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A four-stroke quantum engine which alternately interacts with a measurement apparatus and a single heat
bath is discussed in detail with respect to the average work and heat as well as to the fluctuations of work and
heat. The efficiency and the reliability of such an engine with a harmonic oscillator as working substance are
analyzed under different conditions, such as different speeds of the work strokes, different temperatures of the
heat bath, and various strengths of the energy supplying measurement. For imperfect thermalization strokes of
finite duration also the power of the engine is analyzed. A comparison with a two-temperature Otto engine is
provided in the particular case of adiabatic work and ideal thermalization strokes.
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I. INTRODUCTION

The practical understanding of how to convert heat into
useful work, beginning in the 18th Century, did not only trig-
ger the industrial revolution but also spurred the development
of thermodynamics [1]. Motivated by novel experimental
techniques operating on molecular or even atomic scales, the
basic ideas underlying conventional heat engines have been
applied to understand biological processes on cellular and
molecular scales in thermodynamical terms and have also
been used to design artificial machines on microscopic scales
[2–5]. The interpretation of a maser in terms of a Carnot cycle
was proposed in Refs. [6–8]. Microscopic engines performing
other thermodynamic cycles such as Otto motors [9,10] or
Szilard engines [11,12] were suggested and discussed both
for classical and quantum mechanical models. Szilard-type
engines differ from standard heat engines operating between
two heat baths at different temperatures in that the energy
is extracted from a single heat bath by means of a feedback
mechanism agitated by a so-called Maxwell’s demon [13].
Of course, the idea of feedback is much older and has been
used to control engines from the early times of James Watt
on. The use of squeezed reservoirs instead of thermal heat
baths was first suggested as a genuinely quantum mechanical
boosting mechanism in Ref. [14] and later experimentally
demonstrated [15].

A quantum engine in which, as the energy providing
stroke, the contact with a hot heat bath is replaced by the
measurement of a properly chosen observable was recently
proposed [16]. In this setting the result of the measurement is
not further used to control the engine. Rather the back-action
of this measurement provides the “fuel” of such a device
under suitable conditions. In Refs. [17,18] selective measure-
ments in combination with feedback control are suggested
as the energy source of a Szilard-type quantum engine. A
comparison of the nonselective measurement scenario with

a selective measurement whose result is used for controlling
the considered engine is analyzed in Ref. [19]. A nonse-
lective measurement driven cooling device was suggested in
Ref. [20].

Even though an engine of molecular size acting according
to the laws of quantum mechanics can be expected to display
large random deviations from its average behavior, with a
few exceptions [21–23], most of the existing investigations
only deal with the behavior of average work and heat and
quantities derived therefrom such as efficiency and power. The
averages of work and heat are most often determined in terms
of respective powers that are obtained by splitting the time rate
of change of the average energy of the working substance into
parts that are interpreted as power and heat rate [24]. However,
it is not possible to translate the calculational prescription
for the average of work based on power into an operational
definition of a fluctuating work supplied to a quantum system
[25]. Therefore, we will use the two-energy measurement
approach as an operational definition of work [26–29] and
heat [30–32]. This requires to allow for a number of diagnostic
energy measurements within each cycle of the considered
engine [33]. As a result we not only get access to the average
behavior of the engine, but also to its random properties
described in terms of work and heat. In the case of a truly
quantum engine, the obtained results actually will depend on
the chosen diagnostic tools as was recently demonstrated for
an Otto engine interacting with an auxiliary work deposit [34].

The paper is organized as follows. In Sec. II we recapit-
ulate the idea of the measurement driven engine proposed in
Ref. [16] and specify the four subsequent strokes in combi-
nation with the diagnostic energy measurements in Sec. III.
Each stroke can be characterized by a transition probability
between energy eigenstates of the instantaneous Hamiltonians
immediately before and after a stroke. These transition proba-
bilities are specified for a harmonic oscillator with externally
controllable frequency in Sec. IV and utilized in Sec. V to
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discuss the performance of a measurement engine both with
ideal and imperfect thermalization. In the latter case, a weak
contact with the heat bath during a finite amount of time
is modeled by a Markovian master equation. A comparison
between the measurement engine and a two temperature heat
engine is provided in Sec. VI. A summary and discussions
of the main results are presented in Sec. VII followed by
Appendices with some technical details.

II. FOUR-STROKE MEASUREMENT ENGINE

We consider an engine consisting of three basic elements:
(i) a working substance governed by a Hamiltonian H (λ)
and controlled by the change of a time-dependent parameter
λ, (ii) an energy source, and (iii) a thermal reservoir. For
example, taking as element (i) for the working substance a
gas whose volume is externally controlled by the position
of a piston, as element (ii) a hot heat bath, and as element
(iii) the thermal reservoir at a lower temperature, one has
assembled the elements of a traditional heat engine such as an
Otto engine. Here we instead study a quantum system as the
working substance, which, for the sake of definiteness, later
on will be chosen as a harmonic oscillator whose frequency
can externally be controlled. The energy input is provided by
the measurement of an observable of the working substance.
In order that energy is put into the system it is necessary
that this observable does not commute with the Hamilto-
nian describing the working substance at the instant of the
measurement. The outcome of the measurement is ignored;
rather, the genuinely quantum mechanical back-action of the
measurement on the state of the working substance results
in a transfer of energy. The thermal reservoir can be at any
temperature. All parameter changes of the working substance
are performed while the system is decoupled from the thermal
reservoir. The measurement is also taken in a phase during
which the system is thermally isolated and the parameter λ is
kept constant. To be precise, a complete cycle of the engine
consists of four strokes which proceed as follows: The engine
starts in a state 0 of thermal equilibrium at the inverse temper-
ature β; subsequently the working substance is compressed
by a change of the parameter from λi to λf according to a
prescribed protocol, leading to an increase of the energy-level
distances in the state 1. After completion of this first work
stroke, the working substance is kept at the reached parameter
value λf and a measurement of the oscillator position is
performed transferring the working substance into the state 2.
Out of state 2 the working substance is expanded back to the
initial value of the parameter ending up with H (λi ) in the state
3. To fully recover the initial state 0, the working substance is
brought into weak contact with the thermal reservoir acting as
a heat bath at the initial inverse temperature β. A schematic
view of a cycle is depicted in Eq. (1):

0 WSI=⇒ 1
QM=⇒ 2 WSII=⇒ 3 T=⇒ 0′. (1)

As a diagnostic tool projective measurements of the energy
are performed at the beginning in the state 0 and after the
completion of each stroke, hence yielding a sequence of
four energies E0, E1, E2, E3 constituting the energy profile
of a complete engine cycle. These energies hence coincide
with one of the eigenvalues of either Hamiltonian H (λi ) =

∑
k εk (λi )Pk (λi ) or H (λf ) = ∑

k εk (λf )Pk (λf ) governing
the working substance in the states 0, 3, and 1, 2, re-
spectively. Here, the operators Pk (λi ) and Pk (λf ) project
onto the eigenspaces corresponding to the respective eigen-
values εk (λi ) and εk (λf ). Therefore, one obtains E0, E3,∈
{εk (λi ), k = 1, 2, . . .} and E1, E2 ∈ {εk (λf ), k = 1, 2, . . .}.

While the two work strokes and the thermalization stroke
may take a finite or even an infinite amount of time, the mea-
surement strokes and the energy measurements are assumed
to happen instantaneously.

Knowing the measured energies, one can determine the
amounts of work, WI and WII performed on the working
substance during the two work strokes WS I and WS II,
respectively, as

WI = E1 − E0 (2)

and

WII = E3 − E2. (3)

Accordingly, the energy change EM caused by the measure-
ment is given by

EM = E2 − E1, (4)

and, finally, the heat that is exchanged with the thermal
reservoir follows as:

Q = E0′ − E3, (5)

where 0′ is the initial state of the next cycle. Here we adopted
the sign convention that a positive change of energy, be it
work, measurement energy or heat, corresponds to an increase
of the energy of the system.

