∈ Sμ],
where i ∈ [N ] and μ ∈ [K], forming the matrix c with [c]iμ =
ciμ. Hence �K ≡ �K (c) = {S1(c), . . . , SK (c)}. Conversely,
an N × K matrix c with binary entries is a partition only if
it satisfies the constraints

∑K
μ=1 ciμ = 1 for all i ∈ [N ] and∑N

i=1 ciμ � 1 for all μ ∈ [K]. The simplest distribution im-
plementing these constraints is the uniform distribution

p(c|K ) =
{∏N

i=1 1
[∑K

ν=1 ciν = 1
]}{∏K

μ=1 1
[∑N

j=1 cjμ � 1
]}

∑
c̃

{∏N
i=1 1

[∑K
ν=1 c̃iν = 1

]}{∏K
μ=1 1

[∑N
j=1 c̃jμ � 1

]} . (A13)

The denominator in this expression gives the total number of
partitions of the set [N ] into K subsets S (N,K ), i.e., it equals
the Stirling number of the second kind times the number K!
of subset permutations. Thus the probability of each individ-
ual partition c is given by 1/K!S (N,K ). We note that for
N → ∞ and K ∈ O(N0) we have N−1 log(K!S (N,K )) →
log(K ) [17].

Using this new notation allows us to write the distribution
p(X|�K ) as

p(X|�K ) ≡ p(X|c,K )

= 〈e
∑K

μ=1

∑N
i=1 ciμ log p(xi |θμ )〉�

= e−NF̂N (c, X), (A14)

where 〈f (�)〉� = ∫
f (�){∏K

μ=1 p(θμ) dθμ}, and we de-
fined the log-likelihood

F̂N (c, X) = − 1

N
log〈e

∑K
μ=1

∑N
i=1 ciμ log p(xi |θμ )〉�. (A15)

Furthermore, combining p(c,K ) = p(c|K )p(K ) with (A14)
gives us the joint distribution

p(X, c,K ) = e−NF̂N (c, X)p(c,K ) (A16)

from which we can derive the conditional distribution

p(c,K|X) = e−NF̂N (c, X)p(c|K )p(K )∑N

K̃=1 p(K̃ )
∑

c̃ e−NF̂N (c̃, X)p(c̃|K̃ )
. (A17)

For K ∈ [N ] the mode of this distribution is located at

ĉ |K = argmaxc p(c,K|X)

= argmaxc{e−NF̂N (c, X)p(c|K )} (A18)

and hence the mode of (A4) is given by

�̂ = argmaxĉ |K{e−NF̂N (c, X)p(ĉ|K )p(K )}, (A19)

which is our MAP estimator of the partition of data �.

APPENDIX B: LAPLACE APPROXIMATION

Let us consider the log-likelihood density (3). We note that
F̂N (c, X) = ∑K

μ=1 F̂ N
μ (c, X), where

F̂ N
μ (c, X) = − 1

N
log

∫
e−N�μ(θμ|c, X)p(θμ)dθμ

�μ(θμ|c, X) = − 1

N

N∑
i=1

ciμ log p(xi |θμ), (B1)
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F̂ N
μ (c, X) is a log-likelihood density of cluster μ. For large N

it can be evaluated by the Laplace method [24]:

F̂ N
μ (c, X) = − 1

N
log

[∫
e−N�μ(θμ|c, X)p(θμ)dθμ∫

e−N�μ(θ̃μ|c, X)d θ̃μ

×
∫

e−N�μ(θ̃μ|c, X)d θ̃μ

]

= �μ(θ∗
μ|c), (B2)

where

θ∗
μ = argminθ�μ(θ |c, X). (B3)

The stationarity condition ∂
∂θμ(�)�μ(θ |c, X) = 0 for all �,

from which to solve θ∗
μ, gives us the equations

∂

∂θμ(�)

1

N

N∑
i=1

ciμ log p(xi |θμ) = 0. (B4)

Let us now evaluate (B4) for the multivariate Gaussian distri-
butions

N
(
x
∣∣mμ,�−1

μ

) = e− 1
2 (x−mμ )T �μ(x−mμ )∣∣2π�−1

μ

∣∣ 1
2

, (B5)

with the means mμ and the inverse covariance matrices �μ.
On assuming that p(xi |θμ) ≡ N (x|mμ,�−1

μ ), the desired log-

likelihood density becomes

− 1

N

N∑
i=1

ciμ logN
(
xi |mμ,�−1

μ

)

= 1

2N

N∑
i=1

ciμ(xi − mμ)T �μ(xi − mμ)

−Mμ(c)

2N
log[(2π )−d |�μ|], (B6)

Here Mμ(c) = ∑N
i=1 ciμ = |Sμ(c)| denotes the number

of data points in cluster μ. Solving the equations
∂

∂mμ�

∑N
i=1 ciμ logN (xi |mμ,�−1

μ ) = 0 and

∂

∂[�μ]s�

N∑
i=1

ciμ logN
(
xi |mμ,�−1

μ

) = 0

gives us

mμ = 1

Mμ(c)

N∑
i=1

ciμxi (B7)

�−1
μ = 1

Mμ(c)

N∑
i=1

ciμ(xi − mμ)(xi − mμ)T , (B8)

i.e., the empirical mean and covariance of the data in cluster
μ. Using the above results in equation (B6) we then obtain the
log-likelihood density (13).

