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Evidence for a first-order phase transition at the divergence region of activity expansions
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In the example of a lattice gas with “hole-particle” symmetry, a convincing confirmation is obtained for the
direct relationship between the condensation phenomenon and the divergent behavior of the virial expansions
for pressure and density in powers of activity. For such lattice-gas models of arbitrary geometry and dimensions,
a general analytical expression is derived for the phase-transition activity (the convergence radius of activity
expansions) that, in particular, exactly matches the well-known phase-transition activity of the Lee-Yang model.
The study proves analytically the strict equality of pressure for the low-density and high-density virial expansions
in powers of density (in terms of irreducible cluster integrals or virial coefficients) exactly at the symmetrical
points, where their isothermal bulk modulus vanishes, as well as for the corresponding expansions in powers
of activity (in terms of reducible cluster integrals) at the same points (the points of their divergence). It is also
shown that Mayer’s expansion with the constant (volume-independent) cluster integrals remains correct up to
the condensation beginning, and the actual density dependence must be taken into account for the high-order
integrals only in more dense regimes beyond the saturation point.
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I. INTRODUCTION

Since the 19th century, there have been many attempts
to construct a strict and general theory for the gas-liquid
phase transition on the basis of the Gibbs statistics [1,2],
however the real success has been achieved only for two
extremely specific statistical models: the mean-field approx-
imation of intermolecular interactions (the van der Waals–
Maxwell equation of state [3,4]) and the two-dimensional
lattice gas with the square-well potential (its condensation
parameters were established by Lee and Yang [5] on the basis
of Onsager’s solution of the Ising problem [6]). Unfortunately,
more general approaches have failed in high-density regimes
of fluids and, especially, at the phase-transition region [1]: The
solution of the Ornstein-Zernike equation [7] vanishes in the
transition regimes [8], and various expansions for the partition
function (or its logarithm) in powers of a small parameter
[1] also have singularities in dense states. For example, the
divergent behavior of the well-known virial expansions in
powers of activity or density [1,2,9] remains an actual prob-
lem of statistical mechanics, mathematical physics, physical
chemistry, etc. The situation was well described by the authors
of the one-dimensional van der Waals–Maxwell equation:
“Many attempts, thus far unsuccessful, have been made to
construct a rigorous theory of condensation phenomena from
such expansions. In fact, we believe that such a construction
is very difficult, if not impossible...” [3].

Recent studies of Mayer’s cluster expansion [9] for the
partition function of realistic interaction models (i.e., the
models that include intermolecular attraction as well as repul-
sion: the Lennard-Jones model [10,11] and its modifications
[12,13], square-well [14], Morse [15], Yukawa [16] potentials,
etc.) have renewed interest in the problem. In particular, an
exact generating function for Mayer’s expansion in terms of
irreducible cluster integrals (virial coefficients) [17,18] has
allowed us to derive the equation of state (UEOS) beyond the
adequacy region of the conventional virial expansions [17].
This equation yields the constancy of pressure at any density
beyond the point ρG, where the isothermal bulk modulus of
the virial expansion in powers of density (virial equation of
state, or VEOS) vanishes [19,20], which, in turn, may indicate
the beginning of the condensation process at the vicinity
of this point. Consequent studies of Mayer’s expansion in
terms of reducible cluster integrals [21–23] (the equation of
state in the parametrical form of expansions for pressure and
density in powers of activity, AVEOS) have demonstrated
its divergence exactly at the same point ρG, but the actual
character of this divergence [21–24] agrees with the behav-
ior of Mayer’s expansion in terms of irreducible integrals
(where the activity dependence is excluded) and corresponds
to the known thermodynamic signs of the first-order phase
transition.