General expressions for the averages of the total work
〈W 〉 ≡ 〈WI 〉 + 〈WII 〉 and the supplied energy 〈EM〉 are given
in Ref. [16] for adiabatic work strokes and the large class of
minimally disturbing generalized measurements, which also
includes projective measurements [35]. In Ref. [16] the two
adiabatic work strokes form a pair of mutually time-reversed
processes that proceed infinitely slowly such that transitions
between different instantaneous energy levels do not occur.
Knowing the total work and the supplied energy, one can
determine the efficiency η as

η = − 〈W 〉
〈EM〉 . (6)

For the special situation of uniform adiabatic compression
and expansion of the working substance where all energy
differences between corresponding pairs of energy eigenval-
ues expand and shrink at a constant compression rate γ ,
i.e., εk (λf ) − εl (λf ) = γ [εk (λi ) − εl (λi )], [36] the efficiency
takes the universal form

η = 1 − γ −1. (7)

Before we consider the averages and fluctuations of the
total work as well as of the supplied energy for the partic-
ular example of a harmonic oscillator with time-dependent
frequency as working substance, we give a general description
of the energy profile of a cycle in terms of the joint distribution
of the five energy values introduced above.
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III. ENERGY PROFILE

The joint distribution of the energies E0, . . . E0′ is given by

p(n′, l, k,m, n) = Tβ (n′, l)TWS II(l, k)TM (k,m)

× TWS I(m, n)pβ (n), (8)

where n,m, k, l, n′ label the energy eigenvalues in the states
0, 1, 2, 3, 0′, respectively. Further,

pβ (n) = Z−1e−βen(λi ), Z =
∑

n

e−βen(λi ) (9)

denotes the thermal distribution in the initial state 0; in addi-
tion, TWS I(m, n), TM (m, k), TWS II(l, k), Tβ (n′, l) specify the
transition probabilities between the according energy levels
induced by the compression (WS I), measurement (QM), ex-
pansion (WS II) and thermalization (T) strokes, respectively.
The first argument m of a transition probability TX(m, n)
denotes the final state and the second argument n the initial
state. They satisfy 0 � TX(m, n) � 1 and

∑
m TX(m, n) = 1

for X = WS I, M, WS II, β, as can be seen from the explicit
expressions given below.

A. Work strokes

For the sake of simplicity, we assume that the two work-
strokes are mutually time-reversed, so that

TWS II(l, k) = TWS I(k, l) ≡ T (k, l), (10)

yielding for a compression protocol � = {λ(t )|ti < t < tf }
with λ(ti ) = λi and λ(tf ) = λf the transition probability,

T (m, n) =
∣∣∣∣〈m; λf |T exp

{
− i

h̄

∫ tf

ti

dsH (λ(s))

}
|n; λi〉

∣∣∣∣
2

,

(11)

where T denotes chronological time ordering; the states
|n; λi〉 and |m; λf 〉 are eigenvectors of the Hamiltonians H (λi )
and H (λf ), respectively. Further, we assume that there are
no degeneracies of the energy eigenvalues at any time of the
protocol, and, hence, no crossings of energy levels occur;
therefore, the previously introduced projection operators be-
come Pn(λ) = |n; λ〉〈n; λ| with λ = λi, λf .

In the particular case of an adiabatic, meaning an infinitely
slow, process there are no transitions between the different
energy eigenstates, and hence

T ad(k, l) = δk,l, (12)

where δk,l denotes the Kronecker δ symbol.

B. Measurement stroke

We consider here a nonselective minimally disturbing
measurement [35] of an observable that does not commute
with the Hamiltonian H (λf ) governing the working substance
at the instant of the measurement. The action of a nons-
elective minimally disturbing measurement is characterized
by an operation �M, i.e., a linear, completely positive map
that transforms the density matrix ρ prior to the measure-
ment into the post-measurement density matrix ρ ′ = �M(ρ)
[35]. Because �M describes a nonselective measurement, it
conserves the trace, Tr[�M(ρ)] = Tr[ρ] for all trace-class

operators ρ, and, as a minimally disturbing measurement, it
is unital, �∗

M = �M, with the dual operation �∗
M defined

by Tr[u�M(ρ)] = Tr[�∗
M(u)ρ] for all bounded operators u

and all trace class operators ρ. The transition probability
between states labeled by the indices m and k resulting from
the measurement operation �M can be expressed as

TM(k,m) = Tr{Pk (λf )�M[Pm(λf )]}
= 〈k; λf |�M[Pm(λf )]|k; λf 〉, (13)

where the second equality is obtained for nondegenerate
energy eigenvalues. As a consequence of �M being unital
it follows that TM(k,m) = TM(m, k) is symmetric in its
indices. It further implies that the average energy change
〈EM〉 = ∑

n,m[εn(λf ) − εm(λf )]TM(n,m)p(m) induced by
such a measurement is positive provided that the energy
distribution p(n) = 〈n; λf |ρ|n; λf 〉 decreases with increas-
ing energy εn(λf ) [16]. This follows from rewriting the
expression for the average with the help of the symmetry
of the transition probability as 〈EM〉 = (1/2)

∑
m,n[εn(λf ) −

εm(λf )][p(m) − p(n)]TM(n,m) � 0. Hence, on average, a
nonselective, minimally disturbing measurement cannot ex-
tract energy out of a passive system, i.e., one whose energy
eigenstate population decreases with increasing energy.

C. Thermalization

To achieve thermalization in the last stroke, the working
substance has to be brought into week contact with a heat bath
at the required inverse temperature β for a sufficiently long
time. Formally, the result of this process can be described by
an operation �β that maps every normalized density matrix
ρ on the Gibbs state ρβ = Z−1e−βH (λi ), �β (ρ) = ρβTr[ρ].
Hence, one obtains for the transition probability

Tβ (n′, l) = Tr{Pn′�β[Pl (λi )]} = pβ (n′), (14)

where pβ (n′) is the energy distribution of the initial equilib-
rium state. When the contact with the heat bath is maintained
only over a finite time, the thermalization will no longer be
perfect and the transition probability will also depend on
the prior state l. We assume that the influence of the heat
bath can be described by a master equation [37] of the form
ρ̇ = �ρ with a dissipative Liouvillian �, which has ρβ as
the unique eigenstate belonging to the eigenvalue 0, hence
satisfying �ρβ = 0. The operation generated by a contact of
duration θ between the system and the reservoir then becomes
�β,θ (ρ) = e�θρ. In the limit θ → ∞ one recovers the ideal
thermalization operation �β .

For both finite-time approximate and infinite-time exact
thermalization, the interaction between the working substance
and the thermal reservoir has to be small because the validity
of Markovian master equations is restricted to weak coupling
[38]; at finite coupling the asymptotically reached density
matrix is known to deviate from the Gibbs state ρβ [39].