APPENDIX C: DISTRIBUTION OF LOG-LIKELIHOOD—A “FIELD THEORY” APPROACH

Let us assume that the data X = {x1, . . . , xN } are sampled from the distribution

p(X|L) =
∑

c̃

q(c̃|L)

⎧⎨
⎩

L∏
ν=1

∏
iν∈Sν (c̃)

qν

(
xiν

)⎫⎬⎭, (C1)

where q(c̃|L) is the “true” distribution of the partitions c̃ of size L. We are interested in computing the distribution of log-
likelihoods

PN (F ) =
∑

c

p(c|K )
∫

dX p(X|L)δ[F − F̂N (c, X)] (C2)

F̂N (c, X) = − 1

N

K∑
μ=1

N∑
i=1

ciμ log p(xi |θμ). (C3)

Here p(c|K ) is our “assumed” distribution of the partition c of size K . Let us now evaluate PN (F ) further:

PN (F ) =
∑
c,c̃

p(c|K )q(c̃|L)
∫ ⎧⎨
⎩

L∏
ν=1

∏
iν∈Sν (c̃)

qν

(
xiν

)⎫⎬⎭δ[F − F̂N (c, X)]dX. (C4)

We note that the sum over c̃ inside the function F̂N (c, X) can be written in the following form:

−F̂N (c, X) =
K∑

μ=1

|Sμ(c)|
N

∫
1

|Sμ(c)|
∑

iμ∈Sμ(c)

δ(x − xiμ ) log p(x|θμ)dx

=
K∑

μ=1

|Sμ(c)|
N

∫
1

|Sμ(c)|
L∑

ν=1

∑
iμν∈Sμ(c)∩Sν (c̃)

δ
(
x − xiμν

)
log p(x|θμ)dx

=
K∑

μ=1

|Sμ(c)|
N

∫
Qμ(x|c, c̃, X) log p(x|θμ)dx, (C5)
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where we have defined the density

Qμ(x|c, c̃, X) = 1

|Sμ(c)|
L∑

ν=1

∑
iμν∈Sμ(c)∩Sν (c̃)

δ
(
x − xiμν

)
. (C6)

Using the above form in (C4) we obtain

PN (F ) =
∑
c,c̃

p(c|K ) q(c̃|L)
∫

dX

⎧⎨
⎩

L∏
ν=1

∏
iν∈Sν (c̃)

qν

(
xiν

)⎫⎬⎭δ

⎡
⎣F +

K∑
μ=1

|Sμ(c)|
N

∫
Qμ(x|c, c̃, X) log p(x|θμ)dx

⎤
⎦

=
∑
c,c̃

p(c|K ) q(c̃|L)

⎧⎨
⎩

K∏
μ=1

∏
x

∫
dQμ(x)

⎫⎬
⎭PN [{Qμ(x)}|c, c̃ ]δ

⎡
⎣F +

K∑
μ=1

|Sμ(c)|
N

∫
Qμ(x) log p(x|θμ)dx

⎤
⎦, (C7)

where we have defined the (functional) distribution

PN [{Qμ(x)}|c, c̃ ] =
∫ ⎧⎨
⎩

L∏
ν=1

∏
iν∈Sν (c̃)

qν

(
xiν

)⎫⎬⎭dX
K∏

μ=1

∏
x

δ[Qμ(x) − Qμ(x|c, c̃, X)]. (C8)

Let us next consider

PN [{Qμ(x)}|c, c̃ ] =
∫

dX

⎧⎨
⎩

L∏
ν=1

∏
iν∈Sν (c̃)

qν

(
xiν

)⎫⎬⎭
⎧⎨
⎩

K∏
μ=1

∏
x

∫
dQ̂μ(x)

2π/N

⎫⎬
⎭eiN

∑K
μ=1

∫
Q̂μ(x)[Qμ(x)−Qμ(x|c,c̃,X)]dx

=
⎧⎨
⎩

K∏
μ=1

∏
x

∫
dQ̂μ(x)

2π/N

⎫⎬
⎭eiN

∑K
μ=1

∫
Q̂μ(x)Qμ(x)dx

×
∫

dX

⎧⎨
⎩

L∏
ν=1

∏
iν∈Sν (c̃)

qν

(
xiν

)⎫⎬⎭e
∑L

ν=1

∑K
μ=1

N
|Sμ (c)|

∑
iμν∈Sμ (c)∩Sν (c̃) −iQ̂μ(xiμν )

=
⎧⎨
⎩

K∏
μ=1

∏
x

∫
dQ̂μ(x)

2π/N

⎫⎬
⎭eiN

∑K
μ=1

∫
Q̂μ(x)Qμ(x)dx

L∏
ν=1

K∏
μ=1

∏
iμν∈Sμ(c)∩Sν (c̃)

∫
qν (xiμν

)e−i N
|Sμ (c)| Q̂μ(xiμν )

dxiμν

=
⎧⎨
⎩

K∏
μ=1

∏
x

∫
dQ̂μ(x)

