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Reaction-subdiffusion in moving fluids
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To capture the dynamic behaviors of reaction-subdiffusion in linear flow fields, in the present paper we
analyze a simple monomolecular conversion A → B. We derive the corresponding master equations for the
distribution of A and B particles in continuous time random walk schemes. The results are then used to obtain
the generalizations of the advection-diffusion reaction equation in which the diffusion and advection operators
both depend on the reaction rate.
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I. INTRODUCTION

Reactive transport in flows is an important issue of diffu-
sion theory that has a variety of applications in many topics,
such as the transport of contaminants in underground water
[1], nuclear waste storage [2], etc. The macroscopic descrip-
tion of reaction-diffusion in a velocity field is the standard
advection-diffusion reaction equation (ADRE) defined in one-
dimensional form as

∂C(x, t )

∂t
+ v

∂C(x, t )

∂x
= K

∂2C(x, t )

∂x2
+ f, (1)

where C(x, t ) is the probability density function (PDF) of the
particle, v is constant velocity, K is the diffusion coefficient,
and f denotes the decoupled reaction term.

In recent years the reaction under anomalous diffusion has
attracted more and more attentions [3]. One of the effective
ways to capture anomalous diffusion is the continuous time
random walk (CTRW) model [4–7]. By using the CTRW
scheme Sokolov et al. analyzed the reaction-subdiffusion pro-
cess for the monomolecular conversion A → B, derived the
corresponding kinetic equations for local A and B concentra-
tions and first argued that reaction-subdiffusion equations are
not obtained by a trivial change of the diffusion operator for
a subdiffusion one [3]. Such a nontrivial coupled effect was
also found in the multispecies system undergoing anomalous
subdiffusion with linear reaction dynamics [8] and some other
reaction-subdiffusion systems [9–12].

However, up to now few works have approached the re-
action under anomalous diffusion in nonhomogeneous flows
[13–15]. Without considering the effect of chemical reactions,
Compte [16] and Compte et al. [17] have discussed anomalous
diffusion in a nonhomogeneous convection velocity field by
applying the CTRW techniques in which the step length distri-
bution function depends on the starting point of the jump and
showed that the convection coefficient depends on the waiting
time statistics. The more basic and interesting problem of
how nonhomogeneous velocity fields might affect the reaction
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under anomalous diffusion is attempted here. It is what we
will address in this paper. In what follows we will consider
the reaction-subdiffusion process on a linear moving fluid for
the reaction A → B in the CTRW scheme then derive the
generalizations of advection-diffusion reaction equation and
show the interesting coupling relations between the velocity
field and the chemical reactions under subdiffusion.

II. REACTION-SUBDIFFUSION IN FLOWS

A. CTRW scheme for A particles and corresponding ADRE

We start by recalling the CTRW model on inhomogeneous
flows in the one-dimensional case [16,17]. In this model, the
jump length y for the moving particle is dragged along the
velocity v(x) and replaced by y − τav(x) where τa stands
for an advection timescale and τav(x) is the mean drag
experienced by a particle jumping from point x. Thus, the
particle jumps from x to x + y with the jump length PDF
λ[y − τav(x)] and then waits at x + y for time t drawn from
ψ (t ) after which the process is renewed.

We then consider the simplest reaction scheme A → B

in this CTRW model. We assume all properties of A and B

particles are the same, and the particles trapped in stagnant
regions will react with a relabeling of A into B taking place at
a rate α. Let A(x, t ) be the PDF of the A particle being in point
x at time t and and i−(x, t ) be the escape rate. By assuming
that, in the initial distribution all particles have zero resting
times, we can find the balance equation for the A particles in
a given point,

A(x, t ) = A0(x)�(t )e−αt +
∫ +∞

−∞
dx ′

∫ t

0
i−(x ′, t ′)

× λ[x − x ′ − τav(x ′)]�(t − t ′)e−α(t−t ′ )dt ′, (2)

where A0(x) is the initial state of the A particle, �(t )e−αt =
[1 − ∫ t

0 ψ (τ )dτ ]e−αt is the joint survival density of remaining
at least at time t on the spot (without being converted into B).
The density is a sum of outgoing particles from all other points
at different times given by the flow and provided they survived
after their arrival until time t . The first term on the right hand
side is the influence of the initial distribution.
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The above equation (2) can be changed to the form

