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Effects of a magnetic field on the dynamics of the one-dimensional Heisenberg model
with Dzyaloshinskii-Moriya interactions
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We use the method of recurrence relations to investigate the dynamics of the one-dimensional spin-1/2
Heisenberg model with Dzyaloshinskii-Moriya (DM) interaction in a magnetic field perpendicular to the DM
axis. Our results are valid in the high-temperature limit. We determine exactly the first four recurrants, which
produce the time-dependent correlation functions. In order to extend our results to longer times, we introduce a
new extrapolation procedure for obtaining higher-order recurrants. Our extrapolation mechanism produces good
results when compared to the well-known behavior of the relaxation function in the limit of the XY and isotropic
Heisenberg models. The relaxation function and the spectral density function are then analyzed for several values
of the external field B for the Heisenberg model with DM interactions in one dimension, in the T → ∞ limit.
We find that the external field produces stronger and faster oscillations in relaxation functions and a suppression
of the central peak in the spectral density. That is accompanied by the appearance of a peak centered at a finite
frequency, due to enhancement of the collective mode of spins precessing about the external field.

DOI: 10.1103/PhysRevE.98.042124

I. INTRODUCTION

Quantum spin models are very important tools in the study
of magnetic properties of matter [1]. The exchange interac-
tions play an important role in the microscopic arrangements
of the spin states, which can result, for example, in ferro-
magnetic, antiferromagnetic, ferrimagnetic, and several other
types of more complex phases. However, some antiferromag-
netic crystals and carbonates do exhibit, in addition, a weak
ferromagnetic behavior. This mechanism was first explained
by Dzyaloshinskii [2] on a phenomenological ground. Later,
Moriya [3] put it in a more elegant theoretical basis by
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extending Anderson’s superexchange interaction theory [4] to
include the spin-orbit coupling.

The Dzyaloshinskii-Moriya (DM) interaction, which arises
from the impurities in the system, is very important in low-
symmetry crystals, while it vanishes in higher symmetric
materials. Since asymmetry is quite ubiquitous in nature,
this interaction exists in many real systems and can lead to
some special phenomena, not only in three-dimensional com-
pounds. As a two-dimensional example, in the superconductor
LaCu2O4, this interaction induces a slight spin canting out of
the CuO2 plane [5].

From a theoretical point of view, quantum spin models in
lower spatial dimensions are also important to consider. In
fact, Heisenberg spin chains with DM interaction have been
of great interest to describe magnetically ordered systems.
Recent experimental realizations of this model have been
found in a family of spin chains materials with the general
formula K2CuSO4Ha2, where Ha represents the halogen atom
Cl or Br [6]. These compounds are interesting cases of Heisen-
berg spin chains with uniform DM interactions D. Although
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the magnitude of the DM interaction is expected to be small
compared to intrachain coupling J , it may become consider-
able in compounds such as cooper benzoate [7,8] and hexago-
nal perovskite CsCuCl3 [9,10]. The dynamical structure factor
for a quantum spin Heisenberg chain with Dzyaloshinskii
interactions was investigated with spin wave theory [11],
mean-field [12], and projection operator techniques [13].

In the present work we study the effects of an external mag-
netic field on the dynamics of the spin-1/2 one-dimensional
Heisenberg model with DM interaction, where the magnetic
field is perpendicular to the DM axis. Our goal is to obtain the
time-dependent autocorrelation function and its Fourier trans-
form, the spectral density. We use the method of recurrence
relations (RR), proposed by Lee [14] several years ago. The
method exploits the geometric properties of a realized Hilbert
space, in which the time evolution of a given Hermitian
operator takes place. The basis vectors are static, whereas
the time evolution is placed on the coefficients representing
the projections of the time-dependent operator onto the basis
vectors. The dimensionality d and the shape σ of the realized
Hilbert space are the static properties that characterize time
correlation functions of a dynamical variable in its relaxation
process towards equilibrium. The time-dependent coefficients
are identified as relaxation functions and obey a second re-
currence relation. Knowledge of the basis vectors together
with their associated coefficients amounts to the solution
of a Heisenberg equation of motion for a given operator.
The Hilbert space is realized by a suitable inner product,
defined in terms of the Kubo formula [14–17]. The method
has been used to investigate the dynamics of quantum and
classical systems [18–23], such as electron gas [24–29], spin
systems [30–40], classical harmonic oscillator chains [41–47],
and a two-dimensional plasmonic Dirac system [48,49].