2π/N

⎫⎬
⎭eiN

∑K
μ=1

∫
Q̂μ(x)Qμ(x)dx+N

∑K
μ=1

∑L
ν=1

|Sμ (c)∩Sν (c̃)|
N log

∫
dx qν (x)e−i

NQ̂μ (x)
|Sμ (c)| . (C9)

Thus for PN [Q|α(c, c̃)] ≡ PN [{Qμ(x)}|c, c̃ ] we have

PN [Q|α(c, c̃)] =
∫

DQ̂ eN�[Q,Q̂|α(c,c̃) ], (C10)

where

�[Q, Q̂|α(c, c̃) ] = i

K∑
μ=1

∫
Q̂μ(x)Qμ(x)dx +

K∑
μ=1

L∑
ν=1

α(ν, μ|c, c̃) log
∫

qν (x) e
−i

α(μ|c) Q̂μ(x)
dx, (C11)

with the usual short-hand for the path integral measure,
∫
DQ̂ ≡ {∏K

μ=1

∏
x

∫
[dQ̂μ(x)/(2π/N )]}. In the above formula we have

also introduced the matrix α(c, c̃), with entries [α(c, c̃)]νμ = α(ν, μ|c, c̃), where in turn α(ν, μ|c, c̃) = N−1|Sμ(c) ∩ Sν (c̃)|. We
note that ∪K

μ=1[Sμ(c) ∩ Sν (c̃)] = Sν (c̃) and that ∪L
ν=1[Sμ(c) ∩ Sν (c̃)] = Sμ(c). From these properties it follows that the entries

α(ν, μ|c, c̃) � 0 can be interpreted as representing a joint distribution, i.e.,
∑K

μ=1

∑L
ν=1 α(ν, μ|c, c̃) = 1, with the marginals∑L

ν=1 α(ν, μ|c, c̃) = α(μ|c) = |Sμ(c)|/N and
∑K

μ=1 α(ν, μ|c, c̃) = α(ν|c̃) = |Sν (c̃)|/N . Using all these ingredients in Eq. (C7)
then leads us to

PN (F ) =
∑
c,c̃

p(c|K ) q(c̃|L)
∫

DQPN [Q|α(c, c̃)]δ

⎡
⎣F +

K∑
μ=1

|Sμ(c)|
N

∫
Qμ(x) log p(x|θμ)dx

⎤
⎦

=
∫

dα PN (α)
∫

DQPN [Q|α]δ

⎡
⎣F +

K∑
μ=1

α(μ)
∫

Qμ(x) log p(x|θμ)dx

⎤
⎦, (C12)
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where we have defined the integral measure
∫
DQ ≡ {∏K

μ=1

∏
x

∫
dQμ(x)} as well as the short-hand

∫
dα ≡∏K

μ=1

∏L
ν=1

∫
dα(ν, μ). The distribution of α is given by

PN (α) =
∑
c,c̃

p(c|K ) q(c̃|L)
K∏

μ=1

L∏
ν=1

δ[α(ν, μ) − α(ν, μ|c, c̃)]. (C13)

Now for any smooth function g we can consider the following average:

∫
PN (F ) g(F ) dF =

∫
dα PN (α)

∫
DQPN [Q|α] g

⎡
⎣−

K∑
μ=1

α(μ)
∫

Qμ(x) log p(x|θμ)dx

⎤
⎦

=
∫

dα PN (α)

∫
DQPN [Q|α]∫
DQ̃ PN [Q̃|α]

g

⎡
⎣−

K∑
μ=1

α(μ)
∫

Qμ(x) log p(x|θμ)dx

⎤
⎦

=
∫

dα PN (α)

∫
DQ

∫
DQ̂ eN�[Q,Q̂|α]∫

DQ̃
∫
DQ̂ eN�[Q̃,Q̂|α]

g

⎡
⎣−

K∑
μ=1

α(μ)
∫

Qμ(x) log p(x|θμ)dx

⎤
⎦. (C14)

Let us assume that PN (α) → P (α) as N → ∞. Furthermore, we expect that in this limit the functional integral in the above
equation is dominated by the extremum of the functional � and hence for the distribution P (F ) = limN→∞ PN (F ) we obtain

∫
P (F ) g(F ) dF =

∫
P (α) g

⎡
⎣−

K∑
μ=1

α(μ)
∫

Qμ(x|α) log p(x|θμ)dx

⎤
⎦dα, (C15)

where Qμ(x|α) is a solution of the saddle-point equations δ�[Q, Q̂|α]/δQμ(x) = 0 and δ�[Q, Q̂|α]/δQ̂μ(x) = 0. Solving the
latter gives us the following two equations:

iQ̂μ(x) = 0, (C16)

Qμ(x) =
L∑

ν=1

α(ν, μ)

α(μ)

qν (x)e
−i

α(μ) Q̂μ(x)∫
qν (x′) e

−i
α(μ) Q̂μ(x′ )

dx′
(C17)

from which follows the equation

Qμ(x|α) =
L∑

ν=1

α(ν|μ)qν (x), (C18)

where α(ν|μ) = α(ν, μ)/α(μ) is a conditional distribution. From the above we conclude that