On the other hand, all of the above-mentioned approaches
to Mayer’s cluster expansion involve serious mathematical
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and technical limitations that make their results question-
able. Despite the rapid development of modern computa-
tional techniques [25–27], in practice the studied equations
always include finite (or roughly approximated [28–30]) sets
of cluster integrals (reducible as well as irreducible) that
makes an adequate comparison with the experimental data
almost impossible. Moreover, the numerical studies of any
infinite series cannot be considered as mathematically correct,
especially in its divergence region. For a long time, the density
ρG, where the VEOS isothermal bulk modulus vanishes,
used to be considered as a spinodal point (the boundary
between metastable and absolutely instable states), because
the isotherms of the VEOS, which includes only three to five
power terms, have an interval similar to the famous van der
Waals loop (the Maxwell construction is still widely used
for all theoretical as well as empirical equations despite the
fact that it has rigorously been proved only for a specific
kind of the mean-field approximation [3,4]). Although the
observed behavior of the VEOS with the higher-orders terms
completely differs from that of the van der Waals equation,
the destruction of such long-standing stereotypes remains a
difficult problem that needs strict and persuasive arguments.

In the example of a special statistical lattice-gas model,
the present paper provides such a needed simple and obvious
confirmation for the above-mentioned results of recent studies
(studies of Mayer’s cluster expansion in terms of reducible as
well as irreducible cluster integrals) concerning the physical
meaning of the ρG point, the actual character of the AVEOS
singularity, and other related disputable questions. Section II
presents a general expression for the phase-transition ac-
tivity (which is exactly the convergence radius of activity
expansions for pressure and density) for various lattice gases
with the “hole-particle” symmetry. In Sec. III, the symme-
try of the corresponding density expansions for pressure
(the virial equation of state and the equation in powers of the
“hole number density”) is considered that finally proves the
interpretation of the ρG density as a saturation point (and the
symmetrical ρL density as a boiling point). The generality
of the results as to the other statistical models of matter is
discussed in Sec. IV, and the last section is devoted to the key
conclusions of the work.

II. PHASE-TRANSITION ACTIVITY OF LATTICE GASES

For any classical system of interacting particles (includ-
ing the lattice-gas model and even certain quantum systems
[2,31,32]), Mayer’s cluster expansion [9] represents the log-
arithm of the grand partition function (the pressure, P ) and
its derivative with respect to the chemical potential, μ (the
particle number density, ρ = N/V ) as the following series
(AVEOS):

P
kBT

=
∞∑

n=1
bnz

n

ρ =
∞∑

n=1
nbnz

n

⎫⎪⎪⎬
⎪⎪⎭, (1)

in terms of reducible cluster integrals {bn} and powers of
activity z = λ−3 exp (μ/kBT ) (λ = h/

√
2πmkBT is the de

Broglie wavelength).

Exclusively for the lattice-gas models with “hole-particle”
symmetry [33] (where the repulsive hard core of a particle is
identical to a lattice cell, and finite attraction may have any
form on longer distances), there are expansions for pressure
and density (SAVEOS) [34],

P
kBT

= ρ0

(
u0

kBT
+ ln ρ0

η

)
+ ∑

n�1
bnη

n

ρ = ρ0 − ∑
n�1

nbnη
n

⎫⎪⎬
⎪⎭, (2)

in powers of the reciprocal activity,

η = ρ2
0

z
exp

(
2u0

kBT

)
. (3)

In Eqs. (2) and (3), ρ0 and u0 are parameters of the lattice-
gas model: the close-packing density and potential energy
per particle in the close-packing state, respectively. It should
additionally be noted that the set of reducible integrals, {bn},
in Eq. (2) is absolutely the same as that in Eq. (1).

The derivation of SAVEOS (2) based on Mayer’s expan-
sion for the partition function of “holes” instead of parti-
cles has been presented in a relatively recent paper [22],
though some simple but very important aspects of such “hole-
particle” symmetry have unfortunately escaped the attention
of its authors.

