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Work extraction using Gaussian operations in noninteracting fermionic systems
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We investigate work extraction from noninteracting fermions under arbitrary unitary operations and the
more restricted class of Gaussian unitary operations that can be feasibly implemented. We characterize general
quantum states in fermionic systems according to their ability to yield work (or not) under such transformations
and study the limit for which multiple copies of passive states in fermionic systems can be activated for work
extraction. We find that a sufficient number of copies of nonthermal passive states can achieve this, yielding an
upper bound on the number of copies needed.
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I. INTRODUCTION

Since the inception of quantum thermodynamics, one of
the important areas of research is the search for minimal
resources and the least work-intensive protocols for the ex-
traction of work out of thermal systems. This task entails
finding quantum states that are freely available and quantum
operations that can be feasibly implemented. In this context,
the classification of passive states [1,2] as “freely available”
[3,4], may have been overrated; this is because over a long
period, “passive states” were generally believed to have no
extractable work under cyclic unitary transformations. Sur-
prisingly, recent studies [5–7] have shown that this situation
holds if we have access to only a single copy of the state.
However, if we collectively process many copies of the same
system, extractable work can become available. If no work
can be extracted unitarily, no matter how many copies are
available then the state is said to be completely passive;
thermal states are the only completely passive states [1,2].
The fact that passive states can be “activated” in such a way
that work can be extracted from them is drawing increasing
interest amongst researchers [5,8–10]. In this context, it seems
that the underlying entanglement structure of the quantum
system plays a crucial role. Indeed, recent results call into
question the role of entanglement, free energy, correlations
and coherence for such work extraction.

Ideally, work can be extracted from nonpassive states
whose average energy can be lowered by acting on it with
cyclic unitary operations. Generally in a cyclic Hamiltonian
process [7], the maximal extractable work (called the er-
gotropy) between states ρ and σ is given as

Wmax(ρ) = maxU tr[H (ρ − σ )], (1)

where H is the system’s Hamiltonian, σ = UρU †, and U the
unitary operator. For n copies of passive states, U would be a
nonlocal (entangling) unitary acting on the total system with
total Hamiltonian given by H .
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Nonlocal (and thus entangling) unitary operations are ca-
pable of extracting more work than local operations from a
set of quantum systems. However, the dynamics involving
a nonlocal operation is slow, in the sense that it requires
many different operations. Since such operations are difficult
to implement, we are therefore left to consider which work
extraction protocol is practically achievable when subjected
to a restricted unitary operation. A large class of transfor-
mations that are easy to describe are Gaussian unitaries,
which map Gaussian states into Gaussian states. The Gaussian
unitary transformations being generated by quadratic Hamil-
tonians are in general more constrained than general unitary
transformations.

A characterization of bosonic quantum states from which
no (or maximal) work can be extracted using a Gaussian
unitary transformation was recently established [11]. In this
context, bosonic Gaussian passive states (and non-Gaussian
passive states), from which no (or maximal) work can be ex-
tracted using a Gaussian unitary transformation, were defined.
In this paper we investigate the corresponding situation for
fermionic systems. Fermionic systems are similar to bosonic
systems but differ in their statistics (Fermi-Dirac in the former
and Bose-Einstein in the latter). There is a one-to-one map
between n fermionic modes and the Hilbert space of n qubits.
This allows for easy computations with fermions, providing
an added advantage for quantum computational tasks [12]. It
is the main aim of this paper to see how useful a fermionic
system is for work extraction. We will show how Gaussian
unitaries can yield a characterization of Gaussian passive and
Gaussian nonpassive fermionic states, respectively.

Energy storage and its subsequent extraction has both
fundamental and practical importance. The main goal of our
study of work extraction from noninteracting fermion systems
is to understand from which quantum states of fermionic
systems energy can or cannot be minimized. We first con-
sider general unitary transformations and then investigate the
more restricted class of Gaussian unitary operations. Specif-
ically, we consider a 1D noninteracting continuous variable
fermionic systems composed of n modes.

In Sec. II, we describe the features of such systems and
then discuss the characterization of fermionic Gaussian states.
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Identical thermal states do not allow for work activation no
matter how many copies are available since a product of
thermal states is a thermal state itself and hence passive. As
a proof, we give an illustration of activation in product of
thermal states using a general unitary transformation in Sec.
III. Our main results are presented in Sec. IV where we char-
acterize Gaussian and non-Gaussian passive states based on
the availability of extractable work using Gaussian operations.

II. THE FERMIONIC SYSTEM

A system of N canonical fermionic modes κ is described
by a Hilbert space (with dimension 2N ) H = ⊗N

κ=1 Hκ

spanned by the basis |nκ = 0〉 and |nκ = 1〉 known as the
Fock or number state basis. The annihilation and creation
operators ak and a

†
k of a fermionic particle in mode k (with

frequency ωk) satisfy the canonical anticommutation relation
(CAR) {a†

k, al} = δkl, {a†
k, a

†
l } = {ak, al} = 0, where δ is

the Kronecker δ. Over the Fock state, the action of â and
â† operators is given as a|0〉 = 0 = a†|1〉, a|1〉 = |0〉, and
a†|0〉 = |1〉. The number operator n̂ = a†a is an eigenstate of
the Fock state, i.e., n|n〉 = n|n〉.