P (F ) =
∫

dα P (α)δ

⎡
⎣F +

K∑
μ=1

L∑
ν=1

α(ν, μ)
∫

qν (x) log p(x|θμ)dx

⎤
⎦. (C19)

If we assume that P (α) is a δ function, this gives us the MF log-likelihood

F (α) = −
K∑

μ=1

L∑
ν=1

α(ν, μ)
∫

qν (x) log p(x|θμ)dx, (C20)

which is seen to be equivalent to (9). Let us next consider the distribution (C2) of the log-likelihood density (13):

PN (F ) =
∑

c

p(c|K )
∫

dX p(X|L)δ

⎧⎨
⎩F −

K∑
μ=1

|Sμ(c)|
2N

log
[
(2πe)d

∣∣�−1
μ (c, X)

∣∣]
⎫⎬
⎭, (C21)

where �−1
μ (c, X) is the covariance matrix of the data in cluster μ, which can be written in the form

�−1
μ (c, X) = 1

|Sμ(c)|
∑

iμ∈Sμ(c)

[
xiμ − mμ(c)

][
xiμ − mμ(c)

]T
, (C22)
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where mμ(c) = 1
|Sμ(c)|

∑
iμ∈Sμ(c) xiμ . Further manipulation of PN (F ) gives

PN (F ) =
∑
c,c̃

p(c|K ) q(c̃|L)
∫

dX

⎧⎨
⎩

L∏
ν=1

∏
iν∈Sν (c̃)

qν

(
xiν

)⎫⎬⎭ δ

⎧⎨
⎩F −

K∑
μ=1

|Sμ(c)|
2N

log
[
(2πe)d

∣∣�−1
μ (c, X)

∣∣]
⎫⎬
⎭ (C23)

and the covariance matrix can be written in the form

�−1
μ (c, X) = 1

|Sμ(c)|
L∑

ν=1

∑
iνμ∈Sμ(c)∩Sν (c̃)

[
xiνμ

− mμ(c)
][

xiνμ
− mμ(c)

]T

=
∫

dx Qμ(x|c, c̃, X)

[
x −

∫
Qμ(y|c, c̃, X) y dy

][
x −

∫
Qμ(z|c, c̃, X) z dz

]T

. (C24)

From the above it is clear that F̂N is a functional of the density Qμ(x|c, c̃, X), defined in (C6), and the matrix α(c, c̃). Following
the same steps as in deriving equations (C7)–(C12) gives us

PN (F ) =
∫

dα PN (α)
∫

DQPN [Q|α]δ

⎧⎨
⎩F −

K∑
μ=1

α(μ)
1

2
log

[
(2πe)d

∣∣�−1
μ [Q]

∣∣]
⎫⎬
⎭, (C25)

where

�−1
μ [Q] =

∫
dx Qμ(x)[x −

∫
Qμ(y) y dy]

[
x −

∫
Qμ(z) z dz

]T

. (C26)

Furthermore, for N → ∞, using a similar argument as outlined in Eqs. (C14)–(C19), we obtain

P (F ) =
∫

dα P (α)δ

⎧⎨
⎩F −

K∑
μ=1

α(μ)
1

2
log

[
(2πe)d

∣∣�−1
μ (α)

∣∣]
⎫⎬
⎭, (C27)

where the covariance matrix �−1
μ (α) is defined by

�−1
μ (α) =

L∑
ν=1

α(ν|μ)〈[x − mμ(α)][x − mμ(α)]T 〉ν, (C28)

where mμ(α) = ∑L
ν=1 α(ν|μ)〈x〉ν is the mean, and we used the short-hand 〈{· · · }〉ν = ∫

qν (x){· · · }dx. Assuming that P (α) is
a δ function subsequently gives us the MF log-likelihood expression (14).

APPENDIX D: PROOFS OF INFORMATION-THEORETIC INEQUALITIES

In this section we compute lower bounds for the MF entropy (14). First, we show that F (α) satisfies the inequalities

F (α) �
K∑

μ=1

α(μ)H (Qμ) �
L∑

ν=1

γ (ν)H (qν ). (D1)

Let us consider the Kullback-Leibler distance [15] D(Qμ‖Nμ) between the mixture Qμ(x) = ∑L
ν=1 α(ν|μ)qν (x) and the

Gaussian distribution N (x|mμ,�−1
μ ):

D(Qμ‖Nμ) =
∫

dx
L∑

ν=1

α(ν|μ) qν (x) log

[∑L
ν=1 α(ν|μ) qν (x)

N
(
x|mμ,�−1

μ

)
]

= −H (Qμ) −
L∑

ν=1

α(ν|μ)
∫

dx qν (x) logN
(
x|mμ,�−1

μ

)

= −H (Qμ) −
L∑

ν=1

α(ν|μ)
∫

dx qν (x) log

⎡
⎣e− 1

2 (x−mμ )T �μ(x−mμ )∣∣2π�−1
μ

∣∣ 1
2

⎤
⎦
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= −H (Qμ) + 1

2
log

[
(2π )d

∣∣�−1
μ

∣∣]+ 1

2

L∑
ν=1

α(ν|μ)
∫

dx qν (x)(x − mμ)T �μ(x − mμ)

= −H (Qμ) + 1

2
log

[
(2π )d

∣∣�−1
μ

∣∣]+ 1

2
Tr

{
�μ

L∑
ν=1

α(ν|μ)
∫

qν (x)(x − mμ)(x − mμ)T dx

}
.