Indeed, the obvious similarity of the series in powers of z

and η in AVEOS (1) and SAVEOS (2) automatically means
there is a similarity of possible singularities for these series. If
the series can diverge at some large enough z (or η), the corre-
sponding convergence radii (say zG and ηL, respectively) must
be equivalent for AVEOS (1) and SAVEOS (2). With regard to
Eq. (3), such equivalence directly yields the following simple
expression for those convergence radii:

zG ≡ ηL = ρ0 exp

(
u0

kBT

)
. (4)

Recent numerical studies of the AVEOS for various statis-
tical models of matter [22,23] as well as a similar study of
both the AVEOS and SAVEOS for the lattice-gas model [21]
have indicated the first-order phase transition exactly in the
divergence region of these equations at some low (subcritical)
temperatures: At a certain activity zG (i.e., a constant chemical
potential), the AVEOS (1) yields a discontinuity of density
(i.e., a real divergence of activity series for density beyond
the special ρG density, which is explicitly related to zG; see
the next section) while the pressure stays finite and constant.
Similarly, the SAVEOS (2) yields a discontinuity of density
(beneath the special ρL density) at some reciprocal activity,
ηL = zG, and constant finite pressure [21].

Unfortunately, at the moment, such behavior has numer-
ically be confirmed only on a qualitative level: Inaccuracy
of the known cluster integrals (in today’s practice, the high-
order reducible integrals can approximately be evaluated by
using the very limited information on the finite number of
irreducible integrals or virial coefficients for a certain statisti-
cal model) still results in essential quantitative discrepancies
between the theory and experiments (or simulations). For
instance, the values of constant (phase-transition) pressure
significantly differ for the AVEOS and SAVEOS when the
reducible integrals, {bn}, are calculated only on the basis
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FIG. 1. Typical (schematic) subcritical isotherm of a lattice gas
(in the ρ-z plane) that must theoretically be produced by the AVEOS
(on the left of the ρG point) and SAVEOS (on the right of the ρL

point) with complete and accurate sets of cluster integrals.

of several irreducible integrals that are actually known in
practice [21].

However, the “hole-particle” symmetry analytically con-
firms the strict equality of the phase-transition pressure in
AVEOS (1) and SAVEOS (2) without any numerical evalu-
ation of the actual set of reducible integrals. It is obvious that
the difference between the reduced pressure (P/kBT ) values
in Eqs. (2) and (1),

ρ0

(
u0

kBT
+ ln

ρ0

η

)
+

∑
n�1

bnη
n −

∑
n�1

bnz
n,

strictly vanishes when z = η [and, therefore, both these quan-
tities are defined by Eq. (4)]. Additionally, the sum of densities
in Eqs. (1) and (2) always yields the close-packing density, ρ0,
at the same condition (z = η).

At supercritical temperatures [when both AVEOS (1) and
SAVEOS (2) are always convergent], the activity, zG, from
Eq. (4) simply defines the density, ρ0/2, where the pressure
value in Eq. (1) coincides with that in Eq. (2).

At subcritical temperatures, there are two distinct densi-
ties, ρG and ρL [the divergence points of AVEOS (1) and
SAVEOS (2), respectively] for one value of chemical potential
[activity zG defined by Eq. (4), see Fig. 1] at one value of
pressure in Eqs. (1) and (2). Therefore, the zG from Eq. (4)
cannot now be interpreted other than the phase-transition
activity (only the first-order phase transition yields a density
jump at constant pressure and chemical potential).

It should also be noted that the quantity zG from Eq. (4)
exactly matches the phase-transition fugacity,

yG = zG

ρ0
= exp

(
− 4ε

kBT

)
,

of the well-known Lee-Yang solution [5] (in their two-
dimensional square-lattice model, each particle interacts only
with its four nearest neighbors, and, at the close-packing state,
the interaction energy per particle, u0, is −4ε when the depth
of the potential well is 2ε).

The presented interpretation of the zG point also agrees
with other analytical [35] and numerical [36] studies of the
lattice-gas model as well as the Ising problem. For example,
in the Langer droplet model of a lattice gas [35], the diver-
gence activity of the cluster expansion is also considered as a
condensation point of the system.

On the other hand, the definition of zG in Eq. (4) is more
general and must be valid for lattice-gas models of arbitrary
geometry and dimensions with various (even anisotropic)
interaction potentials: The geometry of the model as well as
the shape of the potential are simply enclosed in the u0 and
ρ0 parameters. The sole restriction on Eq. (4) is the “hole-
particle” symmetry of the model: The interaction potential
must have a hard core identical to a single lattice cell.