IV. HARMONIC OSCILLATOR AS WORKING SUBSTANCE

We consider here a harmonic oscillator of mass m with an
externally variable frequency ω(t ) as the working substance.
Its dynamics is therefore governed by the time-dependent
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Hamiltonian H [ω(t )] given by

H [ω(t )] = p2

2m
+ 1

2
mω2(t )q2. (15)

The time-dependent frequency ω(t ) plays the role of the work
parameter. It changes according to a protocol lasting the time
τ from ω(0) = ωi to ω(τ ) = ωf causing transitions between
the eigenstates |n; ωi〉 and |m; ωf 〉 of the initial and final
Hamiltonians H (ωi ) and H (ωf ), respectively. The transition
probability Eq. (11) can be explicitly expressed as [40,41]

T (m, n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

21/2

(Q∗+1)1/2

(
Q∗−1
Q∗+1

)(m+n)/2

× �[(m+1)/2]�[(n+1)/2]
π�(m/2+1)�(n/2+1) m, n :

× 2F1
(−m

2 ,− n
2 ; 1

2 ; 2
1−Q∗

)2
even

27/2

(Q∗+1)3/2

(
Q∗−1
Q∗+1

)(m+n)/2−1

× �(m/2+1)�(n/2+1)
π�[(m+1)/2]�[(n+1)/2] m, n :

× 2F1
(

1−m
2 , 1−n

2 ; 3
2 ; 2

1−Q∗
)2

odd
0 else,

(16)

where 2F1(a, b; c; z) is a hypergeometric function [42]. Here
the Husimi parameter Q∗ contains all information about the
frequency protocol. It is given by [40]

Q∗ = 1

2ωiωf

× {
ω2

i

[
ω2

f X2(τ ) + Ẋ2(τ )
] + ω2

f Y 2(τ ) + Ẏ 2(τ )
}
,

(17)

where the functions X(t ) and Y (t ) are solutions of the
equation of motion of a classical harmonic oscillator ẍ(t ) +
ω2(t )x(t ) = 0 with the initial conditions at ti = 0, X(0) = 0,
Ẋ(0) = 1 and Y (0) = 1, Ẏ (0) = 0. The protocol ends at tf =
τ at the compression ratio γ = ωf /ωi . The Husimi param-
eter assumes the value 1 for an infinitely slow protocol and
reaches the maximal value Q∗

quench = (ω2
i + ω2

f )/(2ωiωf ) =
(γ + γ −1)/2 for a sudden quench. Figure 1 exemplifies the
dependence of Q∗ on the duration τ and the compression ratio
γ for a linear protocol ω2(t ) = ω2

i + (ω2
f − ω2

i )t/τ , 0� t�τ .
For the measurement stroke we consider a position mea-

surement of the oscillator. A projective measurement of posi-
tion is not feasible because the eigenfunctions of the position
operator do not possess a finite norm and hence do not belong
to the Hilbert space of the oscillator. We rather apply a Gaus-
sian window peaked at the target position x and characterized
by a finite width σ [44]. This windowing operation transforms
a state ρ prior to the measurement into the nonnormalized
post-measurement state ρ

pm
x given by

ρpm
x = 1√

2πσ 2
e−(q−x)2/(4σ 2 )ρe−(q−x)2/(4σ 2 ). (18)

The probability to find the target value x follows as px =
Tr[ρpm

x ] = Tr[e−(q−x)2/(2σ 2 )ρ]/
√

2πσ 2. In the present situa-
tion we are not interested in the particular measurement
outcome but only want to make use of the state transformation
due to a nonselective measurement. This is given by the oper-
ation �M acting on the density matrix immediately before the

1

1.25

1.5

1.75

2

0 1 2 3 4 5

Q
∗

ωiτ

γ = 1.50
γ = 2.50
γ = 3.50

FIG. 1. The Husimi parameter Q∗ is displayed as a function
of the protocol duration τ in units of the initial inverse frequency
ωi for a linear variation of ω2(t ) with different compression ratios
γ . For sudden quenches, i.e., for τ = 0, the Husimi parameter is
largest compared to slower protocols. It approaches the adiabatic
value 1 in an almost monotonic decay which is superimposed by
small oscillations.

measurement to yield the following post-measurement state:

�M(ρ) =
∫ ∞

−∞
dxρpm

x

=
∫ ∞

−∞

dx√
2πσ 2

e−(q−x)2/(4σ 2 )ρe−(q−x)2/(4σ 2 ), (19)

where the integration over x reflects the fact that the results
of the measurement are ignored. Note that the operation
�M is unital and that hence it increases the average energy
of the system provided the energy distribution before the
measurement decreases with increasing energy; see Sec. III B.

In passing we note that a possible systematic error of
magnitude ε that would modify the exponents in Eq. (18) to
become (q − x − ε)2/(4σ 2) does not influence the operation
�M describing the nonselective measurement in Eq. (19).
Hence, the amount of energy supplied by the nonselective
position measurement is unaffected by a systematic error.

Using the position representation of the eigenstates of an
oscillator with the frequency ωf [43],

ψn(q ) ≡ 〈q|n; ωf 〉

= 1√
2nn!

(mωf

πh̄

)1/4
e−mωf q2/(2h̄)Hn

(√
mωf

h̄
q

)
, (20)

where Hn(x) denotes the Hermite polynomial of order n, one
obtains for the transition probability induced by the measure-
ment the expression,

TM(m, n) =
∫

dx√
2πσ 2

dqdq ′ψn(q )ψm(q )ψn(q ′)ψm(q ′)

× e−[(q−x)2+(q ′−x)2]/(4σ 2 ). (21)
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The x-integration can be performed exactly to yield

TM(m, n) = 1

2n+mn!m!π

×
∫

dζdζ ′Hn(ζ )Hm(ζ )Hn(ζ ′)Hm(ζ ′)

× e− 1
2 ζ ·M−1·ζ T

, (22)

where ζ is a vector with the components ζ , ζ ′, and M denotes
a symmetric matrix of the form

M =
( 8r+1

4(4r+1)
1

4(4r+1)

1
4(4r+1)

8r+1
4(4r+1)

)
. (23)

The dimensionless parameter r defined as

r = σ 2mωf /h̄ (24)

equals half the ratio of the variances of the measurement
window σ 2 and of the oscillator position in the ground state
h̄/(2mωf ). The larger r−1 the more precise is the position
measurement. A closed analytic expression of the double
integral representing the transition probability in Eq. (22) is
not known. Also, a numerical integration is possible only
for relatively small indices n,m because of the pronounced
oscillations of the integrand at larger indices. Expressions
for larger indices can be obtained by writing the double
integral as a Gaussian average over four Hermite polynomials,
for details see the Appendix A 1. The resulting expression
can be summed up as long as n,m � 12. For larger values
numerical problems prohibit reliable results. Alternatively, a
closed expression for a generating function of the transition
probability can be obtained, see the Appendix A 2. Also this
strategy is limited because with the increasing order of the
partial derivatives of the generating function required for the
calculation of the transition probabilities, the available storage
capacity of any computer will be reached at some point. The
numerical results presented below are based on the measure-
ment transition probability between the first 21 states of a
harmonic oscillator obtained by the second, characteristic-
function-based, method.

The transition probabilities TM(m, n) for a given initial
state n have a single maximum as a function of m at m =
n as exemplified in Fig 2. The probability Prob(m > n) =∑

m>n TM(m, n) characterizing transitions from a fixed state
n to all states with m > n is larger than the probability
Prob(m < n) = ∑

m<n TM(m, n) to loose energy. With in-
creasing index n, the difference between these probabilities
approaches a constant value; see Fig. 3. Moreover, as demon-
strated in Ref. [16], the average value of the population differ-
ence between the state after and the one before a measurement
is independent of the initial distribution of states. It is given by

h̄ωf (〈n〉ρpm − 〈n〉ρ ) = Tr[H (ωf )(�M(ρ) − ρ)]

= h̄ωf /(8r ), (25)

and, hence, it only depends on the strength of the measure-
ment; see also the Appendix B.