Let us define the mean and covariance of the distribution Qμ(x) = ∑L
ν=1 α(ν|μ)qν (x) as mμ = ∫

Qμ(x) x dx and
�−1

μ = ∫
Qμ(x)(x − mμ)(x − mμ)T dx. Then D(Qμ‖Nμ) = −H (Qμ) + 1

2 log [(2πe)d |�−1
μ |] and from the simple property

D(Qμ‖Nμ) � 0 we immediately deduce that

F (α) �
K∑

μ=1

α(μ)H (Qμ). (D2)

Furthermore, for the average entropy we find the following inequality
K∑

μ=1

α(μ)H (Qμ) =
K∑

μ=1

α(μ)
L∑

ν1=1

α(ν1|μ)
∫

qν1 (x) log

[
1/

L∑
ν2=1

α(ν2|μ) qν2 (x)

]
dx

=
K∑

μ=1

L∑
ν1=1

α(ν1, μ)
∫

qν1 (x)

{
log qν1 (x) − log qν1 (x) + log

[
1/

L∑
ν2=1

α(ν2|μ) qν2 (x)

]}
dx

=
K∑

μ=1

L∑
ν=1

α(ν, μ)D(qν‖Qμ) +
L∑

ν=1

γ (ν)H (qν ) �
L∑

ν=1

γ (ν)H (qν ). (D3)

Second, for the average entropy

F0 =
L∑

ν=1

γ (ν)
1

2
log[(2πe)d |cν |], (D4)

where cν = 〈x xT 〉ν − 〈x〉ν 〈x〉Tν is the covariance matrix of qν (x), we can show that the following holds:

F (α) � F0 (D5)

for all α. The above equality follows from properties of the covariance matrix

�−1
μ (α) =

L∑
ν=1

α(ν|μ) cν +
L∑

ν=1

α(ν|μ)[〈x〉ν − mμ(α)][〈x〉ν − mμ(α)]T . (D6)

To prove (D5) we first derive the inequality

log

∣∣∣∣∣
L∑

ν=1

α(ν)Dν

∣∣∣∣∣ �
L∑

ν=1

α(ν) log |Dν | (D7)

for symmetric positive definite matrices Dν and
∑L

ν=1 α(ν) = 1, where α(ν) � 0. This inequality can be derived by repeated
application of Minkowski’s inequality for determinants, viz. |D + B| 1

d � |D| 1
d + |B| 1

d for symmetric positive definite matrices
D and B: ∣∣∣∣∣

L∑
ν=1

α(ν)Dν

∣∣∣∣∣
1
d

=
∣∣∣∣∣α(1)D1 +

L∑
ν=2

α(ν)Dν

∣∣∣∣∣
1
d

� α(1)|D1| 1
d +

∣∣∣∣∣
L∑

ν=2

α(ν)Dν

∣∣∣∣∣
1
d

�
L∑

ν=1

α(ν)|Dν | 1
d (D8)

from which follows the result

log

∣∣∣∣∣
L∑

ν=1

α(ν)Dν

∣∣∣∣∣ � d log

[
L∑

ν=1

α(ν)|Dν | 1
d

]
�

L∑
ν=1

α(ν) log |Dν |. (D9)

The last step in this argument relied on Jensen’s inequality [15]. Let us now apply (D7) to the difference of entropies

2(F (α) − F0) = −
L∑

ν=1

γ (ν) log |cν | +
K∑

μ=1

α(μ) log
∣∣�−1

μ (α)
∣∣

= −
L∑

ν=1

γ (ν) log |cν | +
K∑

μ=1

α(μ) log

∣∣∣∣∣
L∑

ν=1

α(ν|μ){cν + [〈x〉ν − mμ(α)][〈x〉ν − mμ(α)]T }
∣∣∣∣∣
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� −
L∑

ν=1

γ (ν) log |cν | +
K∑

μ=1

α(μ)
L∑

ν=1

α(ν|μ) log |cν + [〈x〉ν − mμ(α)][〈x〉ν − mμ(α)]T |

� −
L∑

ν=1

γ (ν) log |cν | + d

K∑
μ=1

α(μ)
L∑

ν=1

α(ν|μ) log{|cν | 1
d + |[〈x〉ν − mμ(α])[〈x〉ν − mμ(α)]T | 1

d }. (D10)

The last line in the above, obtained by Minkowski’s inequality, is equal to zero, and hence F (α) � F0 for all α.