The fermionic system may be described by another set
of field operators known as the Majorana operators. The kth
mode Majorana operators c2k and c2k−1 are related to the
creation and annihilation operators through the relation

c2k−1 = 1√
2

(ak + a
†
k ), c2k = i√

2
(ak − a

†
k ), (2)

where k = 1, 2, · · · , N labels the N modes of the system
under study. The Majorana operators are Hermitian and satisfy
the relation {ci, cj } = δij . They can be arranged into a vector

x := (c1, c3, · · · , c2N−1; c2, c4, · · · , c2N )T ,

so that in a compact form, the fermionic canonical anticom-
mutation relations (CAR) become

{xi, xj } = δij . (3)

Linear transformations on fermionic operators that pre-
serve the CAR are of the form

ck → c′
k =

∑
i

Oklcl,

where O ∈ O(2N ) is an element of the orthogonal group.
These transformations can be implemented by unitary oper-
ations which are generated by quadratic Hamiltonians in the
Majorana operators cj .

A. Fermionic Gaussian states

Gaussian states for bosonic modes are easily accessible in
laboratories and Gaussian unitaries for bosonic systems can be
easily implemented [11]. The idea that the unitary operation
necessary to extract work from passive states is rather general
led to considerations of the set of more restricted set of
Gaussian transformations as they are more practically imple-
mented [11]. This brought the notion of bosonic Gaussian pas-
sive states as those states from which work cannot be extracted
using Gaussian transformations in the bosonic regime [11].

In the sequel we shall consider the analogous problem for
fermions. Although there have been relatively few studies of
fermionic Gaussian systems, we note that they can in prin-
ciple be rendered useful for quantum computation purposes
because of their analogy with two qubit systems [13,14]. To
this end, we recapitulate some basic formalism on fermionic
Gaussian states, which may be defined based on either covari-
ance matrix approach or a Grassmann approach [15].

1. Covariance matrix approach

Here, arbitrary fermionic Gaussian states are operators that
are exponentials of quadratic form in the Majorana operators

ρ = Z−1 exp

[−i

4
xT Gx

]
, (4)

where Z is a normalization constant that can be obtained
from the condition tr(ρ) = 1; we provide its derivation in the
Appendix. G is a real antisymmetric 2N × 2N matrix, which
can be brought to a 2N × 2N block diagonal form by a special
orthogonal matrix O ∈ SO(2N ), that is

G̃ = OGOT =
N⊕

j=1

(
0 βj

−βj 0

)
, (5)

where the βj are real numbers that characterize G. With
an inverse transformation G = OT G̃O, the density matrix
Eq. (4) can be written as

ρ = Z−1 exp

[
− i

4
xT OT G̃Ox

]

and upon defining a new set of transformed Majorana opera-
tors x̃ = Ox, the density matrix becomes

ρ = Z−1 exp

[
− i

4
x̃T G̃x̃

]
. (6)

Substituting x̃ = (c̃2j−1, c̃2j )T and Eq. (5), we get the
fermionic Gaussian state in standard form [16]

ρ = 1

2n
�n

j=1

(
1 − i tanh

(
βj

2

)
c̃2j−1c̃2j

)
, (7)

using (c̃2j−1c̃2j )2 = −1 for any j (see the Appendix).
Let us define a real and antisymmetric matrix � with

elements

�kl = i

2
〈[ck, cl]〉 =

{
i〈ckcl〉, for k �= l

0, for k = l
, (8)

where for a given state ρ and an observable A, we define
〈A〉 = Tr[ρA]. In terms of the transformed Majorana opera-
tors c̃ = Oc, the antisymmetric matrix � transforms as

�̃kl = i

2
Tr(ρ[c̃k, c̃l]) = i

2
〈[Okmcm,Olncn]〉

=
∑
kl

Okm

i

2
Tr(ρ[cm, cn])OT

nl = O�OT .

Using the density matrix from Eq. (7), we can calculate �̃kl =
i
2 Tr(ρ[c̃k, c̃l]), obtaining

λj = �̃2j−1,2j = i Tr(ρ[c̃2j−1, c̃2j ]) = tanh

(
βj

2

)
,
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with all other �̃kl zero, yielding

�̃ = O�OT =
M⊕

j=1

(
0 λj

−λj 0

)
(9)

and demonstrating that � and G can both be brought to block
diagonal form by the same orthogonal matrix O.

By definition, � is the covariance matrix of the fermionic
Gaussian state. The direct link between G and � indicates
that a fermionic Gaussian state can be fully characterized by
either its density matrix or its covariance matrix. Hence, every
� corresponding to a physical state has to fulfill i� � 1 or
equivalently ��T � 1 with equality if and only if the state is
pure.

Thermal states with inverse temperature (β),

τ (β ) = 1

Z e−βH ,

are examples of a more general class of Gaussian state.
Here, Z = tr(τH ) is the partition function. If we define the
Hamiltonian for a single fermionic mode with frequency ω

as H = ωa†a, then in the Fock basis, a thermal state can be
expressed as

τ (β ) = 1

(1 + e−βω )

1∑
n=0

e−nβω|n〉〈n|,

with covariance matrix

� =
(

0 λ

−λ 0

)
, �2 < −λ21,

where λ = tanh ( βω

2 ). For n noninteracting fermionic modes,

the Hamiltonian is defined as H = ∑n
i=1 ωia

†
i ai and the

covariance matrix for the product of n fermionic thermal
states is

�n =
n⊕
i

(
0 λi

−λi 0

)
, (10)

λi = tanh ( βiωi

2 ). We will make reference to this later in the
paper.