III. PHASE TRANSITION IN TERMS OF IRREDUCIBLE
INTEGRALS

To exclude the activity dependence, AVEOS (1) is of-
ten transformed to the well-known virial equation of state
(VEOS) [9] as the following density series for pressure:

P

kBT
= ρ

(
1 −

∑
k�1

k

k + 1
βkρ

k

)
, (5)

in terms of irreducible cluster integrals, {βk} (or virial coeffi-
cients, Bk+1 = − k

k+1βk).
In fact, the interchangeability between the VEOS and

AVEOS still remains somewhat unclear in various stud-
ies. It is conventionally believed that VEOS (5) fares well
for repulsive interaction potentials or supercritical tempera-
tures (when repulsion prevails over attraction) in comparison
with the activity expansions [AVEOS (1)], but the range
of its convergence is relatively poor for attractive potentials
or subcritical temperatures (when attraction prevails over
repulsion) [37].

The situation looks clearer within the framework of
Mayer’s diagram approach [9]. Any reducible integral of
the nth order, bn, corresponds to all possible “connected”
diagrams for n particles (a cluster) and can be constructed
of smaller “biconnected” (rigid) diagrams, i.e., reduced to
the sum of products of irreducible integrals, {βk}, where
k < n (the complex relationship between the reducible and
irreducible cluster integrals is described in detail in [9,38]).
Therefore, the VEOS with a certain set of irreducible inte-
grals, {βk} (this set may even be finite—say all irreducible
integrals of orders higher than a certain kmax are supposed
to vanish due to the possibility of neglect or just the inabil-
ity of calculating), always corresponds to the AVEOS with
truly infinite activity series where all the reducible integrals
(even for n → ∞) are constructed of that (possibly finite)
set of irreducible ones. For example, the second-order VEOS
(which includes only the second virial coefficient, B2, or the
first-order irreducible integral, β1) corresponds to the infinite
activity series of the AVEOS where each reducible integral,
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bn, must be calculated by summation of all possible chains
and stars (as well as their combinations), which are composed
of the proper number of β1 integrals.

For repulsive potentials or high temperatures (when irre-
ducible integrals are mostly negative and the corresponding
virial coefficients form a positive decreasing sequence), the
usage of the VEOS is naturally preferable in comparison with
the infinite alternating activity series of the AVEOS.

However, the applicability of the VEOS for attractive
potentials (or subcritical temperatures) is principally limited.
It was first shown by Mayer’s study [9] and later confirmed
in other studies [17–20,22] that the transformation of the
AVEOS to VEOS (and, therefore, the validity of the VEOS
itself) is strongly restricted by the AVEOS convergence con-
dition: If there is a density, ρG, where the VEOS isothermal
bulk modulus vanishes, i.e., the following equation:∑

k�1

kβkρ
k
G = 1, (6)

has at least one real positive root, ρG (in the case of several
such roots, the ρG is the minimum one), the activity series∑∞

n=1 n2bnz
n diverges exactly at this density and correspond-

ing activity (see [9,18,22,38]),

zG = ρG exp

(
−

∑
k�1

βkρ
k
G

)
. (7)

As limn→∞n
1
n = 1, the activity series of AVEOS (1) must

also lose the analyticity beyond the same zG point [for sym-
metrical lattice gases, zG is additionally defined by Eq. (4);
see Fig. 1], and VEOS (5) becomes an incorrect “substitute”
for the AVEOS beyond the corresponding ρG density (though
the VEOS may stay analytical and, therefore, often gives the
impression of a correct equation).

Mayer and Goeppert-Mayer have explicitly shown in their
book [9] that Eq. (6) is an exact boundary of the VEOS
adequacy [relation (7) can also be found there]. The other
derivations of the VEOS have initially used a somewhat vague
“low-density” simplification [39] or complex mathematical
transformation of activity series into the density one [1,40],
which cannot actually be correct when the former become
nonanalytic.