While the ideal thermalization in the final stroke described
by Eq. (14) with

pβ (n) = (1 − e−βh̄ωi )e−βh̄ωin (26)

(a)

0
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(b)
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0 2 4 6 8 10 12 14 16 18 20

T
M

(n
,1

0)

n

r = 0.1
r = 0.5
r = 1
r = 1.5
r = 2

FIG. 2. The measurement-induced transition probability
TM(n, m) for a nonselective Gaussian position measurement on a
harmonic oscillator as a function of the target state n is displayed
in panel (a) at the fixed measurement parameter r = 1 for different
initial states, and in panel (b) for the initial state m = 10 and
different measurement parameters r . The initial state always has
the largest probability; i.e., most likely, the measurement does not
trigger a transition as can be seen from panel (a). With increasing
precision of the position measurement (decreasing r) the transitions
to more remote states become more likely. The probability for a
transition decreases with the distance between the final and the
initial state m − n. Positive and negative distances with the same
absolute value occur with slightly different probabilities; see also
Fig. 3, which displays the bias toward excitation over decay caused
by a Gaussian position measurement. The thin lines serve as guides
to the eye.

takes an infinite amount of time, we shall also consider an
imperfect thermalization of the working substance within
a finite amount of time, θ , a process caused by the weak
interaction of the working substance with a heat bath at the
required temperature. In the simplest way, this process can be
modeled by a Markovian master equation of the form [45]

ρ̇(t ) = −iωi[a
†a, ρ(t )] + γ↓([a, ρ(t )a†] + [aρ(t ), a†])

+ γ↑([a†, ρ(t )a] + [a†ρ(t ), a]), (27)

where a and a† denote the annihilation and creation operators
of the harmonic oscillator with frequency ωi . The parameters
γ↓ and γ↑ result from the interaction of the oscillator with
the heat bath; their ratio ν ≡ γ↑/γ↓ = e−βh̄ωi is given by the
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FIG. 3. The bias Prob(n > m) − Prob(n < m) =∑
n>m TM(n, m) − ∑

n<m TM(n, m) of measurement-induced
transitions is displayed as a function of the initial state m for
different measurement parameters r . This bias is positive implying
that more transitions go to higher than to lower excited states as
seen from the initial state. For smaller parameters r corresponding
to more precise position measurements the bias becomes larger.
It decreases with increasing excitation of the initial state and
apparently approaches a constant positive value for sufficiently large
values of m. The thin lines serve as a guide to the eye.

temperature of the heat bath. Their difference κ = γ↓ − γ↑
determines the relaxation rate of the mean value of the annihi-
lation operator according to 〈a(t )〉 = e(iωi−κ )t 〈a(0)〉 for t � 0.
The underlying assumption of weak coupling between the os-
cillator and the heat bath implies that κ � ωi and also h̄κβ �
1, [39]. Due to the rotating wave approximation inherent in
the master equation (27), the time evolution of the diagonal
terms p(n; t ) = Tr[Pn(ωi )ρ(t )] = 〈n; ωi |ρ|n; ωi〉 decouples
from that of the nondiagonal terms of the master equation.
The diagonal terms satisfy the following classical birth-death
master equation:

ṗ(n; t ) = 2nγ↑p(n − 1; t ) + 2(n + 1)γ↓p(n + 1; t )

− 2((n + 1)γ↑ + nγ↓)p(n; t ). (28)

Its solution is known in terms of conditional probabili-
ties p(n; t |l) satisfying the initial condition p(n; 0|l) = δn,l

[46,47]. Choosing for t the thermalization time θ one finds for
the transition probability Tβ (n, l) = p(n; θ |l) the expression

Tβ (n, l) = 1 − ν

1 − λα
νn

min(n.l)∑
i=0

(−1)i (n + l − i)!

(n − i)!(l − i)!i!

×
(

1 − α

1 − να

)n+l−i(1 − α/ν

1 − α

)i

, (29)

where α = e−2κθ is a dimensionless parameter determining
how far the thermalization has proceeded within the time span
θ . A quantitative measure of the degree of thermalization is
provided by the �1-norm of the difference between the actual
probability distribution p(t ) = (p(n; t ), n = 0, 1, . . .) and the

target distribution pβ = (pβ (n), n = 0, 1, . . .),

d(p(t ), pβ ) = ||p(t ) − pβ ||1 =
∞∑

n=0

|p(n; t ) − pβ (n)|. (30)

V. PERFORMANCE OF THE HARMONIC OSCILLATOR
MEASUREMENT ENGINE

In the case of perfect thermalization, the above-described
engine is characterized by the four dimensionless parame-
ters, h̄βωi specifying the inverse temperature of the initial
state, which is that of the heat bath, the duration of the two
work strokes ωiτ , the compression rate γ = ωf /ωi , and the
ratio r = σ 2mωf /h̄ determining the precision of the posi-
tion measurement. The two work stroke parameters ωiτ and
γ determine the Husimi parameter Q∗, which additionally
depends on the particular protocol specifying how the fre-
quency interpolates between the initial and the final values.
Here we will always assume that ω2(t ) = (ω2

f − ω2
i )t/τ + ω2

i

follows a linear protocol. For imperfect thermalization, with
the damping strength κ and the duration of the thermalization
stroke θ , two further dimensionless parameters κ/ωi and ωiθ ,
enter. In order that the Markovian master equation provides a
valid modeling, as already mentioned, the damping parameter
must be small compared to the oscillator frequency and the
Matsubara frequency; i.e., κ � ωi, kBT /h̄. To achieve a well-
thermalized final state, the total time must be sufficiently
large, ωiθ � 1, such that κθ > 1.

A. The statistics of work and supplied energy

The total work W is given by the sum of works WI and
WII ,

W = WI + WII = E1 − E0 + E3 − E2, (31)

according to Eqs. (2) and (3). Therefore, the joint probability
density function (pdf) ρ(W,EM) of the total work W and the
measurement supplied energy EM defined in Eq. (4) is given
by

ρ(W,EM) =
∞∑

k, l, m, n

=0

δ[W − h̄ωf (m − k) − h̄ωi (l − n)]

× δ[EM − h̄ωf (k − m)]p(4)(l, k,m, n)

= (h̄ωi )
−2

∞∑
w, z

=−∞

δ[W (h̄ωi )
−1 − w + γ z]

× δ[EM(h̄ωi )
−1 − γ z]pw,z(w, z), (32)

where the four-point probability p(4)(l, k,m, n) =∑
n′ p(n′, l, k,m, n) follows from Eq. (8) as

p(4)(l, k,m, n) = T (k, l)TM(k,m)T (m, n)pβ (n). (33)

The two-point probabilities pw,z(w, z) of finding w = l − n

and z = k − m, which specify the population differences of
the states 3 and 0, and of 2 and 1, respectively, are given
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by

pwz(w, z) =
∑
m,n

T (z + m,w + n)TM(z + m,m)

× T (m, n)pβ (n). (34)

In the particular case of adiabatically slow work strokes,
i.e., in the limit τ → ∞, one finds with T ad(k, l) = δk,l for
the joint probability

ρad(W,EM) = δ[W + (1 − γ −1)EM]ρad(EM), (35)

where

ρad(EM) =
∑
n,l

δ[EM − h̄ωf (l − n)]TM(l, n)pβ (n) (36)

determines the pdf of the measurement supplied energy.
Hence, the random work and supplied energy are strictly
related to each other as W = −(1 − γ −1)EM. The resulting
efficiency η = −W/EM = 1 − γ −1 agrees with Eq. (7).

In the general, nonadiabatic, case, the statistics of total
work and supplied energy is determined by the marginal
distribution of the supplied energy EM,

ρM(EM) =
∞∑

z=−∞
δ(EM − h̄ωiγ z)p(z), (37)

and by the conditional probability,

ρ(W |EM= h̄ωiγ z) =
∞∑

w=−∞
δ[W − h̄ωi (w − γ z)]p(w|z),

(38)
where

p(z) =
∑
m,n

TM(m + z,m)T (m, n)pβ (n) (39)

and

p(w|z) = pwz(w, z)

p(z)
. (40)

Figures 4 and 5 exemplify the two auxiliary distributions p(z)
and p(w|z), respectively. In the adiabatic limit the conditional
probability simplifies to a Kronecker δ: pad(w|z) = δw,z. Be-
cause p(z) is maximal at z = 0 the most probable value of
EM vanishes. Yet, the distribution p(z) is slightly biased
towards positive values leading to a positive energy supply
on average, in accordance with the findings of Ref. [16]; see
also Appendix B.