A(x, t ) = A0(x)�(t )e−αt +
∫ +∞

−∞
dx ′

∫ t

0
i−(x ′, t ′)

×φ(x − x ′, t − t ′; x ′)e−α(t−t ′ )dt ′, (3)

by using the expression φ(r, τ ; x) = λ[r − τav(x)]�(τ ) [16].
Fourier transforming x → k and Laplace transforming t → u

of Eq. (3), we obtain

A(k, u) = A0(k)�(u + α)

+
∫

i−(k′, u)φ(k, u + α; k − k′)dk′. (4)

Here, A0(k) represents the Fourier x → k transform of
the initial condition A0(x), �(u + α) denotes the Laplace
transform of joint survival PDF �(t )e−αt , A(k, u), i−(k, u),
respectively, are the Fourier-Laplace transforms of
A(x, t ), i−(x, t ), and

φ(k, u + α; k − k′)

= �(u + α)λ(k)
∫

e−ikτav(x ′ )e−i(k−k′ )x ′
dx ′. (5)

To obtain the master equation with respect to A(x, t ), we will
give the other balance equation. Noting that the loss flux is
from those particles that were originally at x at t = 0 and wait
without reacting until time t to leave and those particles that
arrived at an earlier time t ′ and wait without reacting until time
t to leave, we have the second balance equation,

i−(x, t ) = A0(x)ψ (t )e−αt +
∫ +∞

−∞
dx ′

∫ t

0
i−(x ′, t ′)

× λ[x − x ′ − τav(x ′)]ψ (t − t ′)e−α(t−t ′ )dt ′, (6)

where ψ (t )e−αt is the nonproper waiting time density for the
actually made new step provided the particle survived [3]. By
introducing

η(r, τ ; x) = λ[r − τav(x)]ψ (τ ),

and applying the transform (x, t ) → (k, u) of Eq. (6), we find

i−(k, u) = A0(k)ψ (u + α)

+
∫

i−(k′, u)η(k, u + α; k − k′)dk′, (7)

where the term,

η(k, u + α; k − k′)

= ψ (u + α)λ(k)
∫

e−ikτav(x ′ )e−i(k−k′ )x ′
dx ′.

We divide Eq. (4) by (7) to write

i−(k, u) = ψ (u + α)

�(u + α)
A(k, u). (8)

Noting that �(u + α) = 1−ψ (u+α)
u+α

, we get

i−(k, u) = �α (u)A(k, u), (9)

where �α (u) = (u+α)ψ (u+α)
1−ψ (u+α) , which recovers the relation be-

tween A(x, t ) and i−(x, t ) when the effect of the flow field is

not considered in Ref. [3]. Inverting Eq. (9) to the space-time
domain k → x, s → t , we obtain

i−(x, t ) =
∫ t

0
�α (t − t ′)A(x, t ′)dt ′. (10)

Here, the kernel �α (t ) is equal in Laplace t → u space to
�α (u). When α = 0, it reduces to the usual memory kernel of
the master equation for the CTRW [3,18,19].

We now consider a linear velocity field v(x) = ωx where
ω is a constant. Then Eq. (4) becomes

A(k, u) = �(u + α)A0(k) + �(u + α)λ(k)i−(k + vk, u),

(11)

where the symbol vk = τaωk. In the limit τa → 0, Eq. (11)
gives

A(k, u) � �(u + α)A0(k) + �(u + α)λ(k)

× [i−(k, u) + vki
−′

k (k, u)]. (12)

Here, i−′
k (k, u) denotes the first partial derivative of i−(k, u)

with respect to k. We substitute (9) into (12) and get

A(k, u) = �(u + α)A0(k) + ψ (u + α)λ(k)

× [A(k, u) + vkA
′
k (k, u)], (13)

where A′
k (k, u) is the first derivative of A(k, u) for the

variable k. This simplifies further to the generalized master
equation in Fourier-Laplace space for the A particles in an
A → B reaction under subdiffusion on a linear moving fluid,

[1 − ψ (u + α)λ(k)]A(k, u)

= �(u + α)A0(k) + ψ (u + α)λ(k)vkA
′
k (k, u). (14)

Note that if the reaction is not involved in the system and
the initial condition is defined as A0(x) = δ(x), then Eq. (14)
recovers the master equation,

[1 − ψ (u)λ(k)]A(k, u) = vkψ (u)λ(k)A′
k (k, u) + �(u)

(15)

for the CTRW on linear moving fluids in a one-dimensional
lattice obtained by Compte in Ref. [16].