Indeed, the equation of state, UEOS [17,18], based on the
recently established exact generating function for the partition
function in terms of irreducible integrals absolutely coincides
with the VEOS in all regimes except for those beyond the
ρG density where the UEOS isotherms demonstrate strictly
constant pressure instead of the VEOS thermodynamically
forbidden intervals with negative compressibility (see Fig. 2
where the isotherms of both equations are shown for the
Lennard-Jones fluid [10,11] as a model that, at the moment,
has the most explored information on the virial set). On the
one hand, such behavior of the UEOS explicitly indicates the
VEOS inadequacy beyond the ρG point (the virial equation
inadequately represents the true behavior of the partition
function there) and exactly agrees with the character of the
AVEOS divergence described in Sec. II (though there is no
activity dependence in the UEOS, and hence it stays analytical
even in the AVEOS divergence region). On the other hand,
the ρG density, where the VEOS isothermal bulk modulus
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FIG. 2. Lennard-Jones fluid isotherms of the UEOS [17] (solid
lines) and VEOS (5) (dashed lines) at the reduced temperature,
kBT /ε = 1.2 (ε and σ are parameters of the Lennard-Jones potential
[10,11]). The numbers indicate the maximum order of irreducible
integrals in both equations (the high-order integrals are approximated
[30]).

vanishes, used to be considered as a spinodal point for a long
time, and such a stereotype is very hard to break down.

Again, the lattice-gas “hole-particle” symmetry provides
strict evidence for the true physical nature of ρG density.
Mayer’s expansion in terms of irreducible integrals for the
partition function of the lattice-gas “holes” yields the follow-
ing high-density symmetrical analog of the VEOS (SVEOS)
[33,34]:

P

kBT
= ρ0

[
u0

kBT
+ ln

(
ρ0

ρ ′

)
+

∑
k�1

βkρ
′k
]

+ρ ′
[

1 −
∑
k�1

k

k + 1
βkρ

′k
]
, (8)

where ρ ′ = ρ0 − ρ is the “hole” number density.
It is important to note that the derivation of SVEOS (see

[33,34]) stays correct only for the “hole” number density, ρ ′ �
ρG (similarly to the VEOS restrictions). The corresponding
particle number density,

ρL = ρ0 − ρG, (9)

defines the point where the SVEOS isothermal bulk modulus
vanishes and the density series of SAVEOS (2) in powers of
reciprocal activity, η, diverges, as is described in Sec. II [i.e.,
SVEOS (8) becomes inadequate when the density is lower
than ρL(ηL)].

Actually, the combination of Eqs. (4) and (7) yields the
following additional condition for the lattice-gas virial series
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at the ρG point (see Fig. 1):∑
k�1

βkρ
k
G = ln

ρG

ρ0
− u0

kBT
.

In turn, this condition makes the values of pressure in
VEOS (5) and SVEOS (8) absolutely equal at the points where
their isothermal bulk moduli vanish (the densities ρG and ρL,
respectively):

P (ρG) ≡ P (ρL).

Of course, this equality is mostly a consequence of Eq. (4)
concerning the activity series (see Sec. II), but it can serve as a
more strict confirmation for the true nature of the densities ρG

and ρL, because VEOS (5) and SVEOS (8) are both analytical
in the vicinity of these points (in contrast to the AVEOS
and SAVEOS, which, strictly speaking, lose their analyticity
there).

Thus, the density ρG is definitely the saturation point (a
binodal point) at least for all the lattice-gas models with “hole-
particle” symmetry. The boiling point for such lattice gases,
ρL, is simply defined in Eq. (9) as a point symmetrical to ρG.

It should additionally be noted that Eq. (6) is not only an
explicit definition of the above-mentioned saturation density
ρG, but it also defines implicitly the subcritical temperatures
as those where Eq. (6) has at least one real positive root. When
Eq. (6) has no such root (i.e., at supercritical temperatures),
the activity series in AVEOS (1) and SAVEOS (2) are always
converging (there is no phase transition at such temperatures)
and Eq. (7) becomes irrelevant.

IV. CONSIDERATIONS FOR NONSYMMETRIC MODELS

In the previous sections, the direct relationship between the
first-order phase transition and mathematical divergence of
activity series has analytically been established for a class of
lattice gases with “hole-particle” symmetry. The next question
that naturally arises is whether this result can be generalized
on the other statistical models of matter.