Both the work and the supplied energy can be written in
terms of the integer random variables w and z as W/(h̄ωi ) =
w − γ z and EM/(h̄ωi ) = γ z. Due to the linearity of these
relations, the average work and supplied energy can be ex-
pressed by the averages of w and z as

〈W 〉/(h̄ωi ) = 〈w〉 − γ 〈z〉, (41)

〈EM〉/(h̄ωi ) = γ 〈z〉. (42)

As a consequence, the efficiency becomes

η = − 〈W 〉
〈EM〉 = 1 − γ −1 〈w〉

〈z〉 . (43)
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FIG. 4. The probability p(z) defined in Eq. (39) of a population
difference of size z between the states 2 and 1 is displayed for
different parameter values of the engine. The difference z determines
the random energy input EM = h̄ωf z. In all cases, it is most likely
that the measurement does not cause a transition and most of the time
no energy is injected in the measurement stroke. Yet, all distributions
are biased towards a positive value of z and hence to an increase of
energy. Panel (a) exemplifies the influence of the initial temperature
T at the measurement parameter r = 1 and Husimi parameter Q∗ =
1.05. Increasing temperature leads to a wider distribution of z. In
panel (b) the temperature is kept fixed at kBT = h̄ωi as well as the
Husimi parameter at Q∗ = 1.05 for different measurement parame-
ters r . A decreasing measurement parameter leads to a broadening
while a variation of the Husimi parameter does not visibly influence
the z-distribution. Apart from the minor dependence on the Husimi
parameter, there is no direct dependence of p(z) on the compression
ratio γ . The thin lines serve as a guide to the eye.

For expressions of the average values 〈w〉 and 〈z〉 in terms of
the stroke transition probabilities see the Appendix C.

In the adiabatic case the averages of w and z coincide and
the known result Eq. (7) is recovered. In general, the ratio
〈w〉/〈z〉 is larger than one. It is a function of the Husimi
parameter and temperature; see Fig. 6. In particular, at too
rapid work strokes and also at too high temperatures of the
initial state, this ratio may become larger than the compression
rate with the result that, with negative efficiency and positive
total work, the device no longer functions as an engine.

As a result of the relatively weak positive bias of the
probability distribution of z toward positive values, the root-
mean-square deviation of the supplied energy excels the av-
erage value considerably, being smallest for adiabatic work
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FIG. 5. The probabilities p(w|z), see Eq. (40), are displayed for
the different conditions z = −10 (red pluses), −5 (green circles), 0
(black diamonds), and 5 (blue crosses) at different parameter values
as indicated in each panel. In each row, one of the parameters β, r ,
and Q∗ is varied while the other two are kept constant. Panels (a) and
(b) confirm a narrowing of the distributions when the temperature is
decreased; similarly a larger measurement parameter leads to a nar-
rower distribution whereby the effect is only modest for a variation
of r by a factor of 20 in panels (c) and (d). Likewise, the increase
of the Husimi parameter entails a broadening of the distribution as
exemplified in panels (e) and (f). The conditional probability depends
only via the Husimi parameter Q∗ on the compression ratio γ . Lines
are meant as a guide to the eye.

strokes. Accordingly, also the average work is smaller than the
root-mean-square deviations of the total work, as displayed in
Fig. 7. The efficiency given by the ratio of the average negative
total work and the average supplied energy has its maximal
value for adiabatic work processes and decreases with shorter
work stroke times as exemplified in the left column of Fig. 7.
Equation (43) in combination with the approximately linear
behavior of the ratio 〈w〉/〈z〉 on the Husimi parameter Q∗,
see Fig. 6(b), leads to a roughly linear decrease of the effi-
ciency as a function of the Husimi parameter until, as already
mentioned, for too fast work strokes a critical value of the
Husimi parameter Q∗ parameter is reached beyond which
the efficiency becomes negative; on average, the engine then
dissipates more energy than it receives by the measurement
stroke.

For adiabatic work strokes the second moment of the
energy supplied to the harmonic oscillator can be analytically
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(b)
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FIG. 6. The ratio 〈w〉/〈z〉 specifying the relation of the average
population difference between the states 3 and 0 and that between the
states 2 and 1, respectively, is displayed as a function of temperature
for increasing values of the Husimi parameters Q∗ from bottom
to top at the fixed measurement parameter r = 1 in panel (a). The
curves lie above each other according to the increasing magnitude of
Q∗. In panel (b) the dependence of 〈w〉/〈z〉 on the Husimi parameter
is exemplified for different measurement parameters r at the fixed
temperature kBT = h̄ωi . According to Eq. (43) the ratio 〈w〉/〈z〉
determines a critical value of the compression coefficient γ . At
smaller compression coefficients the efficiency becomes negative and
the device no longer acts as an engine by consuming energy without
doing work. Note that the ratio 〈w〉/〈z〉 does depend on Q∗ but has
no explicit dependence on the compression ratio γ .

determined. By writing this moment as〈
E2

M
〉 = (h̄ωf )2

∑
n,l

(l − n)2TM(l, n)pβ (n), (44)

one obtains with Eq. (21) for the transition matrix TM(l, n)
after some tedious algebra the result

〈
E2

M
〉 = (h̄ωiγ )2

8r

(
3

8r
+ coth

h̄βωi

2

)
. (45)

The variance of the supplied energy characterizing its fluctua-
tions becomes

σ 2
M = 〈

E2
M

〉 − 〈EM〉2

= (h̄ωiγ )2

8r

(
1

4r
+ coth

h̄βωi

2

)
, (46)
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FIG. 7. The performance of the engine is illustrated as a func-
tion of the work stroke time τ in terms of the efficiency η (left
column) and the reliability |〈W 〉|/σW = (〈W 2〉/〈W 〉2 − 1)−1/2 (right
column). In the first row, the efficiency (a) and the reliability (b)
are displayed for different measurement parameters r at the inverse
temperature βh̄ωi = 1 and compression rate γ = 1.5. Accordingly,
for large values of τ the efficiencies converge to the same adiabatic
value ηad = 1 − γ −1 = 1/3, see Eq. (7). For small τ , the efficiency
is negative indicating a malfunctioning engine. The work stroke time
at which the efficiency becomes positive increases with increasing
measurement parameter. For all stroke times with positive efficiency,
the reliability increases with decreasing measurement parameter.
Panels (c) and (d) expose the impact of different temperatures T

at fixed r = 1 and γ = 1.5. While the influence of temperature on
the efficiency is relatively week, an increase of temperature leads
to a marked worsening of the reliability. The bottom row illustrates
the effect of the compression rate γ . While the efficiencies approach
different adiabatic limits in accordance with Eq. (7), the reliabilities
converge to γ -independent asymptotic values given by Eq. (49).
Panels (e) and (f) exemplify the dependence on the compression rate
at fixed βh̄ωi = 1 and r = 1. In all cases, the efficiencies and the
reliabilities display oscillations in dependence of the stroke time τ ,
similar to the Husimi parameter; see also Fig. 1.

signifying increasing fluctuations with increasing temperature
1/β, compression rate γ , and measurement strength 1/r . Due
to the rigid relation between supplied energy and performed
work for adiabatic work strokes, see Eq. (35), one obtains for
the variance of the work

σ 2
W = 〈W 2〉 − 〈W 〉2 = (γ −1 − 1)2σ 2

M. (47)

Accordingly, the covariance of the work and the supplied
energy becomes

σW,EM = 〈WEM〉 − 〈W 〉〈EM〉 = (γ −1 − 1)σ 2
M. (48)

As a measure of reliability, the ratio of average work (〈W 〉 =
(γ − 1)/(8r )) and the root-mean-square deviation of the work
follows from Eqs. (46) and (47) in the adiabatic limit as

|〈W 〉|
σW

=
[

2 + 8r coth
h̄βωi

2

]−1/2

, (49)

which is independent of the compression ratio γ , as illustrated
in Fig. 7(f) by the convergence of the different reliability
measures for slow work strokes, i.e., for large times τ .