2. Grassmann approach

The connection between the covariance matrix approach
and Grassmann approach is the map assigning the Grassmann
variables to each Majorana operator,

ω(c2M−1, c2M, γ ) = γ2M−1γ2M, ω(1, γ ) = 1, (11)

where γk ∈ G2n is the algebra of Grassmann variables. Then
we define a state ρ of n fermionic modes to be Gaussian if its
Grassmann representation ω(ρ, γ ) is Gaussian,

ω(ρ, γ ) = 1

2n
exp

(
i

2
γ ∗�γ

)
, (12)

where � is a 2n × 2n real antisymmetric matrix also known
as the covariance matrix of the state as defined in (8) [16].

3. Coherent states

Under the Grassmann representation, one can define a
fermionic coherent state [15]. For any set of variables {γi}
of Grassmann numbers, a normalized coherent state |γ 〉
is defined as the displaced vacuum state |γ 〉 = D(γ )|0〉,
where D(γ ) is the displacement operator, which acts on
fermionic â and â† operators as D(γ )âD†(γ ) = a + γ and
D(γ )â†D†(γ ) = a† + γ ∗ respectively [15]. This operation
preserves the anticommutation relations. In this paper we
restrict ourselves to Gaussian operators that contain no Grass-
mann variables [17].

B. Gaussian unitaries

Gaussian unitaries are generated by Hamiltonians
quadratic in Majorana operators and transform Gaussian
states to Gaussian states. This definition applies to the specific
case of unitary transformations that preserve the Gaussian
character of a quantum state. Gaussian transformations in
Hilbert space are special orthogonal transformations on phase
space. In terms of the statistical moment x̂ and �, the special
orthogonal transformation is defined by the action

x̂ = Ox̂, � = O�OT , OOT = 1. (13)

Unlike boson field operators, whose algebraic properties
are preserved by symplectic transformations, fermion anti-
commutation relations are invariant under rotations. Examples
of such Gaussian transformations that preserve the canonical
anticommutation relations of fermionic modes (thus trans-
forming fermionic Gaussian states to fermionic Gaussian
states) are as follows.

(1) Phase rotation operator:

R(θ ) = e−iθa†a,

x̂ → O(θ )x̂, O(θ ) =
(

cos(θ ) sin(θ )
− sin(θ ) cos(θ )

)
. (14)

(2) Two-mode squeezing operator [18]:

S(r ) = exp[r (ab − b†a†)],

x̂ → S(r )x̂, S(r ) =
(

cos(r )1 − sin(r )σz

sin(r )σz cos(r )1

)
, (15)

where σz = diag(1,−1) is the usual Pauli matrix.
(3) Beam splitting operation:

B(φ) = exp[φ(ab† + a†b)]

x̂ → B(φ)x̂, B(φ) =
(

cos(φ)1 − sin(φ)1
sin(φ)1 cos(φ)1

)
. (16)

III. PASSIVITY AND ACTIVATION

A state ρ is passive if its average energy cannot be lowered
when a unitary operation acts on it, that is

Tr[Hρ] � Tr[HUρU †], (17)

where H = ∑d−1
i=0 Ei |i〉〈i| is the Hamiltonian of the finite di-

mensional quantum system associated with the Hilbert space
H ≡ Cd , with energy eigenstates |i〉 and eigenvalues Ei . A
state may be passive given only a single copy but can become
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active for n copies. Completely passive states remain passive
no matter how many copies of the system are available, while
those states that become active for some k � n copies of
the system is termed k-activable [7]. This naturally leads
to the question of what the class of states is that remains
passive, even given an infinite number of copies. Thermal
states defined by ρ = 1

Z e−βH with Z = Tr[e−βH ] are the only
completely passive states [1,2].

Given that some passive states can be activated for some
k � n copies of the system to yield work, the aim of this
section is to find the value of k for which a passive but not
thermal state of fermionic modes can be activated to yield
work.

A. Passive states

Passivity of a quantum state is often expressed as a property
of the state and its Hamiltonian. Consider a state ρ and a
reference Hamiltonian H , both written in their respective
eigenbasis,

H :=
∑

En|n〉〈n|, with En+1 � En ∀n,

ρ :=
∑

pn|ρn〉〈ρn|, with pn+1 � pn ∀n,

where 0 � pn � 1 and
∑

n pn = 1. ρ is passive if and only if
it is diagonal in the same basis as the Hamiltonian H of the
system, that is [ρ,H ] = 0. This can be interpreted as {|ρn〉}
coinciding with {|n〉}, with no population inversion, that is
with decreasing population pj < pk and increasing energy
Ej > Ek . Otherwise, we say ρ is nonpassive.

In a two-dimensional continuous variable system spanned
by the states |m〉 and |n〉, it can be shown[11] that a product of
two thermal states of two bosonic modes at the same inverse
temperature β and frequency ω, form an example of a passive
state, whereas given the modes with the same frequency and
at different inverse temperature, the state is non passive. We
ask if this is true for fermionic systems.

B. Activation of passive states to generate work

In the Fock basis, a thermal state for a fermionic mode with
inverse temperature β is given as

τ (β ) = (1 + e−βω )−1
1∑

n=0

e−nβω|n〉〈n|

= (1 + e−βω )−1(|0〉〈0| + e−βω|1〉〈1|) (18)

Consider a noninteracting two-mode fermionic system of
equal frequency ω each with local Hamiltonian hi = ωa

†
i ai .

