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Giant fluctuations in logistic growth of two species competing for limited resources
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We analyze the fluctuation of the number of individuals when two species competing for the same limited
resources, beginning with a few initial individuals, are submitted to a logistic growth. We show that when the total
number of individuals reaches the carrying capacity, the number of each species is subject to giant fluctuations
(variance ∼ mean2) if the two species have similar growth rates. We show that the deterministic logistic equation
can be used only when the growth rates are significantly different, otherwise such growth has to be investigated
by stochastic processes tools. These results generalize to a wide class of growth law for two species competing
for the same resources.
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I. INTRODUCTION

In many chemical or biological systems, fluctuations can
be large and drastically modify the results expected from a
mean-field approximation [1]. A famous early example was
investigated by Delbrück [2] for the unbounded autocatalytic
chemical reaction A → 2A, where he showed that the number
n(t ) of A molecules at time t displays giant fluctuations:
The variance V (t ) is of the order of the square of the
mean V (t ) = 〈n(t )〉2/n0, where n0 is the initial number of
A molecules. It can be shown that spatial diffusion is not fast
enough to dilute these local fluctuations and this phenomenon
can lead to spatial clustering, for example, of organisms in
ecological systems [3,4] or of neutrons in nuclear reactors
[5]. Other cases of large fluctuations in biological systems
during unbounded growth have been considered by Das
et al. [6].

The unbounded autocatalytic reaction captures the initial
growth period but may seem unrealistic for systems where
resources are limited [6]. More realistic scenarios are captured
by a logistic growth where the reaction constant tends to
zero as the number of replicating agents increases. If only
one species is subject to such a growth, then fluctuations
will become negligible when the number of replicating agents
reaches the carrying capacity of the system. On the other
hand, as we show below, if different species are competing
for the same resources, then the number of each species
can display large fluctuations similar to the above exam-
ple. This situation is relevant, for example, when indepen-
dent cellular pathways compete for the same resources [7],
when a cell is infected initially by a few bacteria or viruses
carrying different mutations, or when different mutants of
cancerous cells compete with each other in the organism
[8,9]. Another important example is chemical and biological
reactions in small compartments such as droplets [10,11]
which can be used, for example, for high-throughput directed
evolution [12].

Consider the simple competition of two species of au-
toreplicators A and B with concentration x and y, subject to
a logistic growth where their deterministic evolution equation

is given by

dx

dt
= a′x(cs − x − y), (1)

dy

dt
= b′y(cs − x − y), (2)

where a′ and b′ are their respective growth rates at small
concentrations and cs is the saturation concentration of the
system. The solution of the above equations is given by

x

x0
=

(
y

y0

)r

, (3)

where x0 and y0 are the initial concentration of each species
and r = a′/b′ is the relative growth rate of A in respect
to B species. The final concentration of each species is
found by solving x∞ + y∞ = cs in combination with relation
(3). In particular, for the neutral case r = 1, the final
concentration of each species is explicitly given by x∞ = pcs

and y∞ = (1 − p)cs , where p = x0/(x0 + y0) is the initial
proportion of A species.

Stochastic logistic growth have been introduced by Bartelt
et al. [13] and studied by many authors such as Tan and
Piantadosi [14] and Matis and Kiffe [15]. Consider the dis-
crete stochastic growth process given by the following rates:

W (n,m → n + 1,m) = an(Ns − N ), (4)

W (n,m → n,m + 1) = bm(Ns − N ), (5)

where n and m are the number of A and B species and
N = n + m is the total number of individuals at time t . The
mean-field approximation of this process leads to Eqs. (1) and
(2). Indeed, neglecting fluctuations by setting 〈n2〉 = 〈n〉2, the
dynamics of the mean of each species is given by [16]

d〈n〉
dt

= a〈n〉(Ns − 〈n〉 − 〈m〉), (6)

d〈m〉
dt

= b〈m〉(Ns − 〈n〉 − 〈m〉), (7)
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FIG. 1. Neutral logistic growth of two competing species. One
hundred individual based numerical simulation of Eqs. (4) and (5)
with a = b = 1 and Ns = 1000 are displayed. The initial number of
each species is n0 = m0 = 1. (a) The total number of individuals N

as a function of time; (b) number of individuals of species A as a
function of time. Simulations are performed by a standard Gillespie
algorithm (Appendix D).