B. Imperfect thermalization

According to Eq. (8), the probability of finding the state n′
after a full cycle when having started in the state n is given by

Tcycle(n′, n) =
∑
l,k,m

Tβ (n′, l)T (k, l)TM(k,m)T (m, n). (50)

If the final stroke of a cycle consists in a perfect thermaliza-
tion, i.e., if Tβ (n′, l) = pβ (n′), then also the transition matrix
for a complete cycle becomes independent of the initial state,
yielding

T
pt

cycle(n′, n) = pβ (n′). (51)

We model the impact of imperfect thermalization in terms
of the weak coupling Eq. (29). Because of the imperfect
thermalization, the final state differs more or less from the
target Gibbs state depending on the thermalization time, and,
besides the other cycle parameters, on the initial state of
the cycle. This may lead to a transient behavior during a
number of cycles until a stationary state is reached. Because
the transition matrix Tcycle is irreducible, the stationary state
is independent of the initial one. It is given by the properly
normalized eigenvector belonging to the eigenvalue 1. The
speed of the approach to this asymptotic state can be estimated
by the absolute value of the second largest eigenvalue of
Tcycle, which, in the parameter range that we have investi-
gated, is apparently proportional to the convergence parameter
α = e−2κθ characterizing the transition probability Tβ (n′, n)
[Eq. (29)]; see also Fig. 8. The approach to the target Gibbs
state is visualized in Fig. 9 as a function of the time of contact
between the working substance and the heat bath in terms of
the 1-norm of the difference between the actual and the target
distribution as given by Eq. (30).

A complete cycle of an engine operated with nonadiabatic
work strokes and imperfect thermalization takes a total time
tcycle = 2τ + θ , where each work stroke lasts the time τ and
the thermalization stroke takes the time θ . Now one can
characterize the performance of the engine by the power P =
−〈W 〉/tcycle. In Fig. 10 the power is displayed as a function
of the work stroke time τ for different sets of the engine
parameter values. At short times τ , the power is negative
followed by a rapid increase to positive values in a similar
way as the efficiency does. At intermediate work stroke times,
it assumes its largest values superimposed by oscillations.
Finally, the power slowly decays to zero in the adiabatic
limit. The oscillatory behavior is caused by the according
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FIG. 8. The second-largest absolute value of the eigenvalues λ2

of the transition matrix Tcycle defined in Eq. (50) is displayed as
a function of the thermalization parameter α = e−2κθ for different
Husimi parameters Q∗ = 1.02 (black dash-dotted line), 1.05 (blue
dashed line), and 1.08 (red solid line) at the temperature T = h̄ωi

and measurement parameter r = 1. The graphs are indistinguishable
from strait lines and vary only insignificantly with temperature and
measurement parameter r . The transition matrix depends on the com-
pression ratio γ only via the Husimi parameter Q∗ as consequently
does its second eigenvalue.

dependence of the Husimi parameter Q∗ on the work stroke
duration; see also Fig. 1.

VI. COMPARISON WITH A TWO-TEMPERATURE
OTTO ENGINE

As already mentioned, the present device differs from a
more conventional Otto engine only by the stroke from state
1 to state 2, with which energy is supplied by the coupling to
a hot heat bath rather than to a measurement apparatus. For
the sake of simplicity we shall assume that this stroke leads
to a complete thermalization at the inverse hot temperature
βh. Also the final stroke is supposed to perfectly thermalize
at the inverse low temperature βc. Moreover we restrict the
comparison to adiabatic work strokes. For this case, the joint
probability pOtto(n′, k, l,m, n) of finding within a complete
cycle the states 0, 1, 2, 3, 0′ at the respective levels n, m, l, k,
n′, is given by the expression

pOtto(n′, k, l,m, n) = δk,lδm,np
(i)
βc

(n′)p(f )
βh

(l)p(i)
βc

(n), (52)

as it immediately follows from Eq. (8) with TM(l, m) sub-
stituted by Tβh

(l, m) = p
(f )
βh

(l), Eq. (14), and from the tran-
sition probability Eq. (12) for the adiabatic strokes. Here,
the probabilities p

(ν)
βj

(n) = e−βj h̄ωνn(1 − e−βj h̄ων ) specify the
equilibrium distributions of an oscillator with frequency ων ,
ν = i, f at the temperature βj , j = h, c. For the measurement
engine the population of state 2 depends on that of the
previous state 1. In contrast, for an Otto engine with perfect
thermalization, these populations are independent of each
other. For the average and the second moment of the work,
one obtains

〈W 〉Otto = (1 − γ )h̄ωi

(〈n〉(f )
βh

− 〈n〉(i)
βc

)
, (53)
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FIG. 9. The distance between the target state pβ and the state
pcycle= Tcycle pβ reached from the target state after a complete cycle,
is measured in terms of the 1-norm, Eq. (30), and displayed as
a function of the thermalization time θ for different temperatures
T in panel (a) at the measurement parameters r = 1. A smaller
measurement parameter, r = 0.5 (red dashed line) leads to a larger
distance from the target state while the larger value r = 2 (blue
dash-dotted line) lessens this distance as exemplified in panel (b),
where the temperature is fixed at T = h̄ωi/kβ . The parameters
specifying the work stroke only insignificantly influence the norm
distance. With γ = 1.5 and ωiτ = 4 they are the same for all curves.
For the relaxation rate of the thermalization always the same value
κ = 0.005ωi was chosen.

〈W 2〉Otto = (1 − γ )2(h̄ωi )
2

× (〈n2〉(f )
βh

− 2〈n〉(f )
βh

〈n〉(i)
βc

+ 〈n2〉(i)
βc

)
, (54)

yielding for the work variance of an adiabatically operated
Otto engine the expression

σ 2
O = (1 − γ )2(h̄ωi )

2
(
σ 2

n (βh, ωf ) + σ 2
n (βc, ωi )

)
, (55)

here the first two moments of the thermal occupation numbers
and the respective variance are known as

〈n〉(ν)
βj

= 1

eβj h̄ων − 1
, (56)

〈n2〉(ν)
βj

= eβj h̄ων + 1

(eβj h̄ων − 1)2
, (57)

σ 2
n (β, ω) = eβh̄ω/(eβh̄ω − 1)2, (58)

with ν standing for i or f and j for h or c.
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FIG. 10. The power of a measurement driven engine is displayed
as a function of the duration of a work stroke τ , for a standard
set of parameters kBT = h̄ωi , r = 1, γ = 1.5, and θ = 150 (black
solid lines) in all four panels of this figure. In panel (a) its behavior
is compared with the two temperatures kBT = 2h̄ωi and 0.5h̄ωi

with the same other parameters. Likewise, panel (b) illustrates the
dependence on the compression rate with γ = 1.2 and γ = 1.8; in
panel (c) the thermalization time is varied: θ = 50 and 100; the
variation of the measurement strength in panel (d) with r = 0.5 and
2 also significantly influences the power. The relaxation rate was
always chosen as κ = 0.005ωi .

Note that the form of the Otto work variance as a sum
of the energy variances of the hot and the cold heat baths
reflect the fact that the supplied and the dumped energies are
independent of each other. This leads to a T 2-proportional
increase of the variance at high temperatures. In contrast, for
a measurement engine these energies are correlated leading
only to a T -proportional variance increase, following from
Eqs. (46) and (47). At low temperatures Tc → 0 the work
variance is solely determined by the energy variance at the
hot temperature, σ 2

O = (1 − γ )2(h̄ωi )2σ 2
n (βh, ωf ).