The paper is organized as follows. The model and the
method are introduced in Sec. II. Section III is devoted to the
exact results we have obtained by directly computing the first
four vectors that span the realized Hilbert space in which the
dynamical variable of interest evolves. In Sec. IV we present
an extrapolation procedure for obtaining the remaining recur-
rants and a comparison one gets when applying this scheme
to the well-known XY and Heisenberg models. Section V
presents the behavior of the autocorrelation function for sev-
eral values of the external field and the corresponding spectral
densities for the Heisenberg model with DM interaction in
the presence of an external magnetic field. Finally, we present
concluding remarks in the last section.

II. MODEL AND METHOD

The Hamiltonian of the Heisenberg chain with DM inter-
actions in an external magnetic field is given by

H = −J

N∑
i=1

�σi · �σi+1 − �D ·
N∑

i=1

(�σi × �σi+1) − �B ·
N∑

i=1

�σi,

(1)

where J is the nearest-neighbor exchange interaction, �D is
the DM interaction, and �B is an external magnetic field.
The model is defined on a chain of N sites, where �σi =
(σx

i , σ
y

i , σ z
i ) are spin operators defined by Pauli matrices. By

considering DM interactions of the form �D = Dẑ and an
external perpendicular field �B = Bx̂, the above Hamiltonian
can be written as

H = −J

N∑
i=1

(
σx

i σ x
i+1 + σ

y

i σ
y

i+1 + σ z
i σ z

i+1

)

−D

N∑
i=1

(
σx

i σ
y

i+1 − σ
y

i σ x
i+1

) − B

N∑
i=1

σx
i . (2)

We shall be interested in the study of the time evolution of the
z component of the spin operator σ z

j (t ), which obeys the usual
Heisenberg equation dσ z

j (t )/dt = i [H, σ z
j (t )], with formal

solution σ z
j (t ) = exp(iHt )σ z

j exp(−iHt ), where h̄ = 1.
In the method of recurrence relations, one builds a Hilbert

space S for σ z
j (t ) in order to study its time evolution in a

geometric frame. The positive-definite scalar product in S is
defined by the Kubo product (see, for instance, Refs. [14–17])

(A,B ) = β−1
∫ β

0
dλ〈A(λ)B†〉 − 〈A〉〈B†〉, (3)

where A and B ∈ S are Hermitian operators, β = 1/kT

is the inverse temperature, A(λ) = exp(λH)A exp(−λH),
and 〈AB†〉 is the canonical ensemble average, 〈AB†〉 =
TrAB† exp(−βH)/Tr exp(−βH).

In the present work, we are concerned with the time
evolution of a tagged spin operator σ z

j (t ) in a chain governed
by Hamiltonian (2). For times t � 0, we can express σ z

j (t ) as
an orthogonal expansion

σ z
j (t ) =

d−1∑
ν=0

fνaν (t ), (4)

where {fν} constitutes a set of time-independent orthogonal
basis vectors, and the time dependence is placed in the coeffi-
cients aν (t ). Accordingly, the dimensionality d of S is yet to
be determined.