setting x (respectively, y) as 〈n〉/V (〈m〉/V ), a′ = aV (b′ =
bV ), and cs = Ns/V where V is the volume of the system
transforms Eqs. (6) and (7) into Eqs. (1) and (2).

Figure 1 displays the stochastic behavior of the logistic
growth [Eqs. (4) and (5)] for r = 1. We observe that, as
expected [6], fluctuations in the total number of individuals
N = n + m disappear as N reaches the carrying capacity
Ns [Fig. 1(a)]. However, the number of individuals of each
species is extremely variable [Fig. 1(b)]. In fact, as we will
show below, the probability of finding n individuals of type
A when the system reaches saturation (N = Ns) is uniform in
this case P (n,N = Ns ) = 1/(Ns − 1). For such giant fluc-
tuations, the deterministic solution n∞ = pN is devoid of
information, and we have as much chance of finding one A

individual as finding pN individuals.
In this article, we investigate analytically and numerically

the stochastic Eqs. (4) and (5) in general and discuss the
origin of such large fluctuations when r ≈ 1. The following
section is devoted to the transformation of Eqs. (4) and (5);
Sec. III investigates the problem for the neutral case r = 1;
Sec. IV generalizes the solution to r 	= 1. The last section
is devoted to discussion and concluding remarks. Details of
some computations are given in the Appendices.

II. MAPPING TO A SIMPLE PROBLEM

Equations (4) and (5) represent a 2+1-dimensional system
where because of the nonlinearities, moment closure is lost
and no closed form solution can be obtained. However, if
we change the independent variable from time t to the total
number of individuals, then the problem is mapped to a
much simpler, one-dimensional one: Instead of computing
the probability P (n, t ) of finding n individuals of type A

at time t , we compute the probability P (n,N ) of finding n

individuals of type A when the total number of individuals is
N . For long times, N reaches the carrying capacity Ns and
therefore P (n, t = ∞) and P (n,N = Ns ) contain the same
information. A similar transformation was recently used to
compute the Luria-Delbrück distribution of the number of
mutants for a general growth curve [17].

The master equation governing P (n,N ) is simple (see also
Appendix A). Once a replication event happens (N → N +
1), the probability that it was an A replicating (n → n + 1) is

αn
N = W (n,m → n + 1,m)

W (n,m → n + 1,m) + W (n,m → n,m + 1)

= rn

N + (r − 1)n
.

The probability that it was a B replicating (n remains con-
stant) is

βn
N = 1 − αn

N = N − n

N + (r − 1)n
.

The master equation for P (n,N ) is therefore

P (n,N + 1) = αn−1
N P (n − 1, N ) + (

1 − αn
N

)
P (n,N ). (8)

At the initial time, the system contains N0 individuals, n0

of which are of type A; the initial condition for the master
equation (8) is

P (n,N0) = δn
n0

,

where δ designates the Kronecker δ. The master equation (8)
is the mapping of the logistic growth into a flow problem
in the (N, n) plane, where each node distributes its content
P (n,N ) to the adjacent ones (N + 1, n + 1) and (N + 1, n)
with proportion αn

N and βn
N (Fig. 2).