There is another way to obtain the generalized master
equation (15) where the balance condition (3) is replaced by
[3]

∂A(x, t )

∂t
= i+(x, t ) − i−(x, t ) − αA(x, t ), (16)

where the losses include two parts: i−(x, t ) due to the par-
ticles’ departure from the site (loss flux) and αA(x, t ) due
to the conversion, and i+(x, t ) is the gain flux which can be
represented by the loss flux [19],

i+(x, t ) =
∫ +∞

−∞
i−(x ′, t )λ[x − x ′ − τav(x ′)]dx ′. (17)

Transforming (x, t ) → (k, u) of (16), one has

uA(k, u) − A0(k) =
∫

i−(k′, u)η(k, u + α; k − k′)dk′

ψ (u + α)

− i−(k, u) − αA(k, u). (18)
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By using (7) and (18), we can also obtain the relation equation
(9). Substitute Eq. (9) into Eq. (18) and assume v(x) = ωx in
the limit τa → 0, and we find

uA(k, u) − A0(k) � [λ(k) − 1]�α (u)A(k, u) + λ(k)vk

×�α (u)A′
k (k, u) − αA(k, u). (19)

Using �α (u) = (u+α)ψ (u+α)
1−ψ (u+α) and �(u + α) = 1−ψ (u+α)

u+α
, one

finally recovers the generalized master equation (14). This
means that the two approaches to derive the generalized
master equation for A particles in the reaction-subdiffusion
process on moving fluids are equivalent. In what follows we
will not distinguish them for A particles.

Inverting Eq. (19) to the space-time domain, we can obtain
the master equation in the space-time domain,

∂A(x, t )

∂t
+ τa

∫ +∞

−∞
dx ′

∫ t

0
�α (t − t ′)λ(x − x ′)

× ∂v(x ′)A(x ′, t ′)
∂x ′ dt ′

=
∫ +∞

−∞
dx ′

∫ t

0
�α (t − t ′)[λ(x − x ′) − δ(x − x ′)]

×A(x ′, t ′)dt ′ − αA(x, t ), (20)

where the reaction rate explicitly affects both the diffusion
term,∫ +∞

−∞
dx ′

∫ t

0
�α (t − t ′)[λ(x − x ′) − δ(x − x ′)]A(x ′, t ′)dt ′,

and the advection term,

τa

∫ +∞

−∞
dx ′

∫ t

0
�α (t − t ′)λ(x − x ′)

∂v(x ′)A(x ′, t ′)
∂x ′ dt ′.

Specifically, we consider a discrete random walk where the
PDF of particles A on site x = i at time t is denoted as A(i, t ),
and the jump PDF is assumed to be λ(−1) = 1

2 , λ(1) = 1
2 ,

meaning that the particle can jump from x = i to the adjacent
grid point to the right and left directions with the same
probability. If v(x) = 0, then Eq. (20) reduces to

∂A(i, t )

∂t
=

∫ t

0
�α (t − t ′)

[
1

2
A(i − 1, t ) + 1

2
A(i + 1, t )

−A(i, t )

]
dt ′ − αA(i, t ) (21)

obtained by Sokolov et al. in Ref. [3].
We now turn to apply the master equation (19) to derive an

ADRE for Gaussian jump length λ(k) ∼ 1 − σ 2k2

2 and long-
tailed waiting time ψ (u) ∼ 1 − �(1 − β )(τu)β with σ 2 being
the jump length variance and 0 < β < 1 and τ , respectively,
being the anomalous exponent and the appropriate timescale.
Assuming A0(x) = δ(x), substituting �α (u) = 1

τβ�(1−β ) (u +
α)1−β [3] into the master equation (19) in the limit of τ →
0, σ → 0, and τa → 0, we obtain

uA(k, u) − 1 � −Kβk2(u + α)1−βA(k, u)

+Cβ (u+α)1−βωkA′
k (k, u)−αA(k, u),

(22)

where the generalized diffusion coefficient Kβ =
limτ→0, σ→0

σ 2

2τβ�(1−β ) and advection coefficient Cβ =
limτa→0, τ→0

τa

τβ�(1−β ) are kept finite. Inverting Eq. (22) to
the space-time domain k → x and s → t , using the fact that
F[xf (x)] = i ∂