In the infinite temperature limit, where all the eigenstates
of H enter with the same statistical weight in the canonical
averages, the inner product, Eq. (3), reduces to [14,15,17]

(A,B ) = 1

Z
TrAB†. (5)

The realization of S by this inner product leads to a
recurrence relation for the basis vectors

fν+1 = iLfν + �νfν−1, 0 � ν � d − 2, (6)

where L is the Liouville operator,

LA = [H, A] ≡ HA − AH. (7)

The quantity �ν is the ratio between the norms of consecutive
basis vectors,

�ν = (fν, fν )

(fν−1, fν−1)
. (8)

We choose f0 = σ z
j (0) as the dynamic variable of interest,

and by definition f−1 ≡ 0 and �0 ≡ 1. From now on, the
recurrence relation Eq. (6) shall be referred to as RR I. The
corresponding �ν shall be termed the νth recurrant. Once f0
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is defined, the remaining basis vectors are determined by RR
I and Eq. (8).

The coefficients aν (t ), which are the relaxation functions,
satisfy a second recurrence relation (RR II),

�ν+1aν+1(t ) = −ȧν (t ) + aν−1(t ), 0 � ν � d − 2, (9)

where ȧν (t ) = daν (t )/dt and a−1 ≡ 0.
Since the zeroth basis vector has been chosen as the

dynamic variable of interest f0 = σ z
j (0) ≡ σ z

j , it follows that
the coefficient a0(t ) can be identified as the time-dependent
autocorrelation function Cz(t ),

a0(t ) = (
σ z

j , σ z
j (t )

) = 1

Z
Trσ z

j σ z
j (t ) ≡ Cz(t ), (10)

where Z = 2N is the partition function at infinite temperature.
Here Cz(t ) can be interpreted as the amplitude probability
that the stochastic variable σ z

j , initially in equilibrium in a
canonical ensemble at infinite temperature, will remain the
same at some later time t . The recurrence relation RR II leads
also directly to a generalized Langevin equation (GLE) [50].
It reflects the geometric shape ρ = (�1�2 . . . �d−1) of the
realized space S for the Hamiltonian dynamics of σ z

j (t ). Note
that the initial state of the tagged spin σ z

j of the chain is a
linear combination of all the eigenstates of the Hamiltonian,
where each state enters with the same probability (Boltzmann
factor unity at infinite temperature). In the initial state, there
are energy eigenstates from the ground state up to the highest
energy state of the chain. Nevertheless, since we are dealing
with the correlation function, at t = 0 one has 〈σ z

i (0)2〉 =
1, and Cz(t ) is thus independent of any particular initial
condition of the tagged spin.

The correlation function Cz(t ), which is both real and even
in t and its time derivative is zero at t = 0, can be Taylor
expanded about t = 0 as

C(t ) =
∞∑

ν=0

(−1)ν

(2ν)!
μ2ν t

2ν, (11)

where the moments μ2ν are defined in terms of a trace over
iterated commutators

μ2ν = 1

2
Tr

(
σ z

i L2νσ z
i

)
. (12)

Since the correlation function is even in t , only even powers
of t appear in the Taylor expansion.

It is often convenient to take the Laplace transform of RR
II. Note that with the choice f0 = σ z

i , it follows from Eq. (4)
that a0(t = 0) = 1, and aν (t = 0) = 0 for ν � 1. The result is

1 = zã0(z) + �1ã1(z), (13a)

ãν−1(z) = zãν (z) + �ν+1ãν+1(z), (13b)

where ãν (z) is the Laplace transform of aν (t ).
After some manipulations of Eqs. (13a) and (13b), we

obtain

ã0(z) = 1

z + φ(z)
, (14)

where φ(z) is the memory function, given as the continued
fraction

φ(z) = �1

z + �2

z + �3

z + · · ·

. (15)

In those cases where the recurrants are known, inspection
of RR II can effectively be used to uncover the relaxation
functions ãν (z). On the other hand, if one knows the basal
relaxation function ã0(z), the remaining relaxation functions
can be readily obtained using RR II.