Because of the form of the flow, the number of A individ-
uals n is bounded by n0 and N − N0 + n0 (Fig. 2). Moreover,
on the two boundaries, the master equation (8) reduces to
a one-term recurrence relation. For example, on the lower
boundary,

P (n0, N + 1) = (
1 − α

n0
N

)
P (n0, N ). (9)

The probability is found to be

P (n0, N ) = (N0 − n0)N−N0

(N0 + sn0)N−N0

, (10)

where s = r − 1 is the excess relative fitness of species A.
(x)p designates the Pochhammer symbol (raising factorial):

(x)p = x(x + 1) . . . (x + p − 1). (11)
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FIG. 2. Mapping of the logistic growth into a flow problem in the
(N, n) plane.

Similarly, on the higher boundary,

P (N − N0 + n0, N ) = (n0)N−N0(
N0+sn0

r

)
N−N0

. (12)

Relation (12) can also be deduced from (10) by exchanging
the role of A and B individuals.

The mean of various quantities can be computed theoret-
ically from the master equation (8). Let f (.) be an arbitrary
function and define

〈f (n)(N )〉 =
∑

n

f (n)P (n,N ),

then

〈f (n)(N + 1)〉
= 〈f (n)(N )〉 + 〈

αn
N [f (n + 1)(N ) − f (n)(N )]

〉
. (13)

For example, for f (n) = n, we have

〈n(N + 1)〉 − 〈n(N )〉 = 〈
αn

N

〉
.

The mean-field, continuous approximation of the above ex-
pression leads to

d〈n〉
dN

= α
〈n〉
N , (14)

which is the equation deduced from the deterministic evolu-
tion [relations (1) and (2)].

Finally, note that it is very simple to compute numerically
the probabilities obeying the master equation (8): The right-
hand side of Eq. (8) is the product of a bidiagonal (N + 1) ×
N matrix by an N− column vector (see Appendix D).

The next two sections are devoted to the computation of the
means and probabilities for the neutral and non-neutral cases.

III. SOLUTION FOR THE NEUTRAL CASE

In the neutral case r = 1, αn
N = n/N ; the linearity of α in n

allows for moment closure and exact computation of moments
and probabilities. In particular, using relation (13), the mean

〈n(N )〉 and variance σ 2(N ) are found to obey the one-term
recurrence equation

〈n(N + 1)〉 =
(

1 + 1

N

)
〈n(N )〉, (15)

σ 2(N + 1) =
(

1 + 2

N

)
σ 2(N ) + p(1 − p), (16)

where p = n0/N0 is the initial proportion of the A type. The
two first moments are then found to be (see Appendix B 1)

〈n(N )〉 = pN, (17)

σ 2(N ) = p(1 − p)

N0 + 1
N (N − N0). (18)

We observe that for N 
 N0, σ (N ) scales linearly as N ; in
this regime the relative amplitude of the fluctuations is

cv = σ (N )

〈n(N )〉 ≈
√

1 − p

p(N0 + 1)
(19)

and the magnitude of cv can be close to one if N0 is small.
Figure 3(a) shows the perfect agreement between stochastic
numerical simulations [Eqs. (4) and (5)] and the above results
on the moments.

Expressions (17) and (18) can be generalized to all higher
moments: Using expression (13), it can be shown (see Ap-
pendix B 1) that the raising factorial moments obey a simple
relation:

〈(n)k〉 = 〈n(n + 1) . . . (n + k − 1)〉 = (n0)k
(N0)k

(N )k. (20)

In the neutral case, we can go beyond moments computa-
tion and solve the master equation (8) for P (n,N ). In general,
P (n,N |n0, N0) is a polynomial of n of degree N0 − 2, where
n0, N0 are the initial conditions for the number of A individu-
als and all individuals. It is straightforward to check that (see
Appendix B 2)

P (n,N |n0, N0) = A
(n − n0 + 1)n0−1(m − m0 + 1)m0−1

(N − N0 + 1)N0−1
,

(21)
where m = N − n and, by convention, (x)0 = 1. The normal-
ization constant is found to be

A = (N0 − 1)!

(n0 − 1)!(m0 − 1)!
.