∂k
f (k), we then get the generalized ADRE for

the A particle in the reaction-subdiffusion process on linear
flows,

∂A(x, t )

∂t
+ Cβe−αt

0D
1−β
t

[
eαt ∂[v(x)A(x, t )]

∂x

]

= Kβe−αt
0D

1−β
t

[
eαt ∂

2A(x, t )

∂x2

]
− αA(x, t ), (23)

with the initial condition A0(x) = δ(x). Here, the diffusion
and advection operator [8,20],

e−αt
0D

1−β
t [eαtf (t )] = 1

�(β )

(
d

dt

∫ t

0

e−α(t−t ′ )

(t − t ′)1−β
f (t ′)dt ′

+α

∫ t

0

e−α(t−t ′ )

(t − t ′)1−β
f (t ′)dt ′

)
(24)

is reaction dependent, equal in Laplace t → u space to (u +
α)1−βf (u), and when α = 0 it becomes 0D

1−β
t f (t ) which

is the Riemann-Liouville fractional derivative operator [4,21].
Note that for a nonreactive system, Eq. (23) reduces to the
classical fractional diffusion-advection equation [16,22]. Note
also that, in the absence of an advection velocity field, i.e.,
v(x) = 0, we can recover the coupled fractional reaction-
diffusion equation for species A with a two-species irre-
versible linear reaction under subdiffusion derived in Ref. [8].

In particular, in the presence of a constant drag velocity
field, i.e., v(x) = v∗

Cβ
, Eq. (23) becomes

∂A(x, t )

∂t
+ v∗e−αt

0D
1−β
t

[
eαt ∂A(x, t )

∂x

]

= Kβe−αt
0D

1−β
t

[
eαt ∂

2A(x, t )

∂x2

]
− αA(x, t ) (25)

with the initial condition A0(x) = δ(x). Fourier transforming
x → k and Laplace transforming t → u of Eq. (25) yields

A(k, u) = 1

u + α + Kβk2(u + α)1−β + v∗ik(u + α)1−β
.

(26)

By using Eq. (26), the relation [23],

〈xn〉(u) = in lim
k→0

∂nA(k, u)

∂kn
, (27)

and the Laplace inversion, one obtains the moments of
reaction-subdiffusion process for the A particles in Galilei
variant velocity flows,

〈x〉(t ) = v∗tβe−αt

�(1 + β )
, (28)

〈(�x)2〉(t ) = 2Kβtβe−αt

�(1 + β )
+ (v∗)2t2β

× 2e−αt�2(1 + β ) − e−2αt�(1 + 2β )

�(1 + 2β )�2(1 + β )
. (29)

042132-3



H. ZHANG AND G. H. LI PHYSICAL REVIEW E 98, 042132 (2018)

Consequently, the first moment contains a sublinear growth
due to subdiffusion and an exponential decay depending on
the reaction rate with time, and the drag along the velocity
field v∗. The first term of the mean squared displacement
provides the reaction-subdiffusion process in the absence of
velocity fields, and the second one describes the coupling
between the reaction under subdiffusion and the drag velocity.
When α = 0, the above results (28) and (29) reduce to

〈x〉(t ) = v∗tβ

�(1 + β )
, (30)

〈(�x)2〉(t ) = 2Kβtβ

�(1 + β )
+ (v∗)2t2β

×2�2(1 + β ) − �(1 + 2β )

�(1 + 2β )�2(1 + β )
, (31)

which are in agreement with the behaviors for the Galilei
variant fractional diffusion-advection process in Ref. [22].
Note that Eqs. (30) and (31) are also the asymptotic forms
of Eqs. (28) and (29) for short times when the effects of the
reaction are too small to negligible.