The total Hamiltonian H of the system is simply the sum of
the individual local Hamiltonians: Hs = ω(a†

1a1 + a
†
2a2). The

fermionic two-mode thermal state in the Fock basis may then
be expressed as

τ (β1, β2) = 1

Z1Z2

1∑
m,n=0

e−ω(nβ1+mβ2 )|m〉〈m| ⊗ |n〉〈n|,

where Z1Z2 = (1 + e−β1ω )(1 + e−β2ω ) and up to a common
factor, the matrix elements are

ε = e−ω(β1n+β2m) = e
− ω

T1T2
(mT1+nT2 )

.

We see that Hs commutes with the product state τ (β1, β2)
composed of states of the form in Eq. (18). The occupational
numbers n,m ∈ {0, 1}. The sum of the occupational numbers
in the state is Ni = m + n. Consider a unitary transformation
from the state τ (β1, β2) to τ ′(β1, β2) such that

τ ′(β1, β2) = 1

Z1Z2

1∑
m′,n′=0

e−ω(n′β1+m′β2 )|m′〉〈m′| ⊗ |n′〉〈n′|,

with new occupational number given as N ′
i = m′ + n′ and

matrix element proportional to

ε′ = e−ω(β1n
′+β2m

′ ) = e
− ω

T1T2
(m′T1+n′T2 )

.

The state τ (β1, β2) is nonpassive if there exist pairs of non-
negative integers m, n,m′, n′ such that

ε′ > ε, while m′ + n′ > m + n, (19)

which up to a common factor yields the condition

mT1 + nT2 > m′T1 + n′T2, while m′ + n′ > m + n,

(20)

by making use of the fact that e−AX > e−AY ⇒ X < Y . Given
that m, n ∈ {0, 1}, Eq. (20) cannot be satisfied. We then
conclude that for two-mode fermionic states, regardless of
frequencies of the modes and its temperature, the product of
two thermal states is always passive, this is in contrast to the
bosonic case [11].

However, for a product τ (β1, β2, β3) of three fermionic
thermal states,

τ (β1, β2, β3) = 1

Z1Z2Z3

1∑
m,n,l=0

e−ω(nβ1+mβ2+lβ3 )

× |m〉〈m| ⊗ |n〉〈n| ⊗ |l〉〈l|, (21)

the situation changes. The nonpassivity condition becomes

nβ1 + mβ2 + lβ3 > n′β ′
1 + m′β ′

2 + l′β ′
3, (22)

while m′ + n′ + l′ > m + n + l.

The matrix element is now proportional to e−ω(nβ1+mβ2+lβ3 )

and m, n, l ∈ {0, 1}. One can now find a three-dimensional
subspace in which a unitary can reduce the average energy,
proving that the state τ (β1, β2, β3) is not always passive. For
example, let m′ = n′ = 1, l′ = 0 and m = n = 0, l = 1, it is
obvious that m′ + n′ + l′ > m + n + l. Also,

β3 > β1 + β2, (23)

which can hold for sufficiently large β3. In general, the condi-
tion Eq. (22) can be satisfied provided βi � βj , βk for distinct
i, j, k. Hence, a product of thermal states ρ = ∏n

j τ (βj ) =
τ (β1) ⊗ · · · ⊗ τ (βn) for fermionic modes can be activated to
become nonpassive for n � 3. In other words, the state is
3-activable [6].

From the above we can construct the following.
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Protocol: Consider the three-mode fermionic system de-
scribed by the state Eq. (21). From the nonpassivity condition
Eq. (22), we note that for the above transformation to be
possible, the action of the unitary operation must be such that

(1) The initial state with a composition of the three modes
should consist at least of an unpopulated mode and a popu-
lated mode. That is, initial states of the system of the form
|111〉 and |000〉 are not allowed.

(2) The action of the unitary should take the initially
populated (unpopulated) mode to an unpopulated (populated)
mode of the final state.

(3) One can always guess the temperature relationship of
the different modes: The sum of the inverse temperature of
the initially unpopulated modes must be less than the inverse
temperature of the populated mode.

(4) If a transformation leaves a mode unaffected, then
the temperature of such mode does not matter during the
transformation process.

We now turn to a practical example of such transformation.
The three mode state can be written as

ρnml = 1

Z1Z2Z3
[e−ωβ1 |100〉〈001| + eωβ3 |001〉〈100|

+ e−ωβ2 |010〉〈010| + e−ω(β1+β3 )|101〉〈101|
+ e−ω(β1+β2 )|110〉〈011| + e−ω(β2+β3 )|011〉〈110|
+ |000〉〈000| + e−ω(β1+β2+β3 )|111〉〈111|],

upon expanding the sum in Eq. (21). Consider a unitary of the
form

U = |101〉〈010| + |010〉〈101| − |101〉〈101|
− |010〉〈010| + 1, (24)

where U induces a transition between the two degenerate
states,

|010〉 ↔ |101〉. (25)

We note that U = U †. This type of unitary has been applied to
generate a mixed state of the Werner- type thermal state [19]
necessary for quantum information processing. The amount
of work extracted from the system (the change in its average
energy) is given by [7]

W = Tr[H (ρnml − UρnmlU
†)]

= h̄ωe−ωβ2 (1 − e−ω((β1+β3 )−β2 ) ),

which must be positive for the state to be nonpassive. Clearly
this will hold whenever (β1 + β3) − β2 < 0, or in other
words,

β2 > β1 + β3, (26)

which agrees with the nonpassivity condition in Eq. (22).
Alternatively one could employ a unitary that interchanges the
|001〉 and |110〉 states and one would obtain Eq. (23).

The problem of generating a unitary analogous to Eq. (24)
for more copies of fermion states is rather challenging. In
the next section, we discuss a more restricted class of unitary
transformations.