Likewise, one finds for the average energy 〈Eβh
〉 supplied

by the contact with the hot heat bath the expression〈
Eβh

〉 = h̄ωf

(〈n〉(f )
βh

− 〈n〉(i)
βc

)
. (59)

For the comparison of a measurement-driven engine and
a conventional two-temperature engine, we consider work
strokes with the same compression factor γ , the same inverse
initial temperature, i.e., β = βc and a bath at a high tem-
perature chosen such that the average amounts of energies
supplied to the working substances of both engines by the
strokes between the states 1 and 2 agree with each other.
The average energy imposed by the contact with a hot bath,
given by Eq. (59) must agree with 〈EM〉 = h̄ωf /(8r ). This
requirement amounts for the inverse temperature of the hot
heat bath to become

βhh̄ωf = ln

(
1 + 8r

1 + 8r〈n〉(i)
βc

)
. (60)

Figure 11 exemplifies the resulting hot temperature Th as a
function of the cold bath temperature Tc for different mea-
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FIG. 11. The hot temperature Th given by Eq. (60) of an Otto
engine, which performs the same average work as a measurement
driven engine with different measurement parameters r , is displayed
as a function of the temperature Tc of the cold heat bath to which
also the measurement engine couples in its final equilibration stroke.
Both engines are operated with adiabatic work strokes and ideal
thermalization. The scaling of the hot and cold temperatures with
the frequencies in the compressed and expanded states, respectively,
leads to a compression rate independent plot. The hot temperature
displays a rapid transition between the asymptotic low-temperature
and the high-temperature behaviors kBTh/(h̄ωf ) ≈ 1/ ln(1 + 8r )
and kBTh/(h̄ωf ) ≈ kBTc/(h̄ωi ) + (4r − 1)/(8r ), respectively.

surement parameters r . The hot temperature is approximately
independent of Tc at low temperatures and then turns over into
an approximately linear dependence. We note that due to the
assumption of adiabatic work strokes with the supplied energy
also the total work and the efficiency are equal for the Otto and
the measurement energy.

Figure 12 illustrates the ratio of the work variances char-
acterizing an Otto and a measurement driven engine operated
at equal average work output. At the lowest temperatures the
total work of the Otto engine fluctuates less than that of a
measurement driven engine, which, however, becomes more
reliable at slightly higher temperatures. The critical tempera-
ture T c

c above which the measurement engine performs more
reliable than the Otto engine follows from Eqs. (47) and (58)
in combination with Eq. (60) as

kBT c
c = h̄ωi/ ln[1 + (8r )2 + 8r

√
2 + (8r )2]. (61)

The thermal energy at this critical temperature becomes larger
than the level splitting of the work substance in the expanded
state for position measurements with a relative uncertainty
measure r that is smaller than ≈0.1, i.e., only for rather
precise position measurements for which the distribution of
the supplied energy is quite broad; see also Fig. 2(b).

In the considered limit of adiabatic work strokes the vari-
ance ratio σ 2

O/σ 2
W is independent of the compression rate γ .

With σ 2
O ∝ T 2 and σ 2

W ∝ T , the measurement engine out-
performs the Otto engine at temperatures larger than T c

c . At
low temperatures Tc → 0 the variance ratio approaches with
σ 2

O/σ 2
W = (1 + 8r )/(2 + 8r ) a value which is less than one

but always larger than one half.
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FIG. 12. The total work variances σ 2
O of an Otto and σ 2

W of a
measurement engine are compared to each other as functions of the
common temperature Tc of the lower heat bath of the former and
that of the measurement engine. The temperature of the hot heat
bath of the Otto engine is chosen in dependence of the measurement
parameter r according to Eq. (60) so that the average total works of
both engines agree with each other. The three displayed curves refer
to different measurement parameters r . The work strokes of both
engines are adiabatic and all thermalization strokes are perfect. In
this case the considered ratio of work variances is independent of the
compression ratio γ . The Otto engine performs slightly more reliable
than the measurement driven engine only below the characteristic
temperature T c

c given in Eq. (61). Otherwise, the measurement-
driven engine works better.

We note that, while a nonselective measurement always
increases the energy of the harmonic oscillator working sub-
stance, in a conventional Otto engine, this is only the case
provided that the temperatures of the heat baths obey the
inequality βc > γβh. As a consequence, the efficiency η =
1 − γ −1 is always less than the Carnot efficiency ηCarnot =
1 − βh/βc [10]. The maximal efficiency is only attained for
βc = γβh in which case, however, the average total work as
well as the supplied energy vanish. In this particular situation,
the working substance has already reached the Gibbs state
at the higher temperature after completion of the adiabatic
compression stroke and, on average, no energy uptake results
from the contact with the hot heat bath.

Further, we note that the fact that an adiabatic transfor-
mation of a Gibbs state exclusively passes through a series
of Gibbs states parameterized by a running temperature, is
an exceptional property of working substances which allow
uniform compression, such as the here considered harmonic
oscillator. In the general case, when a parameter variation
leads to a change of level distances of which some are not pro-
portional to the others, an adiabatic transformation proceeds
through nonequilibrium states and will typically also end in a
nonequilibrium state.

VII. CONCLUSIONS

We considered a microscopically small engine whose en-
ergy input results from a nonselective measurement of a
working substance’s observable that does not commute with
the Hamiltonian of the working substance. During this mea-

surement stroke, the working substance is supposed to be
thermally isolated. The other strokes are the same as in a
conventional Otto engine, consisting of compression before
and expansion after the measurement stroke, and a final
thermalization stroke by means of a weak contact with a heat
bath that allows the working substance to release energy and
to come back to the state at which the cycle has started. Also,
the work strokes (compression and expansion) are performed
while the working substance is thermally isolated. For the
sake of concreteness we chose a harmonic oscillator with an
externally controllable frequency by which the compression
and expansion strokes can be carried out. Further, we consid-
ered a nonselective Gaussian measurement as the energy input
stroke.

To monitor the energy profile of a cycle, the energy of
the working substance is measured at the beginning of each
stroke, resulting in four energy measurements per cycle. The
resulting energy profile provides us with a rich diagnostic tool
that not only yields the average behavior of the engine but also
gives insight in its unavoidably random behavior. While the
efficiency of the engine is universally given by η = 1 − γ −1

for adiabatic work processes, it acquires an additional temper-
ature and Husimi parameter dependent factor multiplying the
inverse compression parameter γ −1. For nonadiabatic work
strokes this factor is larger than one leading to the expected
decrease of the efficiency for nonadiabatic work strokes. With
increasing speed of the compression and expansion strokes the
said factor grows until the average total work changes its sign
and the device stops functioning as an engine.

The energy supplied by a Gaussian position measurement
is a random quantity with its most probable value at zero and
a relatively small positive average value which only depends
on the strength of the measurement but which is independent
of the initial distribution of energy eigenstates. The inde-
pendence of the average supplied energy from the state on
which the measurement is performed, is a special feature of
the Gaussian position measurement. As mentioned earlier,
in general, a positive average energy supply is guaranteed
only for nondestructive measurements performed on a passive
state.

Quite large fluctuations occur about the average value. The
average, but also the fluctuations, increase with increasing
measurement strength which can be quantified by the inverse
measurement parameter r defined in Eq. (24) as the ratio of
the variance of the measurement apparatus and the position
variance of the oscillator in its ground state.

A possible systematic error, i.e., a bias of the underly-
ing selective measurement operation does not influence the
post-measurement state of the nonselective measurement and,
hence, has no impact on the performance of the measurement
engine. This is in sharp contrast to a Szilard, or any other feed-
back controlled engine, for which systematic measurement
errors deteriorate the performance.

For adiabatic work strokes, the total work is directly
proportional to the measurement induced energy and hence
inherits its fluctuations. Additional randomness is added to
the work when the work strokes are nonadiabatic. While the
measurement parameter r has a relatively small influence on
the efficiency it strongly affects the reliability of the engine
in that a more precise measurement (smaller measurement
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parameter r) improves the reliability. Likewise, the efficiency
depends much less on the temperature than the reliability,
which decreases with increasing temperature. In contrast, the
compression parameter influences the efficiency stronger than
the reliability.

At the price of imperfect thermalization and nonadiabatic
work strokes, the engine can perform a cycle within a finite
amount of time and, hence, can function with a nonvanishing
power. At short work stroke times τωi the power is nega-
tive, as is the efficiency, and then rapidly grows before it
approaches zero in the adiabatic limit τωi → ∞. In between,
it displays several local maxima which are more pronounced
at lower temperatures.