We now make the substitution,

A(x, t ) = e−αtWβ (x, t ), (32)
with A and Wβ having the same initial condition. From
Eq. (26) we find Wβ (x, t ) is the inverse Fourier and Laplace
transforms of expression,

Wβ (k, u) = 1

u + Kβk2u1−β + v∗iku1−β
. (33)

This propagator is led to the Galilei variant fractional
diffusion-advection equation [4,22],

∂Wβ (x, t )

∂t
= 0D

1−β
t

(
−v∗ ∂

∂x
+ Kβ

∂2

∂x2

)
Wβ (x, t ), (34)

whose normalized solution Wβ (x, t ) can be expressed by the

Brownian solution W1(x, t ) = 1√
4πt

exp (− (x−t )2

4t
) through an

integral relation,

Wβ (x, t ) =
∫ +∞

0
F (s, t )W1(x, s)ds (35)

for v,K ≡ 1, where the kernel F (s, t ) is represented in terms
of a Fox function,

F (s, t ) = 1

sβ
H

1,0
1,1

[
s1/β

t

∣∣∣∣
(1,1)

(1,1/β )

]
, (36)

which reduces to F (s, t ) = (πt )−0.5e−s2/(4t ) for β = 0.5.
Thus, the normalized solution of the generalized ADRE (23)
for the A particle in the reaction-subdiffusion process in the
Galilei variant moving flows is

A(x, t ) = e−αt

∫ +∞

0
F (s, t )W1(x, s)ds, (37)

which features a reactive effect e−αt . In Figs. 1 and 2 A(x, t )
and Wβ (x, t ) are shown at various times in the case α = 0.15.
It should be noted that the solution A(x, t ) is asymmetric
with respect to the maximum which stays fixed at the origin
because of the effect of the convection velocity, and it decays
with time to zero more rapidly than Wβ (x, t ).

�2 2 4 6 8
x

0.1

0.2

0.3

0.4

0.5

A

FIG. 1. The time evolution of the PDF for the A particle in the
reaction-subdiffusion process in flows with reaction rate α = 0.15
and anomalous diffusion exponent β = 0.5. The solution is shown
for the dimensionless times t = 0.2 (solid line), 1 (dashed line),
and 2 (dotted line). It is asymmetric with respect to the Y axis,
and the plume stretches more and more into the direction of the
convection velocity. Moreover, the decay with time is faster than that
in nonreactive process in Fig. 2 because of the negative exponential
decay accounting for the effect of the A → B reaction.

B. CTRW scheme for B particles and corresponding ADRE

Analogously we will now derive the generalized master
equation for the B particles. Let B(x, t ) be the PDF of the
B particle being in point x at time t, j+(x, t ) be the gain
flux, and j−(x, t ) be the loss flux of particles B at site x at t .
Noting that the B particle that is at (or leaves) site x at time t

either has come there as a B particle at some prior time or was
converted from an A particle that either was on site x from the
very beginning or arrived there later at t ′ > 0 and still keeps at
(or just leaves) site x at time t , we give the following balance

�2 2 4 6 8
x

0.1

0.2

0.3

0.4

0.5

Wβ

FIG. 2. The evolution of the PDF for the particle in the nonreac-
tive Galilei variant subdiffusive model with reaction rate α = 0 and
mean flight time β = 0.5. The solution is shown for the dimension-
less times t = 0.2 (solid line), 1 (dashed line), and 2 (dotted line).
The propagator is asymmetric with respect to the maximum which
stays fixed at the origin since the anomalous particle is dragged along
with the drift velocity [4,22].
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equations:

B(x, t ) =
∫ +∞

−∞
dx ′

∫ t

0
j−(x ′, t ′)φ(x − x ′, t − t ′; x ′)dt ′

+
∫ +∞

−∞
dx ′

∫ t

0
i−(x ′, t ′)φ(x − x ′, t − t ′; x ′)

× (1 − e−α(t−t ′ ) )dt ′ + A0(x)�(t )(1 − e−αt ), (38)

and

j−(x, t ) =
∫ +∞

−∞
dx ′

∫ t

0
j−(x ′, t ′)η(x − x ′, t − t ′; x ′)dt ′

+
∫ +∞

−∞
dx ′

∫ t

0
i−(x ′, t ′)η(x − x ′, t − t ′; x ′)

× (1 − e−α(t−t ′ ) )dt ′ + A0(x)ψ (t )(1 − e−αt ),

(39)

where the initial condition B(x, t ) = 0 was used. Laplace
x → k and Fourier t → u transforming of the two equations
(25) and (26) yields

B(k, u) =
∫

j−(k′, u)φ(k, u; k − k′)dk′

+
∫

i−(k′, u)[φ(k, u; k − k′)

−φ(k, u + α; k − k′)]dk′

+ [�(u) − �(u + α)]A0(k), (40)

and

j−(k, u) =
∫

j−(k′, u)η(k, u; k − k′)dk′

+
∫

i−(k′, u)[η(k, u; k − k′)