There are also conversion formulas connecting the recur-
rants to the moments defined in Eq. (12) [51]. Without loss
of generality we can set μ0 = 1, which is consistent with
the normalized time-dependent correlation function defined
in Eq. (10). Having the first ν recurrants �1, . . . ,�ν , the
conversion formulas yield the first moments up to order 2ν

from

�1 = μ2, �2 = μ2 + μ4/μ2,

�3 = (
μ2

4/μ2 − μ6
)/(

μ2
2 − μ4

)
, . . . , (16)

where lengthier expressions are obtained for higher-order
recurrants. The previous equations enable us to get the μ2ν

in terms of �ν .
As can be seen from the above equations, the crucial quan-

tities that enter the analysis are the recurrants �ν . In practice,
only a very small number of nontrivial models allow for a
complete knowledge of them. For most cases, however, one
must resort to extrapolation. There are several extrapolation
schemes found in the literature, such as the Gaussian termi-
nator [51] and different numerical methods [34,35]. In the
present work we shall use a numerical extrapolation scheme
which interpolates between known limit cases, from which we
obtain reliable results.

III. EXACT RESULTS FOR THE BASIS VECTORS

We have exactly calculated the first four basis vectors of
the Hilbert space of σ z

j (t ), S , using the recurrence relations
RR I and RR II for the Heisenberg model defined in Eq. (2).
The first basis vector f0 is the dynamic variable of interest,

f0 = σ z
j .

Its norm is simply (f0, f0) = 1. Next we use RR I, with ν = 0,
to determine the next vector f1:

f1 = iLf0 = i[H, f0] = i[H, σ z
j ] . (17)

The result is given by

f1 = −2Bσ
y

j − 2Jσ
y

j σ x
j+1 − 2Jσx

j−1σ
y

j

+ 2Jσx
j σ

y

j+1 + 2Jσ
y

j−1σ
x
j − 2Dσ

y

j σ
y

j+1

+ 2Dσx
j−1σ

x
j − 2Dσx

j σ x
j+1 + 2Dσ

y

j−1σ
y

j . (18)

The first recurrant is then obtained,

�1 = (f1, f1)

(f0, f0)
= 4B2 + 16J 2 + 16D2 . (19)

042124-3



NUNES, SILVA, MARTINS, PLASCAK, AND FLORENCIO PHYSICAL REVIEW E 98, 042124 (2018)

1 2 3 4
ν

0

10

20

30

40

50

Δ ν
B = 0.0
B = 0.5
B = 1.0
B = 1.5
B = 2.0
B = 2.5
B = 3.0
B = 3.5
B = 4.0

FIG. 1. Recurrants for the Heisenberg chain with DM coupling
with D = 1 and several values of the magnetic external field B. Here
and in the next figures, the energy unit is set by J = 1. (The lines
connecting the points are just an aid to the eye.)

In an analogous way, the next three vectors f2, f3, f4, and
the corresponding recurrants �2, �3, and �4 were calculated
exactly. However, their expressions are too lengthy to be
reproduced here.

In order to have a picture of the these recurrants, we show
in Fig. 1 the first four �ν (ν = 1, 2, 3, 4) for D = 1 and
several values of the external magnetic field. In this case, and
in what follows, we have set the exchange interaction J = 1
and measured the parameters D and B in units of J .

Figure 2 shows the autocorrelation functions Cz(t ), given
by Eq. (11) for different values of the magnetic field, where
the moments have been obtained from relations as given
in (16) by employing those four recurrants only. One can see
that the magnetic field promotes a faster decay. However, in
this case with only four recurrants, we were able to get reliable
results up to time t ≈ 0.4 (the time is measured in units of the
inverse of the exchange interaction J−1). Due to the fact that
only a short time dynamics can be achieved from the present
exact data, we expect the results depicted in Fig. 2 will not
change noticeably if one includes higher-order recurrants in
the calculations.

0 0.1 0.2 0.3
t

0

0.2

0.4

0.6

0.8

1

C
z(t) B = 0.0

B = 0.5
B = 1.0
B = 1.5
B = 2.0
B = 2.5
B = 3.0
B = 3.5
B = 4.0

FIG. 2. Time-dependent spin autocorrelation function Cz(t ) ob-
tained from the first four recurrants, for DM coupling D = 1 and
several values of the magnetic field B.