IV. GAUSSIAN PASSIVITY

In the previous section we saw that, unlike the situation for
bosonic modes, for fermionic modes a product of two thermal
states at different temperatures is passive. Given that con-
structing a heat engine requires access to two thermal baths
at different temperatures, can one construct a heat engine out
of a product of thermal states in fermionic modes?

To answer this question, we note that passivity of quantum
states requires a cyclic unitary transformation. In our work,
we consider a Gaussian unitary transformation to characterize
fermionic states according to their abilities to generate work
or not.

Suppose we have access to a Gaussian unitary. We are
interested in the effect of the Gaussian transformation in-
duced by this unitary on an arbitrary state via the effect on
the corresponding covariance matrix. We ask for which (not
necessarily Gaussian) states of two noninteracting fermionic
modes with frequencies ωa and ωb (ωa � ωb ) can energy
can be extracted using only Gaussian operations. States from
which energy cannot be extracted using Gaussian operations
are called Gaussian passive [11].

V. ENERGY AS A FUNCTION OF STATE
COVARIANCE MATRIX

Before we proceed, we define the average energy of a state
in terms of its covariance matrix.

Definition 1: The average energy of a quantum state ρ of
a fermionic mode with frequency ω is given in terms of its
covariance matrix � by the relation

E(�) = ω

2
[1 − Tr(��)], (27)

for some real symplectic matrix �

To demonstrate this, the covariance matrix � of a quantum
state ρ for a fermionic mode with frequency ω is

� = i

2

(
0 〈[c1, c2]〉

〈[c2, c1]〉 0

)
, (28)

in terms of Majorana operators Eq. (2) for this mode. Defining
the 2 × 2 symplectic matrix

� =
(

0 −1
1 0

)
,

and taking the product ��, we find

Tr(��) = i〈[c1, c2]〉 = Tr(i[c1, c2]ρ). (29)

The average energy E(ρ) = ω Tr[ρa†a], which becomes

E(ρ) = ω

2
Tr

[
ρ
(
c2

1 − i[c1, c2] + c2
2

)]
. (30)

Substituting Eq. (29) into Eq. (30) and taking note that c2
1 =

1/2 = c2
2, we obtain E(�) = ω

2 (1 − Tr(��)) as expected.
This is the average energy for a single mode of the state with
frequency ω.

As we consider noninteracting fermionic modes, the aver-
age energy of an n-mode state is defined as the sum of the
average energy of each of the individual modes. In terms of
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covariance matrix this is given as

E(�n) = ω1

2
[1 − Tr(�1�1)] + · · · + ωn

2
[1 − Tr(�n�n)],

(31)

where the symplectic matrix for the entire system is � =⊕n
j=1 �j .

VI. CHARACTERIZING A GAUSSIAN PASSIVE
AND NONPASSIVE FERMIONIC STATE

We are now ready to characterize quantum states with a
covariance matrix � for which the average energy Eq. (31)
can be minimized by a Gaussian unitary transformation.

A. Standard form of a covariance matrix

Let ρ be the state of a two-mode system each with frequen-
cies ωa and ωb � ωa , and define � as the covariance matrix of
the two-mode system. Any two-mode covariance matrix can
be brought to the form

�sf =

⎛
⎜⎜⎝

0 a 0 −e1

−a 0 −e2 0
0 e2 0 b

e1 0 −b 0

⎞
⎟⎟⎠, (32)

by a local orthogonal operation (LOO) Oloc = Oloc,a ⊕ Oloc,b,
that is �sf = Oloc�OT

loc [14].
The more restrictive set of pure Gaussian states are charac-

terized by �2
sf = −1. This implies that the covariance matrix

of the two-mode pure fermionic Gaussian state can be brought
to the form

�
p

sf =

⎛
⎜⎝

0 a 0 −e

−a 0 −e 0
0 e 0 a

e 0 −a 0

⎞
⎟⎠, (33)

with e = (1 − a2)1/2 [13,14] so that the fermionic system
depends only on one parameter a.

Now suppose we have a product of two fermionic modes
with the covariance matrix in the standard form Eq. (32). Its
average energy according to Eq. (31) is given as

E(�sf ) = ωa

2
(1 − 2a) + ωb

2
(1 − 2b), (34)

where ωa and ωb are the frequencies of the modes. We shall
now prove:

Theorem 1: Any (not necessarily Gaussian) state of two
noninteracting fermionic modes with frequencies ωb � ωa is
Gaussian-passive if and only if its covariance matrix � is

(i) in Williamson standard form [13]

� =

⎛
⎜⎝

0 a 0 0
−a 0 0 0
0 0 0 b

0 0 −b 0

⎞
⎟⎠, (35)

with λa > λb for ωb �= ωa , or

(ii) in the form

� =

⎛
⎜⎝

0 a 0 −e

−a 0 e 0
0 −e 0 b

e 0 −b 0

⎞
⎟⎠, (36)

for equal frequencies ωb = ωa .
To prove this theorem, we start with the most general co-

variance matrix that any state ρ may have and apply Gaussian
operations to reduce its average energy until minimal. At this
point we obtain a state ρ ′ with minimal energy. We compare
the energy of ρ ′ with that of ρ and identify under which
conditions the energy of ρ has been lowered. We thus can
identify the characteristics of Gaussian-passive states from
these conditions. We consider here even fermionic systems
for which Tr(X) = 0. As noted in Sec. II A, these have no
Grassmann variables and so have vanishing first moment.