In particular,

P (n,N |1, 2) = 1

N − 1
, (22)

P (n,N |2, 3) = 2(n − 1)

(N − 1)(N − 2)
. (23)

The initial condition n0 = 1, N0 = 2 was used in numerical
simulations of Figs. 1 and 3.

The solution (21) is in perfect agreement with the numeri-
cal solution of the master equation (8) (Fig. 4).
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FIG. 3. Numerical stochastic simulations of equations with rates
(4) and (5) (Appendix D) and comparison to theoretical values for the
neutral case r = 1, Ns = 1024 and initial values N0 = 2 and n0 = 1.
(a) Evolution of the two first moments 〈n〉 (circle) and σ (squares)
as a function of the number of individuals N . Symbols: numerical
stochastic simulations; solid lines: theoretical values given by rela-
tions (17) and (18). The moments were computed from M = 5000
realizations. (b) Solid lines: P (n, N ) as a function of the number
of A individuals n for various values of N = 2k , k = 4, 5, . . . , 10.
The gray dashed lines on the left designate the theoretical value
P (n,N ) = 1/(N − 1) (relation 22); the number above each line
designates the corresponding value of k. The probabilities were
computed from M = 106 realizations.

IV. SOLUTION FOR r > 1.

For the non-neutral case r > 1,

αn
N = rn

N + (r − 1)n

is not anymore linear in n and an exact solution for P (n,N )
becomes hard to obtain. However, as we are interested in the
solution for large N , we can treat n and N as continuous
variables and approximate the master equation (8) by a partial
differential equation (PDE). The master equation (8) has in-
deed a simple structure and can be set into (see Appendix A 2)

∂NP (n,N ) + ∂n

[
αn

NP (n,N )
] = 0. (24)

Equation (24) is a first-order PDE and can be solved by the
methods of characteristics [18]. Its general solution is found
to be (see Appendix C)

P (n,N ) = ∂

∂n
f

[
(N − n)r

n

]
, (25)

FIG. 4. The probability P (n,N |n0, N0 ) as a function of n for
N = 100 and various initial conditions (n0, N0 ) indicated in the
legend. Solid line: theoretical solution (21); symbols: numerical
solutions of the master equation (8).

where f (.) is an arbitrary function to be determined from the
initial condition. The implicit function (N − n)r/n = Cte is
the solution of the mean-field equation (14) dn/dN = αn

N .
Let us define ñ such that (Fig. 5)

(N − n)r

n
= (N0 − ñ)r

ñ
. (26)

Then for the initial condition P (n,N0) = φ0(n), the complete
solution of Eq. (24) is given by (see Appendix C)

P (n,N ) = ∂ñ

∂n
φ0(ñ), (27)

= ñ(N0 − ñ)

N0 + (r − 1)ñ

N + (r − 1)n

n(N − n)
φ0(ñ). (28)

No special function is defined in the mathematical literature
to deal with equations of type xr + ux − u = 0; however, it is
straightforward to find the numerical solution of Eq. (26) and
use expression (28) to compute P (n,N ).

FIG. 5. Function n(ñ) obtained by numerically solving the alge-
braic equation (26) for N0/N = 10−3 and various values of r .
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FIG. 6. Solution (32) of the continuous master equation (24)
(continuous lines) compared to numerical solutions of the discrete
master equation (8) (dashed lines) for N = 2000, N0 = 2, n0 = 1,
and various values of r . The solution (32) is obtained by numerically
solving Eq. (26) and then using relation (28).