− η(k, u + α; k − k′)]dk′

+ [ψ (u) − ψ (u + α)]A0(k). (41)

In the above expressions B(k, u) and j−(k, u) represent the
Fourier-Laplace transforms of B(x, t ) and j−(x, t ), respec-
tively. Comparing (4), (7), (40), and (41), one has

A(k, u) + B(k, u)

�(u)
= i−(k, u) + j−(k, u)

ψ (u)
, (42)

which can be changed to the form

j−(k, u) = �0(u)B(k, u) + [�0(u) − �α (u)]A(k, u). (43)

When v(x) = 0 it is consistent with the result obtained in
Ref. [3].

If Eq. (38) is replaced by the balance equation,

∂B(x, t )

∂t
=

∫ +∞

−∞
j−(x ′, t )λ[x − x ′ − τav(x ′)]dx ′

− j−(x, t ) + αA(x, t ), (44)

we can also find Eq. (43) by using (7), (18), and (41), the
transform (x, t ) → (k, u) of Eq. (44),

B(k, u) =
∫

j−(k′, u)η(k, u + α; k − k′)dk′

ψ (u + α)

− j−(k, u) + αA(k, u), (45)

and the relation �(u) = 1−ψ (u)
u

. It means that the two ways us-
ing different balance conditions for B particles are equivalent,
too.

In linear flow v(x) = ωx Eq. (45) can be written in the
form

B(k, u) � λ(k)j−(k + vk, u) − j−(k, u) + αA(k, u) (46)

for small τa . Substitution of (43) into Eq. (46) gives the master
equation for the PDF of the B particle in Fourier-Laplace
space,

uB(k, u) = λ(k)vkB
′
k (k, u)�0(u) + λ(k)vkA

′
k (k, u)

× [�0(u) − �α (u)] + [λ(k) − 1]B(k, u)�0(u)

+ [λ(k)−1]A(k, u)[�0(u) − �α (u)] + αA(k, u),

(47)

where B ′
k (k, u) is the partial derivative of B(k, u) with re-

spect to the variable k. Inverting the above equation to the
space-time domain, we obtain the master equation in the
space-time domain,

∂B(x, t )

∂t
+ τa

∫ +∞

−∞
dx ′

∫ t

0
�0(t − t ′)λ(x − x ′)

∂v(x ′)B(x ′, t ′)
∂x ′ dt ′

+ τa

∫ +∞

−∞
dx ′

∫ t

0
[�0(t − t ′) − �α (t − t ′)]λ(x − x ′)

∂v(x ′)A(x ′, t ′)
∂x ′ dt ′

=
∫ +∞

−∞
dx ′

∫ t

0
[�0(t − t ′) − �α (t − t ′)][λ(x − x ′) − δ(x − x ′)]A(x ′, t ′)dt ′

+
∫ +∞

−∞
dx ′

∫ t

0
�0(t − t ′)[λ(x − x ′) − δ(x − x ′)]B(x ′, t ′)dt ′ + αA(x, t ). (48)
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Note that, in the master equation (48), the first and second
terms on the right hand side which depend on the reaction rate
α compose the diffusion part and the terms,

τa

∫ +∞

−∞
dx ′

∫ t

0
�0(t − t ′)λ(x − x ′)

∂v(x ′)B(x ′, t ′)
∂x ′ dt ′,

and

τa

∫ +∞

−∞
dx ′

∫ t

0
[�0(t − t ′) − �α (t − t ′)]λ(x − x ′)

× ∂v(x ′)A(x ′, t ′)
∂x ′ dt ′,

on the left hand side of the equation represent the effects
of the advection velocity fields. For a discrete random walk
with v(x) = 0, the jump PDF satisfies λ(−1) = 1

2 , λ(1) =
1
2 , and in the continuum limit, Eq. (48) reduces to the re-
sult in Ref. [3]. If we substitute the Gaussian jump length
λ(k) ∼ 1 − σ 2k2

2 and power law waiting time PDF ψ (u) ∼
1 − �(1 − β )(τu)β into the master equation (47) and invert
k → x, u → t , in the limit of small τa, τ , and σ , we then
find the generalized ADRE for the B particle in the reaction
A → B under subdiffusion in the linear velocity field,

∂B(x, t )

∂t
+ Cβ 0D

1−β
t

∂[v(x)B(x, t )]