Finally, we compared an Otto engine with a measure-
ment engine, both of which are operated with adiabatic work
strokes and perfect thermalization. To make the two devices
comparable, the cold heat bath of the Otto engine has the same
temperature as the bath of the measurement engine and the hot
heat bath has a temperature that gives the same efficiency as
the considered measurement engine has. This typically leads
to a different reliability which is better for the Otto engine
only at rather low temperatures. At little higher temperatures
depending on the measurement parameter r , the variance of
the Otto engine rapidly becomes much larger than that of the
measurement engine.

We did not study the Otto engine with work and thermal-
ization strokes taking a finite amount of time. Yet it is obvious
that the power of a measurement engine will be considerably
larger than that of an Otto engine which is run with the same
average work output as the measurement engine because of
the shorter measurement engine cycle time t

cycle
W = 2τ + θ

compared to the Otto cycle time t
cycle
Otto = 2τ + 2θ , in particular

in typical cases when the work stroke time τ is considerably
shorter than the thermalization time θ .
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APPENDIX A: MEASUREMENT-INDUCED
TRANSITION PROBABILITY

We here detail two strategies to numerically evaluate
the transition probabilities TM(m, n), Eq. (22), describing a
Gaussian position measurement on a harmonic oscillator.

1. Gaussian representation

Equation (22) can be expressed as an expectation value of
a product of four Hermite polynomials with respect to the
Gaussian probability density function with vanishing mean
value and covariance matrix M, yielding

TM(m, n) = 2(det M)1/2

2n+mn!m!
〈Hn(ζ )Hm(ζ )Hn(ζ ′)Hm(ζ ′)〉M

= 2π (det M)1/2

2n+mn!m!

∑
i,j,k,l

H i
nH

j
mHk

n H l
M〈ζ i+j ζ ′k+l〉M,

(A1)

where 〈•〉M = ∫ d2ζ
2π (det M)1/2 • exp {− 1

2ζ · M−1 · ζ } is the said

Gaussian average, and Hk
m the k-th coefficient of the

Hermite polynomial of the order m, Hm(x) = ∑m
k=0 Hk

mxk .
These coefficients can be obtained with the help of a symbolic
computer system like Mathematica or Maple. The expectation
values of the monomials ζ kζ ′l follow from the Gaussian
recursion relations

〈ζ kζ ′l〉M = (k − 1)〈ζ 2〉M〈ζ k−2ζ ′l〉M + l〈ζ ζ ′〉M〈ζ k−1ζ ′l−1〉M

= k〈ζ ζ ′〉M〈ζ k−1ζ ′l−1〉M + (l − 1)〈ζ ′2〉M〈ζ kζ ′l−2〉M.

(A2)

The second moments are given by the covariance matrix M to
read

〈ζ 2〉M = 〈ζ ′2〉M = 8r + 1

4(4r + 1)

〈ζ ζ ′〉M = 1

4(4r + 1)
.

(A3)

This approach is limited by the fact that the terms in the
summands on the right-hand side of Eq. (A1), with growing n

and m, assume exceedingly large positive and negative values
which eventually prohibit a reliable calculation of the sum.

2. Generating function

To make use of the generating function of the Hermite
polynomials [42], reading

∞∑
n=0

un

n!
Hn(x) = e2xu−u2

, (A4)

we introduce the auxiliary quantities Rm′n′
mn defined as

Rm′n′
mn =

∫
dζdζ ′Hn(ζ )Hm(ζ )Hn′ (ζ ′)Hm′ (ζ ′)

× e−ζ 2+ζ ′2
e−(ζ−ζ ′ )2/(8r ). (A5)

The transition probability Eq. (22) caused by the measurement
can then be expressed as

TM(m, n) = 1

2m+nn!m!π
Rm,n

m,n. (A6)

Introducing the generating function,

�(u, v,w, z) =
∑

m,n,m′,n′

unvn′
wmzm′

n!m!n′!m′!
Rm′,n′

m,n , (A7)

where the sum is taken from 0 to ∞ with respect to all indices,
one can write the auxiliary coefficients in terms of according
derivatives as

Rm′n′
mn = ∂n+n′+m+m′

∂un∂vn′
∂wm∂zm′ �(u, v,w, z)

∣∣∣∣∣u=v=w

=z=0

. (A8)

Using the definition Eq. (A7), one can express the generating
function �(u, v,w, z) with the help of Eq. (A4) in terms of a
Gaussian double integral, which can be performed yielding

�(u, v,w, z) = 2π

√
r

1 + 4r
eχ (u,v,w,z), (A9)
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where

χ (u, v,w, z)

= −1

1 + 4r

[
1

2
(u2+v2+ w2+z2)

− (u+w)(z+v) − (1 + 8r )(uw+vz)

]
. (A10)

The derivatives of �(u, v,w, z) can be determined with the
help of a symbolic computer language up to a maximal order
depending on the RAM size of the used computer and on the
magnitude of the parameter r .

APPENDIX B: AVERAGE ENERGY SUPPLIED
BY A POSITION MEASUREMENT

The average energy change of a particle moving in a one-
dimensional potential V (q ) caused by a generalized Gaussian
position measurement in a state characterized by the density
matrix ρ can be expressed as

〈EM〉 = Tr[H�M(ρ̄)] − Tr[Hρ̄]

= Tr[(�M(H ) − H )ρ̄], (B1)

where H = p2/(2m) + V (q ) is the Hamiltonian of the parti-
cle and the measurement operation �M is given by Eq. (19).
Here ρ̄ is the diagonal part of the density matrix ρ with respect
to the energy basis as it results from the energy measurement
prior to the position measurement [48]. In going to the second
line of the above equation we used the fact that �M is unital.
Moreover, this measurement operation leaves the potential
part of the Hamiltonian unchanged, which therefore cancels,
resulting in

〈EM〉 = 1

2m
Tr[(�M(p2) − p2)ρ̄]

= 1

2m
Tr

{[∫
dx√
2πσ 2

e−(q−x)2/(2σ 2 )p2

(
1

4σ 2

)
−p2

]
ρ̄

}
.

(B2)

In going to the second line, we introduced the transformed
momentum operator p(t ) given by

p(t ) = e(q−x)2tpe−(q−x)2t , (B3)

which can readily be expressed as

p(t ) = p + 2ih̄t (q − x). (B4)

Hence, one finds

p2

(
1

4σ 2

)
= p2 + i

h̄

σ 2
(q − x)p + h̄

2σ 2
− h̄2

4σ 4
(q − x)2.

(B5)

Now the Gaussian integration over x can be performed.
Noting that, with the Gaussian x integral being centered at
x = q, the term linear in (q − x) vanishes and the quadratic
contribution (q − x)2 yields σ 2, one finally obtains

〈EM〉 = h̄2

8mσ 2
, (B6)

in accordance with the result given in Ref. [16]. Most notably,
the average measurement supplied energy is positive and
independent of the potential V (q ) and of the density matrix ρ

characterizing the state of the considered particle immediately
before the measurement sequence of energy, position, and
again energy.

APPENDIX C: AVERAGES OF WORK
AND SUPPLIED ENERGY

According to Eq. (31) the average work consists of four
additive contributions given by

〈W 〉 = h̄ωi (〈l〉3 − 〈n〉0) + h̄ωf (〈m〉1 − 〈k〉2), (C1)

and the average supplied energy accordingly becomes

〈EM〉 = h̄ωf (〈k〉2 − 〈m〉1), (C2)

where

〈n〉0 =
∑

n

np(n, θ ), (C3)

〈m〉1 =
∑
m,n

mT (m, n)p(n, θ ), (C4)

〈k〉2 =
∑
k,m,n

kTM(k,m)T (m, n)p(n, θ ), (C5)

〈l〉3 =
∑

l,k,m,n

lT (l, k)TM(k,m)T (m, n)p(n, θ ). (C6)

Combining Eqs. (B6) and (C2), one finds for the populations
difference between 2 and 1 the following expression:

〈z〉 = 〈k〉2 − 〈m〉1 = 1

8r
, (C7)

which only depends on the measurement-uncertainty parame-
ter r .
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