As discussed above, since we know analytically only the
first four recurrants, the ensuing relaxation function is valid
for relatively short times only. On the other hand, the obten-
tion of more recurrants is quite prohibitive for the Hamiltonian
given in (2). Therefore, in order to extend the time range,
we must use some sort of approximation in order to use
higher-ordered recurrants. Below we present an extrapolation
scheme to carry out that task.

IV. EXTRAPOLATION SCHEME FOR THE
HIGHER-ORDER RECURRANTS

In order to extrapolate the recurrants �ν for ν > 4, we must
consider what is already known regarding the dynamics of
other systems which are somewhat related to our problem.
Take, for example, the dynamics of σ z

j in the XY model,
for which the time-dependent correlation function is exactly
known [52], Cz(t ) = J 2

0 (t ) ∼ t−1 for large times (J0 is a
Bessel function of first kind). In that case, the recurrants
level off as ν increases, approaching a finite value. If, on
the other hand, one has a system where the recurrants grow
indefinitely as ν increases, the ensuing Cz(t ) decays faster
than any power law. For example, linear growth �ν = ν�

produces a Gaussian relaxation function [30]. On the other
hand, there are strong numerical indications that Cz(t ) for
the isotropic Heisenberg chain decays slower than the squared
Bessel function of the XY model [53]. This indicates that the
recurrants of the Heisenberg chain must be bounded, hence
it is not appropriate to extrapolate linearly or, equivalently,
to use a Gaussian terminator. Therefore, we construct an ex-
trapolation scheme in which the recurrants of the Heisenberg
model (with or without DM interactions or external magnetic
fields) is bounded by a finite asymptotic value �∞ as ν → ∞.

Our procedure is as follows. We first define �<
ν for ν � nc

and �>
ν for ν > nc, where nc is the number of exactly known

recurrants. Figure 1 shows the first four exact recurrants
for D = 1 and several values of B. We estimate �∞ by
extrapolating the straight line of the behavior of �<

3 and �<
4

as a function of 1/ν. The value thus obtained for vanishing
external field and D = 1 is �∞ ≈ 28.8.

To obtain the extrapolated recurrants, we assume that both
�<

ν and �>
ν have power-like behavior of the form

�<
ν = aνα, �>

ν = �∞ − b

νβ
, (20)

where a, b, and the exponents α and β are determined as
follows. The constants a and α are determined by using a
numerical fit for the first known exact recurrants. To find b and
β, we impose continuity in �<

ν and �>
ν and their derivatives

at ν = nc.
It is then possible with the above procedure to get as many

recurrants as needed for obtaining the relaxation functions.
It would be worthwhile to test the scheme by applying it
to known problems, like the XY model, which allows exact
solutions [52], and the isotropic Heisenberg chain, where
several recurrants have already been computed exactly [54].
For the XY model one can extract all the recurrants from the
exact solution by Niemeijer [52]. Figure 3 shows the time
dependence of the relaxation function as obtained from the
first four exact recurrants and the results for the relaxation
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0.8

1.0
C

z(t)

exact (from Ref. [52])
exact (four recurrants)
extrapolation

FIG. 3. Time-dependent autocorrelation function of the z compo-
nent of the spin for the one-dimensional XY model. Full line (black):
exact result of Ref. [52]; circle-dashed line (red): result using the
first four exact recurrants; long-dashed line (green): result using
extrapolation.

function stemming from 100 recurrants (four exact plus 96
extrapolated values). Those curves can be compared with the
exact result, the squared Bessel function J 2

0 (t ), also shown
in Fig. 3. One can clearly see that the present extrapolation
procedure not only is able to extend the time interval from
t ∼ 0.9 to t ∼ 3.0, but also it is quite close to the exact result
up to t ∼ 2.5.