B. Local orthogonal transformations

We note that the covariance matrix � of a two-mode
fermionic system can be brought to its standard form through
a local orthogonal transformation Oloc = Oloca

⊕ Olocb
, that is

Oloc�OT
loc = �sf =

(
A E

−ET B

)
, (37)

with

Oloca
=

(
cos(φa ) sin(φa )

− sin(φa ) cos(φa )

)
,

and where each element of �sf is a 2 × 2 matrix

A =
(

0 a

−a 0

)
, B =

(
0 b

−b 0

)
, E =

(
0 e1

e2 0

)
.

A and B describe the local covariance matrix of each mode
and E describes the correlation between the two modes. By
inverting Eq. (37), we can write the local covariance matrix of
a two-mode system as

OT
loc�sf Oloc = �, (38)

and we note that the inverse operations are also local orthog-
onal transformations.

We ask here: Given a state with a two-mode covariance
matrix �, can work be extracted from the system? That is,
can the average energy corresponding to � be reduced? To
answer this question we compute the average energy E(�)
corresponding to the covariance matrix � and find using
Eq. (37) that E(�) = E(�sf ) as given in Eq. (34). Since
the energies are the same, it becomes clear that states with
covariance matrix � = �sf are Gaussian passive under a local
orthogonal transformation.

However, the energy of such states may be reduced by
global orthogonal transformations, as we will show in the next
section.

C. Two mode Squeezing

Now suppose a state has a covariance matrix in the standard
form Eq. (37). We have seen in the previous subsection that
such a state is Gaussian passive under a local orthogonal
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transformation. In this section, we will apply the global or-
thogonal transformation Eq. (15) to the system and see if its
average energy can be reduced. Computing the corresponding
two-mode squeezed covariance matrix �̂TM = S(r )�sf S(r )T ,
we find

�̂TM =

⎛
⎜⎜⎝

0 a′ 0 −e′
1

−a′ 0 −e′
2 0

0 e′
2 0 b′

e′
1 0 −b′ 0

⎞
⎟⎟⎠, (39)

where

a′ = ac2
r − bs2

r − 1
2 (e1 + e2)s2r , (40a)

b′ = −as2
r + bc2

r − 1
2 (e1 + e2)s2r , (40b)

e′
1 = 1

2 (a + b)s2r + e1c
2
r − e2s

2
r , (40c)

e′
2 = 1

2 (a + b)s2r + e2c
2
r − e1s

2
r , (40d)

with cr = cos(r ) and sr = sin(r ), respectively. To see if this
transformation can reduce the average energy, we compute
E(�̂TM) using Eq. (27), obtaining

E(�̂TM) = ωa

2
(1 − 2a′) + ωb

2
(1 − 2b′), (41)

and substituting Eq. (40) into Eq. (41), we get

E(�̂TM) = ωa[b sin2(r ) − a cos2(r )]

+ωb[a sin2(r ) − b cos2(r )]

+ (ωa + ωb )

2
[1 + (e1 + e2) sin(2r )], (42)

and minimizing this with respect to the squeezing parameter
r , we find the condition

∂

∂r
E(�̂TM) = 0,

⇒ (a + b) sin(2r ) + (e1 + e2) cos(2r ) = 0, (43)

whose solution is

r = −1

2
tan−1

[
e1 + e2

(a + b)

]
= −1

2
tan−1(λ), (44)

where λ = (e1 + e2)/(a + b). The minimized energy is

Emin(�̂TM) = (ωa + ωb )

2
(1 − (a + b)

√
1 + λ2)

+ 1

2
(ωb − ωa )(a − b). (45)

Defining e = (e1 − e2)/2, the elements of the covariance ma-
trix Eq. (40) are now

ã′ = (a + b)

2

√
1 + λ2 + (a − b)

2
, (46a)

b̃′ = (a + b)

2

√
1 + λ2 − (a − b)

2
, (46b)

ẽ′
1 = e, ẽ′

2 = −e. (46c)

We pause to comment on the interpretation of these matrix
elements. In addition to minimizing the system’s average

energy, the squeezing parameter Eq. (44) reduces the off-
diagonal elements in Eq. (39) to a single parameter e so that
the resulting covariance matrix is of the form

�GP =

⎛
⎜⎜⎜⎝

0 ã′ 0 −e

−ã′ 0 e 0

0 −e 0 b̃′

e 0 −b̃′ 0

⎞
⎟⎟⎟⎠. (47)

If the state is a two-mode pure fermionic Gaussian state
whose covariance matrix is of the form of Eq. (33), the two-
mode squeezing operation takes the state’s covariance matrix
to the form

�
p

GP =

⎛
⎜⎝

0 1 0 0
−1 0 0 0

0 0 0 1
0 0 −1 0

⎞
⎟⎠, (48)

with property (�p

GP)2 = −1. This corresponds to the co-
variance matrix of a pure fermionic Gaussian state in the
Williamson normal form [13]. To achieve a Williamson
normal form covariance matrix for the general two-mode
fermionic system, we consider further Gaussian unitary trans-
formations on the system.