In essence, the “hole-particle” symmetry is itself the
main feature that formally separates the considered lattice-
gas model from the others: Only this symmetry has pro-
vided the derivation [33,34] of high-density virial expansions
[SAVEOS (2) and SVEOS (8)], symmetric definition of the
boiling point [see Eq. (9)], establishment of the analytical
expression for the phase-transition activity [see Eq. (4)], and
finally the proof of the pressure equality for the low-density
and high-density expansions (at the corresponding phase-
transition points).

For nonsymmetric statistical models (namely lattice gases,
where the hard core of a particle occupies more than one cell
of the lattice, or continuous models such as the Lennard-Jones
fluid), a strict analytical definition of the boiling point or
phase-transition activity is unfortunately absent today. On the
other hand, the cluster expansion for the partition function
of interacting particles [9] (as well as its consequences, such
as AVEOS (1), VEOS (5), or UEOS [17,18]) is formally
general for lattice gases, Lennard-Jones fluid, and many
other models of matter (even some quantum systems). The
principal difference among the models is only in the definition
and calculation of the proper cluster integrals (reducible or

irreducible), and therefore this difference is quantitative rather
than qualitative.

Indeed, the behavior of subcritical isotherms of all the
considered equations in terms of reducible or irreducible
integrals is qualitatively similar for different statistical models
with a realistic interaction potential (a potential that includes
both attraction and repulsion): The UEOS [17,18] always
yields a constant pressure beyond the point, ρG, where the
VEOS isothermal bulk modulus vanishes (see Fig. 2) for
any set of irreducible integrals [if this set provides a proper
root of Eq. (6) regardless of the model being considered]
and AVEOS always demonstrates the corresponding divergent
behavior there (see Refs. [21–23,32] for the Lennard-Jones
fluid, the lattice-gas model, and the system of ideal bosons).
Some modern approximations of infinite virial series even
yield a discontinuity of the isotherm tangent (for UEOS as
well as AVEOS) at the ρG vicinity [22,28–30] that makes the
theoretical isotherms very similar to real ones (see the UEOS
isotherm in Fig. 2 when the number of accounted irreducible
integrals is very large).

Of course, all the above-mentioned arguments are based
on a complex “mixture” of different approaches where strict
proofs are mixed with numerical results and approximations.
At the moment, only the following facts have really rigorous
proofs:

(i) Recent studies have proved that Mayer’s expansion in
terms of irreducible integrals yields a strict constancy of pres-
sure beyond the ρG point where the VEOS isothermal bulk
modulus vanishes and AVEOS diverges [see the derivation
of UEOS [17,18,38] as well as the strict relationship (7) be-
tween zG and ρG [9,17,18,38] for arbitrary sets of irreducible
integrals].

(ii) The present study proves that the singularity point of
activity expansions [zG defined in Eq. (4)] is the first-order
phase-transition activity for lattice gases with “hole-particle”
symmetry (in particular, it matches the phase-transition activ-
ity in the Lee-Yang exact solution [5]), and the ρG density is
certainly the saturation point of such gases (note that these
results are also obtained without any quantitative information
on the actual sets of reducible or irreducible integrals).

Such arguments as the observed features of the AVEOS
divergence at the zG activity (the jump of density at constant
pressure and constant chemical potential) or “realistic” dis-
continuity of the tangent for some theoretical isotherms [at the
ρG(zG) point] are actually based on numerical studies of virial
expansions [21–23] with certain sets (finite or approximated
to infinity [28–30]) of cluster integrals for various interaction
models, and unfortunately they cannot be considered as rig-
orously grounded. However, they are in good agreement with
the stricter evidence mentioned above for the first-order phase
transition beyond the ρG density (i.e., beyond the AVEOS
convergence region), and this agreement is quite expected.

As we still have no grounded reason to distinguish qualita-
tively the sets of cluster integrals for different statistical mod-
els (with realistic interaction potentials), the above-mentioned
similarity should be considered as a fundamental feature of the
cluster expansion (and virial series) in general. In other words,
if the ρG density is certainly a binodal point for a lattice gas,
there is no reason to consider similar density as a spinodal
point for the Lennard-Jones fluid.