In Fig. 4 we have a similar comparison, but now for the
Heisenberg chain. The results for the time dependence of the z

component of the relaxation function obtained from different
ways are presented. The proposed extrapolation scheme gives
quite nice results in the time interval considered when com-
pared to the values coming from the 15 recurrants computed
in Ref. [54].

In obtaining the correlation functions above, as well those
in the next section, we consider only extrapolated recurrants
and moments that give significant contribution to Cz(t ). It
happens that the higher the moment the smaller its value, mak-
ing the cutoff for large ν quite irrelevant in the present case.

0 1 2 3
t

0.0

0.2

0.4

0.6

0.8

1.0

C
z(t)

exact (from Ref. [54])
exact (four recurrants)
extrapolation

FIG. 4. Time-dependent spin autocorrelation function of the one-
dimensional Heisenberg model. Full line (black): result from 15
exact recurrants obtained from Ref. [54]; circle-dashed line (red):
result from four exact recurrants from our calculations with D =
B = 0; long-dashed line (green): result from extrapolation.
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FIG. 5. Extrapolated recurrants for 5 � ν � 100 for the
Heisenberg model with DM interaction D = 1 and zero external
magnetic field B = 0. The inset shows the behavior for ν � 10.

V. RESULTS FOR HEISENBERG MODEL WITH DM
INTERACTION IN AN EXTERNAL FIELD

Figure 5 shows the extrapolation results for the recurrants
up to ν = 100 for the case D = 1 and B = 0. Similar results
are also obtained for several values of the external field B.
Our results for the relaxation function for D = 1 and several
values of B are depicted in Fig. 6. We find that for B = 0
the relaxation function is always positive and oscillates with
decreasing amplitude as time increases. This is a typical
behavior of the dynamics of the XXZ model [53]. In fact, for
B = 0 one has the Heisenberg model with DM interactions
only. In that case, a suitable rotation of the spin variables can
show that this model is equivalent to the XXZ model [55]. This
explains the anisotropic Heisenberg behavior obtained for
B = 0. The procedure can then be repeated for other values
of B, each case having its own extrapolated recurrants. We
notice in Fig. 6 that for B < 1.5 the autocorrelation function
is always positive but oscillates with decreasing amplitude,
similar to the XXZ model. However, for B � 1.5 the relaxation
function can become negative in some time intervals. As B

increases, both oscillations amplitudes and frequencies be-
come larger, indicating a strong response to the applied field.

0.0 0.5 1.0 1.5 2.0 2.5
t

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

C
z(t)

B = 0.0
B = 0.5
B = 1.0
B = 1.5
B = 2.0
B = 2.5
B = 3.0
B = 3.5
B = 4.0

FIG. 6. Time-dependent relaxation function for D = 1 and sev-
eral values of the field B. We used the first four exact recurrants and
extrapolated ones up to ν = 100.
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FIG. 7. Frequency-dependent spectral density for D = 1 and
several values of the external magnetic field B.

Classically, such a case corresponds to the scenario where the
precession of each spin around the external magnetic field
starts to dominate the dynamics. Indeed, the spins are still
tied to each other via the exchange coupling J and the DM
interactions, which try to drive the spins away from the field
direction. For large enough B we expect the dynamics to be
completely dominated by the collective precession of the spins
around the field.

The spectral density Sz(ω) is defined as the time Fourier
transform of the relaxation function Cz(t ),

Sz(ω) =
∫ +∞

−∞
Cz(t )e−iωtdt, (21)

and is shown in Fig. 7 for different values of the magnetic
field. This spectral density was calculated numerically from
the discrete Fourier transform of the correlation function
Cz(t ). The distance between two consecutive frequencies is
determined by the total time interval T of Cz(t ), in such a way
that �ω = 1/T . As one can see in Fig. 6, T is of order of 4,
if we consider the symmetric interval −2 � t � 2. Although
the curves are not smooth by using this simple numerical
procedure, the general trend of the frequency behavior of
Sz(ω) is apparent from the figure.