APPENDIX E: ALGORITHMIC COST OF ORDERING
RANDOM UNBIASED PARTITIONS

Let us assume that we have N “particles” of L different
“colors” which are distributed into K different reservoirs.
The probability that a particle has color ν ∈ [L] is γ (ν) and
that it is in the reservoir μ is 1/K . Assuming that color and
reservoir allocation are independent events, the probability of
“configuration” A = (a1, . . . , aN ), where ai = (ai (1), ai (2))
with the color ai (1) ∈ [L] and reservoir number ai (2) ∈ [K]
of the particle i, is given by

P (A) =
N∏

i=1

P (ai ), (E1)

P (ai ) ≡ P (ai (1) = ν, ai (2) = μ) = γ (ν)

K
. (E2)

The total number of particles in reservoir μ is given by
Nμ(A) = ∑N

i=1 δμ;ai (2). Let us now consider the joint distri-
bution of particle numbers in reservoirs

P (N1, . . . , NK ) =
∑

A

P (A)
K∏

μ=1

δNμ;Nμ(A)

= K−N
∑

a1(2),...,aN (2)

K∏
μ=1

δNμ;
∑N

i=1 δμ;ai (2)

= K−N N !∏K
μ=1 Nμ!

, (E3)

where
∑K

μ=1 Nμ = N . The probability of observing the event
that at least one reservoir is empty is given by

1 − P (N1 > 0, . . . , NK > 0)

= 1 −
∑

N1>0,...,NK>0

K−N N !∏K
μ=1 Nμ!

= K−N

( ∑
N1�0,...,NK�0

N !∏K
μ=1 Nμ!

−
∑

N1>0,...,NK>0

N !∏K
μ=1 Nμ!

)

=
K−1∑
�=1

(
K

�

)(
1 − �

K

)N

. (E4)

Thus the probability of this event decays exponentially with
increasing N and, as N → ∞, the sequence a1(2), . . . , aN (2),
sampled from the distribution (E2) is, with high prob-
ability, a partition of the set [N ] into K subsets (or

clusters). Furthermore, the entropy density N−1 log(KN ) =
log(K ) of such sequences approaches the entropy density
N−1 log [K!S (N,K )] of the random partitions sampled uni-
formly from (A13).

Let us assume that K � L. The total number of parti-
cles of color ν, and the number of particles of color ν in
reservoir μ are given, respectively, by Nν (A) = ∑N

i=1 δν;ai (1)

and Nνμ(A) = ∑N
i=1 δν;ai (1)δμ;ai (2). The number of particles of

color ν which are not in reservoir μ is the difference Nν (A) −
Nνμ(A). Suppose that each reservoir has a preference for
particles of a particular color (or colors), i.e., there is an onto
mapping ν → μ(ν) between colors and reservoirs, then the
total number of particles which are not in “their” reservoirs,
i.e., the number of particles which are to be “moved” in order
for all particles to be in reservoirs to which they belong,
is given by the difference

∑L
ν=1 [Nν (A) − Nνμ(ν)(A)] = N −∑L

ν=1 Nνμ(ν)(A).
We are interested in the average and variance of N −∑L
ν=1 Nνμ(ν)(A). The average is given by〈
N −

L∑
ν=1

Nνμ(ν)(A)

〉
A

= N −
L∑

ν=1

N∑
i=1

〈δν;ai (1)δμ(ν);ai (2)〉A = N −
L∑

ν=1

N∑
i=1

γ (ν)

K

= N
K − 1

K
(E5)

and the variance is given by

Var

{
N −

L∑
ν=1

Nνμ(ν)(A)

}

= Var

{
L∑

ν=1

Nνμ(ν)(A)

}
=
〈[

L∑
ν=1

Nνμ(ν)(A) − N

K

]2〉
A

= N

K

(
1 − 1

K

)
. (E6)

The average in the penultimate line of the above was com-
puted as follows:〈[

L∑
ν=1

Nνμ(ν)(A)

]2〉
A

=
∑

ν

∑
i1,i2

〈δν;ai1 (1)δμ(ν);ai1 (2)δν;ai2 (1)δμ(ν);ai2 (2)〉A

+
∑
ν1 �=ν2

∑
i1,i2=1

〈δν1;ai1 (1)δμ(ν1 );ai1 (2)δν2;ai2 (1)δμ(ν2 );ai2 (2)〉A
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= N

K
+ N (N − 1)

K2

L∑
ν=1

γ 2(ν)

+N (N − 1)

K2

∑
ν1 �=ν2

γ (ν1)γ (ν2)

= N

K
+ N (N − 1)

K2
. (E7)

From the above derivations it follows that for a random
unbiased partition to be ordered, i.e., for particles of the
same color to occupy at most one reservoir, a fraction
of particles has to be moved that is on average 〈1 −
1
N

∑L
ν=1 Nνμ(ν)(A)〉A = (K − 1)/K , with variance Var{1 −

1
N

∑L
ν=1 Nνμ(ν)(A)} = (1 − K−1)/NK .

APPENDIX F: DETAILS OF NUMERICAL EXPERIMENTS

In this section we study the performance of the simplest
algorithm that minimizes the log-likelihood function (13)
via gradient descent, for the data described in Fig. 2. The
algorithm is implemented as follows:

(i) Start with any initial partition �(c (0)) =
{S1(c (0)), . . . , SK (c (0))} and compute the log-likelihood
F̂N (c (0), X).

(ii) For all i ∈ [N ], consider all possible moves of i from
its current cluster Sμ(c) to a new cluster Sν (c) and compute
the new value F̂N (c, X) for each.