D. Beam splitting

The last Gaussian operation we have to consider is the
beam-splitting operation. This transformation on fermionic
phase space is represented by the transformation matrix
Eq. (16). We find

�BS = B(θ )�̂GPB
†(θ ) =

⎛
⎜⎜⎜⎝

0 A 0 D

−A 0 −D 0

0 D 0 B

−D 0 −B 0

⎞
⎟⎟⎟⎠, (49)

where

A = ã′ cos2 θ + b̃′ sin2(θ ) + e sin(2θ ), (50a)

B = b̃′ cos2 θ + ã′ sin2(θ ) − e sin(2θ ), (50b)

D = 1
2 (ã′ − b̃′) sin 2θ − e cos(2θ ). (50c)

The average energy corresponding to �BS is

E(�BS) = −ωa[b̃′ sin2(θ ) + ã′ cos2(θ )]

−ωb[ã′ sin2(θ ) + b̃′ cos2(θ )] (51)

+ (ωa + ωb )

2
+ (ωb − ωa )e sin(2θ ). (52)

Again, energy is minimized for the value of θ satisfying the
equation

(ωb − ωa )[(b̃′ − ã′) sin(2θ ) + 2e cos(2θ )] = 0, (53)

implying

θ = −1

2
tan−1

(
2e

b̃′ − ã′

)
= −1

2
tan−1 μ,
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where μ = 2e/(b̃′ − ã′). The minimized energy under the
beam splitting operation is then

Emin(�̂BS) = (ωb − ωa )

2
[(ã′ − b̃′)

√
1 + μ2]

+ 1

2
(ωb + ωa )[1 − (ã′ + b̃′)], (54)

and the corresponding minimized matrix element is

A = (ã′ + b̃′)
2

+ (ã′ − b̃′)
2

√
1 + μ2, (55a)

B = (ã′ + b̃′)
2

− (ã′ − b̃′)
2

√
1 + μ2, (55b)

D = 0. (55c)

For equal frequencies ωa = ωb, the average energy is
unchanged, that is Emin(�̂TM) = Emin(�̂BS) and we conclude
that the state with covariance matrix Eq. (47) is Gaussian
passive. However, for different frequencies assume w.l.o.g.
that ωb > ωa , the covariance matrix for the minimized state
under beam splitting operation is in the Williamson normal
form [13]

�1
GP =

⎛
⎜⎝

0 A 0 0
−A 0 0 0

0 0 0 B

0 0 −B 0

⎞
⎟⎠, (56)

with eigenvalues given as λa = ±iA and λb = ±iB. If a > b,
we find that λa > λb and so the lower frequency mode has the
higher population.

We see that the effect of the orthogonal transformation on
the fermionic two-mode covariance matrix is to decompose
the modes and bring them into a product of single-mode
locally thermal states diagonal in the Fock basis. An example
of Gaussian passive state of two modes with different fre-
quencies is that of a product of single mode thermal states, in
which each mode has different temperature. In this case, the
Williamson eigenvalues are λi = tanh ( ωi

2Ti
). For Tb �= 0 the

condition λa > λb for Gaussian passivity can be expressed as

ωa

ωb

>
Ta

Tb

. (57)

As shown in Sec. III B, within the framework of general
operations, the product of two thermal states at different
temperature is passive, regardless of the frequencies of the
modes involved. And from above, we see that such a state
is also Gaussian passive showing that all passive states are
obviously Gaussian passive, but the converse may not be true
[11] as we will show in the next section.

E. More general operations

So far we have focused on characterizing a general
fermionic state according to whether work can be extracted
or not using Gaussian unitary transformations. We started
with the covariance matrix of a general two-mode fermionic
system, applied Gaussian unitary operations to extract
the energy from the system and then we arrived at the
Gaussian passive state Eq. (56), where no further energy
could be extracted by an additional Gaussian unitary

transformation. A reasonable question then arises: in the
process of characterizing a (not necessarily Gaussian)
state, how much extractable work is sacrificed by using
Gaussian unitary transformations instead of general unitary
transformations? To address this question we will follow a
procedure similar to that in the bosonic case [11].

In the characterization process we fixed the second moment
of the fermionic state, which only uniquely identifies a state
if it is Gaussian. Two steps therefore lead us to answering
the above question. (1) First, we must find a non-Gaussian
state that is compatible with a given Gaussian passive state,
or in other words we must find a non-Gaussian state with the
same second moment as that of the Gaussian passive state.
(2) We must show that a general unitary transformation on
the resulting non-Gaussian state can lower its energy to the
minimal value.

To proceed, we first note that the covariance matrix of a
general two-mode Gaussian-passive state Eq. (56) is identical
to the covariance matrix of a product of locally thermal states
of two different modes each with different effective tempera-
tures. One could then consider a single fermionic mode in a
thermal state with arbitrary temperature and then find a pure
state whose second moment is that of this single mode thermal
state. Then one could certainly find pairs of states of this kind
whose tensor product is compatible with a Gaussian-passive
locally thermal two-mode state. For example, in the Fock
basis, the fermionic state

|ψ〉 =
√

1 − p|0〉 + √
p|1〉, 0 � p � 1 (58)

has a covariance matrix of the form(
0 2p − 1

1 − 2p 0

)
, (59)

and so by carefully choosing the continuous parameter p, we
can bring the covariance matrix to look like that of a single-
mode fermionic thermal state with inverse temperature β,

�th =
(

0 tanh
(

βω

2

)
− tanh

(
βω

2

)
0

)
, (60)

where ω is the mode frequency. Unfortunately, the state
Eq. (58) is prohibited by a super-selection rule [20] and so
does not exist.

However, another example would be the fermionic vacuum
state |0〉 and a single fermion state |1〉 each having covariance
matrices

�ρ0 =
(

0 1
−1 0

)
, �ρ1 =

(
0 −1
1 0

)
,

respectively. Given that the (|1〉, |0〉) states are pure, their co-
variance matrices satisfy the condition �2

|i〉 = −1. We define
the free energy of these states as

F (ρ) = E(ρ) − T S(ρ), (61)

where S(ρ) = −Tr[ρln(ρ)] is the von Neumann entropy,
which is vanishing for pure states, and E(ρ) is the average
(internal) energy.