042127-5



M. V. USHCATS, L. A. BULAVIN, AND S. YU. USHCATS PHYSICAL REVIEW E 98, 042127 (2018)

There is another important issue concerning the accuracy
and generality of the cluster expansion (and hence UEOS,
AVEOS, and SAVEOS) in terms of the constant cluster
integrals. Beyond the ρG point, the UEOS isotherms yield
constant pressure for an arbitrary high density (ρ → ∞)
[17,18], and the AVEOS series for density has an essential
discontinuity (to infinity) instead of the physically correct
finite jump [21,22]. A possible reason for such nonphysical
behavior (the absence of a boiling point on the isotherms) has
been stated in a number of papers [21,22,38]: The conven-
tional definition of cluster integrals over absolutely infinite
limits (and, therefore, their independence of the real system
volume or density) becomes incorrect in very dense regimes
(especially for high-order cluster integrals).

Although this issue (concerning the actual density de-
pendence of cluster integrals) remains almost unexplored in
modern statistical physics (see the first and very approximate
attempts to solve this problem in Ref. [41]), some of its
important aspects can be clarified with regard to the “hole-
particle” symmetry considered in the present paper. Namely,
AVEOS (1) and SAVEOS (2) with “properly defined” (i.e.,
density-dependent) reducible cluster integrals would abso-
lutely coincide in all regimes of a lattice gas (0 � ρ � ρ0).
However, they actually coincide only at the phase-transition
domain (ρG � ρ � ρL) when the “simplified” set of constant
(density-independent) reducible integrals is used in practice.
Thus, the constancy of cluster integrals becomes invalid some-
where in the phase-transition interval, but this simplification
remains surely correct for the AVEOS (i.e., the cluster ex-
pansion for the partition function of particles) at any lower
density (ρ � ρG) and SAVEOS (the cluster expansion for
the partition function of “holes”) at any higher density (ρ �
ρL). Correspondingly, the equations in terms of irreducible
integrals (VEOS and SVEOS) must really be correct within
the same symmetrical intervals (ending at the points ρG and
ρL, respectively, where the pressure for both equations is
strictly equal, as is shown in Sec. III).

For instance, Lee and Yang even provided a strict definition
for the constant reducible integrals based on the distribution
of the partition function roots in the complex plane of activity
[5]. However, they initially considered the symmetrical low-
density and high-density expansions (analogs of the AVEOS
and SAVEOS) instead of a single expansion for all regimes
(where the actual density dependence of cluster integrals must
be taken into account). As their conclusions are correct at the
points ρG and ρL, the cluster integrals can really be considered
as constant up to those points.

Moreover, such a boundary for the correctness of the
density-independent cluster integrals can clearly be explained
in view of the AVEOS (and SAVEOS) divergence. The ana-
lytical (convergent) behavior of activity series up to the phase
transition (while activity does not exceed the convergence ra-
dius, zG) means that the principal contribution to the partition
function belongs to the low-order power terms (i.e., reducible
integrals for microscopic clusters). For such integrals, the
volume of a thermodynamic (macroscopic) system is almost
infinite at any state, and the simplification of density inde-
pendence remains accurate. On the contrary, the divergence
of activity series [beyond ρG(zG) for the AVEOS and beneath
ρL(ηL = zG) for the SAVEOS] means there is an increasing

contribution of high-order integrals for which the density
dependence cannot be neglected, and the above-mentioned
simplification becomes incorrect in the divergence region.

Again, the formal generality of the cluster expansion (and
the qualitative similarity of its behavior for various models)
allows for a generalization of all the above-presented con-
siderations about the density dependence of the lattice-gas
cluster integrals onto the other statistical models: Mayer’s
cluster expansion with constant cluster integrals remains
correct up to the saturation point ρG(zG) (as well as the
corresponding equations in terms of reducible or irreducible
integrals: UEOS, VEOS, and AVEOS).