FIG. 6. Top left: F (α) as a function of the number of F -
increasing directions N−(α). Top right: F (α) as a function of the
number of F -decreasing directions N+(α). Bottom left: Histogram
of log-likelihood values F̂N (c (∞), X), obtained by running gradient
descent from a 100 different random unbiased partitions, with the
assumed number K = 2 of clusters. Blue filled circles correspond
to the MF log-likelihood, F (α), computed for all possible values
of α(ν, μ) = 1[ν ∈ Sμ]γ (ν ). Bottom right: N−(α) as a function of
N+(α).

 9.7
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 0.55
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F̂N (t)

tt

α(μ|t)

FIG. 7. Evolution of the log-likelihood, F̂N (t ) ≡ F̂N (c(t ), X),
and the fraction of data in cluster μ, α(μ|t ) ≡ α(μ|c(t )), where μ =
{1, 2}, shown as functions of time (normalized number of “moves”)
in the gradient descent algorithm evolving from a random unbiased
initial partition. The assumed number of clusters is K = 2. Blue
horizontal lines correspond to the levels 3/8, 4/8, and 5/8.

(iii) Select and execute a move which gives the largest
decrease in F̂N (c, X), and update �(c).

(iv) Continue the last two steps while the value of
F̂N (c, X) continues to change.

(v) Output the partition �[c (∞)] and the value of
F̂N (c (∞), X).

Using as initial states random partitions of data c (0), where
each i ∈ [N ] has a probability 1/K of being allocated to one

FIG. 8. Top left: F (α) as a function of the number of F -
increasing directions N−(α). Top right: F (α) as a function of the
number of F -decreasing directions N+(α). Bottom left: Histogram
of log-likelihood values F̂N (c (∞), X), obtained by running gradient
descent from a 100 different random unbiased partitions, with the
assumed number K = 3 of clusters. Blue filled circles correspond
to the MF log-likelihood, F (α), computed for all possible values
of α(ν, μ) = 1[ν ∈ Sμ]γ (ν ). Bottom right: N−(α) as a function of
N+(α).
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FIG. 9. Evolution of the log-likelihood, F̂N (t ) ≡ F̂N (c(t ), X),
and the fraction of data in cluster μ, α(μ|t ) ≡ α(μ|c(t )), where
μ = {1, 2, 3}, shown as functions of time (normalized number of
“moves”) in the gradient descent algorithm evolving from a random
unbiased initial partition. The assumed number of clusters is K = 3.
Blue horizontal lines correspond to the levels 2/8 and 4/8.

of the K clusters,2 we run the above algorithm for each value
of K ∈ [17] for 100 different initalizations c (0) and select
the final partition, c (∞), with the smallest value of F̂N ≡
F̂N (c (∞), X). The latter is our estimate of minc F̂N (c, X). We
also compute, with the same parameters used to generate our
data, the mean-field log-likelihood F (α) via Eq. (14).

2In Appendix E we proved that for N → ∞ the matrix c con-
structed in this way is, with high probability, a partition of the set
[N ] into the K subsets.

FIG. 10. Top left: F (α) as a function of the number of F -
increasing directions N−(α). Top right: F (α) as a function of the
number of F -decreasing directions N+(α). Bottom left: Histogram
of log-likelihood values F̂N (c (∞), X), obtained by running gradient
descent from a 100 different random unbiased partitions, with the
assumed number K = 7 of clusters. Blue filled circles correspond
to the MF log-likelihood, F (α), computed for all possible values
of α(ν, μ) = 1[ν ∈ Sμ]γ (ν ). Bottom right: N−(α) as a function of
N+(α).

FIG. 11. Evolution of the log-likelihood, F̂N (t ) ≡ F̂N (c(t ), X),
and the fraction of data in cluster μ, α(μ|t ) ≡ α(μ|c(t )), where
μ = {1, 2, . . . , 7}, shown as functions of time (normalized number of
“moves”) in the gradient descent algorithm evolving from a random
unbiased initial partition. The assumed number of clusters is K = 7.
Blue horizontal lines correspond to the levels 1/8 and 2/8.

When K � L, the log-likelihood F̂N (c (∞), X) is dom-
inated by partitions c (∞) corresponding to local minima
and saddlepoints of F (α). The matrix α is defined by the
entries [α]νμ = 1[ν ∈ Sμ]γ (ν), generated by partitions � =
{S1, . . . , SK} of the set [L] into K subsets. The total number
of partitions is given by S (L,K ). To enumerate all partitions
we use the algorithm in Ref. [25]. We classify turning points
of F (α) as follows. For a given � and its associated matrix
α we count the number N+(α) of elementary “moves” into
the new partition �̃ and α̃ (in a single elementary “move,” a
member of the set Sμ, with |Sμ| > 1, is moved into the set
Sν) for which F (α) > F (α̃) and the number N−(α) of moves
for which F (α) < F (α̃). If N+(α) = 0, then the state α is a
(possibly local) minimum, and if N−(α) = 0, then the state
α is a (possibly local) maximum. All other cases are saddle
points. In Figs. 6, 8, 10, 12, and 14 we compare F̂N (c (∞), X)
with F (α).