Now to achieve our first task, consider pairs of the single
fermionic systems encoded into a bipartite Hilbert space
Hab = Ha ⊗ Hb of subsystems a and b, respectively. The
state is defined by a density operator ρ1

ab = |00〉ab〈00| and
ρ2

ab = |11〉ab〈11|, respectively, the resulting states correspond
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to direct sum of locally pure fermionic Gaussian states. Their
covariance matrices are, respectively,

�ρ1
ab

= �a
ρ1

⊕ �b
ρ1

, �ρ2
ab

= �a
ρ2

⊕ �b
ρ2

,

which is the same as the CM of pure fermionic Gaussian
passive state Eq. (48). For our second task, given that the
constructed states are pure, their free energy is thus identical
to the average energy. Interestingly, there is no way to lower
the average energy of the constructed state ρ1

ab; however, the
energy of the state ρ2

ab can be lowered by applying a (non
Gaussian) unitary transformation that takes the pure state to
vacuum state. This shows that ρ2

ab is Gaussian passive but
not passive while ρ1

ab is both passive and Gaussian passive,
as expected.

VII. CONCLUSION

We have investigated the problem of work extraction from
fermionic systems, finding a number of similarities and differ-
ences with their bosonic counterparts.

Thermal states at positive temperatures are the only com-
pletely passive states from which work cannot be extracted no
matter the number of available copies [1,6,7].

Any quantum state out-of-equilibrium is a potential re-
source for work extraction. However, for fermions the situ-
ation is somewhat subtle. We have shown that under arbitrary
unitary transformations there is no way to process a product
of two fermionic modes in different thermal states to extract
work, independent of mode temperatures and frequency. This
is quite unlike the situation for the bosonic counterpart [11]
and suggests that fermionic systems are not as useful for
quantum thermodynamic applications such as construction of
quantum heat engines [21]. However, we found that a prod-
uct of more than two fermionic modes in different thermal
states was nonpassive (under a certain temperature constraint),
implying work extraction is possible in this system. The
challenge of generating the necessary unitary operation for
this work extraction could be a limitation.

We extended the notion of Gaussian passivity to fermionic
systems and presented criteria for identifying fermionic states
according to their Gaussian (non-Gaussian) passivity; that is,
according to our ability (inability) to extract work from them
using Gaussian unitary transformations. This characterization
is based on the second statistical moment of the two-mode
fermionic system, which is known to have complete informa-
tion about the system. This implies that our characterization
provides information about the Gaussian ergotropy of the
system (that is the maximum extractable energy in a Gaussian
unitary process). Our result showed that under non-Gaussian
(general) unitaries, we showed that work can be extracted
from a general two-mode fermionic system.

There is still much that can be done with Fermionic
Gaussian systems. A classification of their dynamics for open
systems (analogous to the bosonic case [22]) remains to

be carried out, along with their time evolution under rapid
bombardment. Work on these topics is in progress.

ACKNOWLEDGMENTS

This work was supported in part by the Natural Sciences
and Engineering Research Council of Canada. We are grateful
to Eric Brown for helpful discussion and correspondence.

APPENDIX: STANDARD FORM OF FERMIONIC
GAUSSIAN STATE

In this Appendix, we give a brief calculation on how the
standard form of fermionic Gaussian state Eq. (7) is obtained
and the explicit expression of the normalization constant
[23,24]. To begin, when we substitute x̃ = (c̃2j−1, c̃2j )T and
Eq. (5), the density matrix Eq. (7) becomes

ρ = Z−1 exp

⎡
⎣− i

4

⎛
⎝ N∑

j=1

c̃2jβj c̃2j−1 − c̃2j−1βj c̃2j

⎞
⎠

⎤
⎦.

The relation c̃2j−1βj c̃2j = −c̃2jβj c̃2j−1 between the majo-
rana operators holds so that

ρ = Z−1 exp

⎡
⎣ i

2

⎛
⎝ N∑

j=1

βj c̃2j−1c̃2j

⎞
⎠

⎤
⎦

= 1

Z

N∏
j=1

exp

[
i

2
βj c̃2j−1c̃2j

]
= 1

Z

N∏
j=1

∞∑
n=0

(
i
2βj c̃2j−1c̃2j

)n

n!
.

We have

(c̃2j−1c̃2j )2 = c̃2j−1c̃2j c̃2j−1c̃2j = −c̃2j−1c̃2j−1c̃2j c̃2j = −1.

This gives

ρ = 1

Z

N∏
j=1

[
cosh

(
βj

2

)
1 + i sinh

(
βj

2

)
c̃2j−1c̃j

]
. (A1)

Renormalization entails that trρ = 1. To take the trace of
Eq. (A1), we can transform to the Fock basis |N〉 = (ã†)N |0〉
with the Majorana c̃k operators expressed in terms of the
creation ã

†
k and annihilation ãk operators. Hence, the normal-

ization constant becomes

Z =
N∏

j=1

2N cosh

(
βj

2

)
. (A2)

Substituting Eq. (A2) into Eq. (A1) gives the fermionic
Gaussian state in standard form

ρ = 1

2N

N∏
j=1

[
1 + i tanh

(
βj

2

)
c̃2j−1c̃j

]
, (A3)

where we have taken note that tanh(A) = sinh(A)/ cosh(A).
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