V. CONCLUSIONS

Some important but previously unexplored aspects of the
“hole-particle” symmetry for a wide range of lattice gases
(where the particle hard core is identical to a single lattice cell)
provide a number of analytical relations that are important in
the modern statistical theory of first-order phase transitions.

In particular, a strict analytical expression of the phase-
transition activity has been derived that is general for lattice
gases of arbitrary geometry and dimensions with various
interaction potentials [see Eq. (4)].

Exactly at this activity (i.e., a certain chemical poten-
tial), the symmetrical low-density and high-density equa-
tions in terms of reducible cluster integrals [AVEOS (1) and
SAVEOS (2)] diverge: their isotherms have similar disconti-
nuities of density [in points ρG(zG) and ρL(zG), respectively]
at some constant value of pressure that is absolutely the same
for both equations.

The behavior of the corresponding equations in terms of
irreducible integrals [VEOS (5) and SVEOS (8)] also exactly
matches that described above: The saturation point ρG and the
boiling point ρL are analytically defined as densities where the
isothermal bulk modulus vanishes [see Eq. (6)] for the VEOS
and SVEOS, respectively, and both equations really yield the
same equal pressure at those points.

In fact, all these features provide a much needed strict con-
firmation for some recently obtained results [17,20–22,28,29]
concerning not only the lattice-gas model but other statistical
models too, and this confirmation may finally end the long-
standing disputes about the adequacy of Mayer’s expansion,
the nature of its divergence, the character of the ρG point
(i.e., whether it belongs to the binodal or spinodal), etc. The
VEOS and AVEOS are general equations for various pairwise
interaction models, and therefore the fact that the density ρG

from Eq. (6) (the zero point of the VEOS isothermal bulk
modulus) is the saturation point for the lattice gas proves
that it has the same sense for the other models with realistic
interaction potentials.

The difference may only be quantitative (due to the dif-
ference of irreducible sets for different interaction models)
and not qualitative (at least for realistic interaction models).
The equality of pressure and chemical potential (activity) at
the saturation and boiling points (ρG and ρL, respectively)
demonstrates that zeros of the VEOS isothermal bulk modulus
[see Eq. (6)] really form the binodal (which is additionally
the boundary of the VEOS adequacy): ρG cannot belong to
the spinodal, as was often considered earlier. The divergence

042127-6



EVIDENCE FOR A FIRST-ORDER PHASE TRANSITION … PHYSICAL REVIEW E 98, 042127 (2018)

region of the AVEOS is exactly bounded by ρG(zG), and
this divergence indeed yields the jump of density at constant
values of pressure and chemical potential.

Another important result is that Mayer’s expansion with the
constant (volume- or density-independent) cluster integrals
remains correct up to the density ρG (activity zG). As a rule,
the cluster integrals are defined in infinite limits, but for
the integrals of very high (macroscopic or thermodynamic)
orders this is not always correct: At very dense states, they
must essentially depend on the real system volume, and their
contribution also becomes determinative (this contribution
even causes the AVEOS to diverge). In practice, the neglect
of such volume dependence for high-order cluster integrals
produces the inadequate behavior of the AVEOS (as well as
UEOS in terms of irreducible integrals) at very dense states
[17,19,20]: Equations with constant cluster integrals actually
yield the density jump to infinity (the essential discontinuity
of density) instead of the finite jump to the boiling point ρL.
In the case of the discrete lattice-gas model, the usage of
symmetrical equations (SAVEOS and SVEOS) resolves this

problem very simply (see Fig. 1), but for continuous models
of matter, the “hole-particle” symmetry is not so obvious. This
issue still awaits a solution, however the present study directly
confirms that the volume dependence of the cluster integrals
may really be neglected at least in the regimes when ρ � ρG.

It should additionally be noted that the presented results do
not contradict those obtained in previous analytical [5,35] and
numerical [36] studies of the lattice-gas model as well as the
Ising problem. Of course, the existing extremely limited data
on the virial sets still do not allow an accurate quantitative
determination of the condensation parameters [ρG and P (ρG)]
even for the simplest statistical models, but this problem may
now be considered technical rather than theoretical.
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