Those turning points of F (α) that are of the form [α]νμ =
1[ν ∈ Sμ]γ (ν) also act as dynamic “attractors.” This can be
seen by comparing Fig. 6 to Fig. 7, and Fig. 8 to Fig. 9,
etc. Here F̂N (t ) ≡ F̂N (c (t ), X), as computed during the sim-
ulated process, is seen to evolve from plateau to plateau by
a succession of rapid relaxations, and the value of F̂N (t ) at
the beginning of each plateau can be (approximately) mapped
to the value of F (α) via the fractions α(μ) = ∑L

ν=1 1[ν ∈

FIG. 12. Histogram of the log-likelihood values obtained by
running the gradient descent algorithm from a 100 different ran-
dom unbiased partitions, with the assumed number K = 8 of clus-
ters. The blue filled circle corresponds to the MF lower bound∑L

ν=1 γ (ν )H (qν ) = 4.853905.
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FIG. 13. Evolution of the log-likelihood, F̂N (t ) ≡ F̂N (c(t ), X),
and the fraction of data in cluster μ, α(μ|t ) ≡ α(μ|c(t )), where
μ = {1, 2, . . . , 8}, shown as functions of time (normalized number of
“moves”) in the gradient descent algorithm evolving from a random
unbiased initial partition. The assumed number of clusters is K = 8.
Blue horizontal lines correspond to the levels 1/8 and 2/8.

Sμ]γ (ν) of data in clusters μ (Fig. 10). However, as K is
increased, more and more attractors are not of the form 1[ν ∈
Sμ]γ (ν) (see Figs. 9, 11, 12, 13, and 15).

The predictions of the mean-field log-likelihood F (α)
for minc F̂N (c, X) are incorrect when K > L. The log-
likelihood F (α) is bounded from below by the average
entropy

∑L
ν=1 γ (ν)H (qν ), but in this regime the gap be-

tween this lower bound and minc F̂N (c, X) is widening as
we increase the number of assumed clusters K . This effect
can be clearly seen in Fig. 14. We also see in this fig-
ure that

∑L
ν=1 γ (ν)H (qν ) separates the low entropy states

obtained by gradient descent into two sets (Fig. 15). The
first set, which includes argmincF̂N (c, X), is given by3 {c :
F̂N (c, X) � ∑L

ν=1 γ (ν)H (qν )}, and the second set is given
by {c : F̂N (c, X) >

∑L
ν=1 γ (ν)H (qν )}. Since for K > L we

have F (α) >
∑L

ν=1 γ (ν)H (qν ), we expect that minα F (α)
gives correct predictions for at least some of the low entropy
states in the second set.

3The equality in this definition can only be true when K = L (see
Fig. 12).

FIG. 14. Histogram of the log-likelihood values obtained by
running the gradient descent algorithm from a 100 different ran-
dom unbiased partitions, with the assumed number K = 9 of clus-
ters. The blue filled circle corresponds to the MF lower bound∑L

ν=1 γ (ν )H (qν ) = 4.853905.

FIG. 15. Evolution of the log-likelihood, F̂N (t ) ≡ F̂N (c(t ), X),
and the fraction of data in cluster μ, α(μ|t ) ≡ α(μ|c(t )), where
μ = {1, 2, . . . , 9}, shown as functions of time (normalized number of
“moves”) in the gradient descent algorithm evolving from a random
unbiased initial partition. The assumed number of clusters is K = 9.
Blue horizontal lines correspond to the levels 1/8 and 2/8.

APPENDIX G: ESTIMATION
OF DIFFERENTIAL ENTROPY

In this section we compute the finite sample-size correc-
tions to the MF entropy (14). In order to do this we first note
that for a sample {x1, . . . , xN }, where each xi ∈ Rd is drawn
from the multivariate Gaussian distribution N (x|m,�), the
empirical covariance matrix �̂ = N−1 ∑N

i=1(xi − m̂)(xi −
m̂)T , where m̂ = 1

N

∑N
i=1 xi is the empirical mean, obeys

the following asymptotic law: [log |�̂| − log |�| − d(d +
1)/2N ]/

√
2d/N → N (0, 1) as N → ∞ (see Ref. [19] and

references therein). This is equivalent to stating log |�̂| →
log |�| + d(d + 1)/2N + z

√
2d/N , where z ∼ N (0, 1).

Let us assume that the above is true for the empirical
covariance matrices that feature in the log-likelihood (13) and
evaluate F̂N (c) for large N :

F̂N (c) =
K∑

μ=1

Mμ(c)

N

1

2
log

[
(2πe)d

∣∣�−1
μ (c)

∣∣]

=
K∑

μ=1

Mμ(c)

2N

{
log

[
(2πe)d

∣∣�−1
μ (α)

∣∣]

+ d(d + 1)

2Mμ(c)
+ zμ

√
2d

Mμ(c)

}

= F (α) +
K∑

μ=1

Mμ(c)

2N

{
d(d + 1)

2Mμ(c)
+ zμ

√
2d

Mμ(c)

}

= F (α) + Kd(d + 1)

4N
+

K∑
μ=1

zμ

√
d α(μ)

2N
. (G1)

The average and variance of the above random variable
are given by F (α) + Kd(d + 1)/4N and d/2N , respec-
tively. We expect the above result to be exact when F (α) =∑L

ν=1 γ (ν)H (qν ), which can only happen when K = L, and
all qν (x) are Gaussian distributions.
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