∂x

+Cβ

[
0D

1−β
t − e−αt

0D
1−β
t (eαt )

]∂[v(x)A(x, t )]

∂x

� Kβ 0D
1−β
t

∂2B(x, t )

∂x2
+ αA(x, t )

+Kβ

[
0D

1−β
t − e−αt

0D
1−β
t (eαt )

]∂2A(x, t )

∂x2
. (49)

It should be noted that in (49) both advection and diffusion
terms couple with the reaction since in these two terms the
parameter of the reaction explicitly enters the diffusion and
advection operators but also that there are the fractional kinet-
ics memories at previous times for the A particle. Note also
that Eq. (49) can reduce to the fractional reaction-diffusion
equation for species B for the subdiffusive system with linear
reaction A → B [8] when v(x) = 0. For a constant velocity
v(x) = v∗

Cβ
, Eq. (49) becomes

∂B(x, t )

∂t
+ v∗

0D
1−β
t

∂B(x, t )

∂x

+ v∗[
0D

1−β
t − e−αt

0D
1−β
t (eαt )

]∂A(x, t )

∂x

� Kβ 0D
1−β
t

∂2B(x, t )

∂x2
+ αA(x, t )

+Kβ

[
0D

1−β
t − e−αt

0D
1−β
t (eαt )

]∂2A(x, t )

∂x2
(50)

with the initial conditions A0(x) = δ(x) and B0(x) = 0. By
transforming (x, t ) → (k, u) of (50), using Eqs. (26), (27),
and the Laplace inversion, we find the first two moments
for the reaction-subdiffusion process of B particles in Galilei

variant velocity flows,

〈x〉(t ) = v∗tβ

�(1 + β )
(1 − e−αt ), (51)

〈(�x)2〉(t )

= 2Kβtβ

�(1 + β )
(1 − e−αt ) + (v∗)2t2β

× 2�2(1 + β )(1 − e−αt ) − �(1 + 2β )(1 − e−2αt )2

�(1 + 2β )�2(1 + β )
.

(52)

These results show the complex coupling relations between
velocity field and chemical reaction under subdiffusion carry
over to the moments for the B particle. It should be noted that
the moments of the process shown in (51) and (52) contain
the term 1 − e−αt which reflects the effect on the evolution
for the B particle of the reaction A → B and differs from e−αt

including in the moments for the A particle. This interesting
behavior is also found in the evolution of the PDF for the B

particles as shown below. Combining (25) with (50), one has

∂[A(x, t ) + B(x, t )]

∂t

= 0D
1−β
t

[
−v∗ ∂

∂x
+ Kβ

∂2

∂x2

]
[A(x, t ) + B(x, t )],

(53)

which is equivalent to Eq. (34) for subdiffusion in a nonre-
active liquid, this is expected since the simple reaction we
discuss here does not change the amount of all particles in
the system. We then find A(x, t ) + B(x, t ) = Wβ (x, t ) from
which one can easily calculate the evolution of the PDF for
the B particle,

B(x, t ) = (1 − e−αt )
∫ +∞

0
F (s, t )W1(x, s)ds, (54)

�2 2 4 6 8
x

0.02

0.04

0.06

B

FIG. 3. The evolution of the PDF for the B particle in the
reaction-subdiffusion process in flows with reaction rate α = 0.15
and anomalous exponent β = 0.5. The solution is shown for the
dimensionless times t = 0.2 (solid line), 1 (dashed line), and 2
(dotted line). The moving flows also result in the asymmetry of the
solution for created particles with respect to the Y axis. The growth
over time compares with the decay with time for A(x, t ) in Fig. 1.
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which has the reactive characteristic 1 − e−αt . As shown in
Fig. 3, this asymmetric solution grows with time, exactly
opposite to A(x, t ).

III. CONCLUSIONS

To sum up we derive the master equations (20) and (48) for
the PDF of the A and B particles in a simple monomolecular
conversion reaction A → B taking place at a constant rate
α and under subdiffusion in linear flows. As examples, two
generalized advection-diffusion reaction equations (23) and
(49) are obtained, the first two moments and the solutions in

Galilei variant constant velocity flows are also worked out,
and the interesting couple relations among diffusion, advec-
tion, and reaction process are shown. There are problems, such
as the dynamic behaviors for a more complex reaction under
subdiffusion in moving fluids are still unknown.
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