For B < 1.5 one can see that a shoulder is present in
Sz(ω). For external fields in the range 1.5–2.5 only a central
peak is present and the shoulder is suppressed. On the other
hand, for larger values of B > 2.5, the central peak decreases
and an additional peak appears, centered at a finite value of
the frequency. This extra peak should be attributed to the
precession of the spins around the large magnetic field, when
it is large enough to counterbalance the exchange and DM
interactions.

VI. CONCLUDING REMARKS

In this work we have studied the dynamics of the spin-
1/2 one-dimensional Heisenberg model with Dzyaloshinskii-
Moriya (DM) interaction in the presence of an external
magnetic field perpendicular to the DM axis. We obtained
the autocorrelation function in the high-temperature limit by
means of the method of recurrence relations. We exactly

computed the first four recurrants and used an extrapolation
procedure to obtain higher-order recurrants. Our extrapolation
scheme produces good results when compared to the well-
known behavior of the relaxation functions of the XY and
isotropic Heisenberg chains. The relaxation function and its
associated spectral density were analyzed for several values
of the external field B keeping the DM interaction D = 1.
For small values of the field the behavior is similar to the
XXZ chain. For intermediate values only a central peak and
a shoulder appear in the spectral density function, while for
large values of the field a nonzero frequency peak results from
the precession of the spins around the magnetic field, with
suppression of the central peak and its shoulder. Although
the central mode behavior versus collective dynamics is an
old feature of the dynamics of spin systems, they are in
some sense not universal. Some systems do not show those
behaviors, and one could not expect, a priori, the results we
have just obtained for the present system.

It should be stressed that our procedure is in fact exact for
short times, as is shown in Figs. 3 and 4. Our extrapolation
covers then the remaining time domain. There our results are
approximate, and we have implemented a procedure guided
by known numerical results from the literature. Although a
Gaussian termination, i.e., a linear growth of the expansion
coefficients, will produce a similar result, at least for zero
external field [56], we used herein only the finite asymptotic
value approach, which is physically more suitable for the
present more general model.

We have discussed here results only for D = 1. However,
as the DM interaction effect is just to rescale the XY compo-
nents of the exchange interaction, similar results are obtained
for different values of D.

Regarding the extrapolation procedure, it has been used
in the present model where only four recurrants were able
to be exactly computed. Nonetheless, the method can be
perfectly extended to the study of other systems and with a
general number of exact recurrants, even to the case where
the recurrants oscillate for even and odd indices ν. In order to
implement our extrapolation scheme for finite temperatures
one must first obtain a few exact recurrants using the full
Kubo formula (with β = 1/kT �= 0). Finally, the goal is to
obtain the long-time dynamics of the system. Some of the
problems that can be addressed are the characterization of
diffusive or nondiffusive behavior, which is intimately related
to the approach to equilibrium at long times.

As a final remark, it is known that there has been re-
cently much activity concerning the dynamics of spin chains
extended to the context of ergodicity, ergodicity breaking,
and the evolution at long times towards thermal equilibrium.
In fact, besides the usefulness of the present approach in
the study of dynamical properties of Hermitian systems, a
relevant result has also been derived from the recurrence
relations method in the direction of the formulation of an
ergodicity condition in terms of an infinite product [57]. It
is worth mentioning that connections between this ergodic
condition and the Birkhoff ergodic theorem and Khinchin
theorem were additionally established to a new formulation
for irreversibility in many-body Hermitian systems [58]. Since
then, the ergodic hypothesis has been revisited in different
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perspectives. Concerning the model we consider here, the
ergodicity of the dynamical variable σ z

i and its consequences
will be investigated in a future work in the light of the
recurrence relations method. Nevertheless, even though we do
not discuss ergodicity in the present study, or the approach to
equilibrium at long times, our results may be of interest to
those working in this exciting field.
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