To make it more concrete, let us consider in some details
the neutral case r = 1, and compare the exact known solution
(21) to the solution (27) of the PDE approach. In this case,
relation (23) transforms into the explicit form ñ = (N0/N )n.
The initial condition has to be chosen in order to match the
known solution (21); once it has been fixed for r = 1, it will
be used for all r > 1. The initial condition corresponding to
the discrete case n0 = 1, N0 = 2 [relation (22)] is

φ0(n) = �(n − 1), (29)

where the gate function is defined as �(x) = 1/2 for |x| < 1
and is zero outside this domain. Therefore,

P (n,N ) = 2

N
�

(
2

N
n − 1

)
, (30)

= 1

N
n ∈]0, N [, (31)

which approximates the exact solution (22) to O(1/N ).
The general solution for arbitrary r corresponding to initial

condition n0 = 1, N0 = 2 is then simply

P (n,N ) = 1

2

∂ñ

∂n
n ∈]0, N[. (32)

Figure 6 shows the excellent agreement between expression
(32) and the numerical solution obtained from the exact
discrete master equation (8).

Various moments can be extracted from solution (27):

〈nk (N )〉r =
∫ N

0
nkP (n,N )dn =

∫ N0

0
nkφ0(ñ)dñ, (33)

where n inside the integrand on the right-hand side of Eq. (33)
is a function of ñ through relation (26). For the neutral case
r = 1, n/N = ñ/N0 and therefore∫ N0

0

ñk

Nk
0

φ0(ñ)dñ = 〈nk (N )〉1

Nk
= (n0)k

(N0)k
+ O(1/N ). (34)

FIG. 7. Coefficient of variation σ (N )/〈n(N )〉 for s = 0.05 (r =
1 + s) and various initial conditions (N0, n0 ). Thin solid lines: exact
values obtained from direct numerical resolution of the master equa-
tion (8); Dashed lines: first-order perturbations given by expression
(38); thick solid lines: second-order perturbations. The initial condi-
tion (N0, n0) of each curve is displayed above it.

We can obtain an explicit form of n as a function of ñ for
various conditions. If s = r − 1 � 1, we can obtain a pertur-
bative solution of Eq. (26) in powers of s. On the other hand,
for high values of integer r such as r = 2, 3, 4, we can exactly
solve the algebraic equation (26). These two cases constitute
the near neutral and highly non-neutral situations and allows
us to understand the general behavior of the system.

A. Perturbative solution

Let us first consider the case s = r − 1 � 1. Setting κ =
log(N/N0), we have, to the second order in s:

x = x̃ + κx̃(1 − x̃)s − κx̃(1 − x̃)[(κ + 1)x̃ − κ/2]s2, (35)

where x̃ = ñ/N0, x = n/N . The symmetry of Eq. (26) im-
plies that x̃ can be expressed as a function of x by simply
replacing κ by −κ in expression (35). Using expressions (33)
and (34) for the initial conditions N0, n0, to the first-order
perturbations, the moments are found to be

〈n(N )〉r = 〈n(N )〉1

[
1 + κs

(N0 − n0)

N0 + 1

]
, (36)

σ 2
r (N ) = σ 2

1 (N )

[
1 + 2κs

N0 − 2n0

N0 + 2

]
, (37)

σr (N )

〈n(N )〉r
= cv1

[
1 − κs

N0(n0 + 1)

(N0 + 1)(N0 + 2)

]
, (38)

where the subscript 1 refers to the neutral expressions (17)–
(19). Figure 7 shows the comparison of the above expressions
to exact values obtained from numerical solutions of the exact
master equation (8).

We observe that the correction of the above expressions
compared to neutral values Eqs. (17)–(19) are logarithmic and
of the order of sκ = s log(N/N0): The fluctuations amplitude
σ is still large and of the order of the mean 〈n〉. The pertur-
bative approach is valid for κs � 1; the solution for higher
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FIG. 8. Coefficient of variation σ (N )/〈n〉N for r = 2 with initial
condition N0 = 2, n0 = 1. The theoretical value is obtained from
expressions (41) and (42); the exact, numerical value is obtained by
numerical resolution of the master equation (8). As a guide for the
eye, N−0.5 and N−0.4 are also displayed.

values of s can be slightly improved by using higher-order
perturbations (Fig. 7) but the perturbative approach reaches
its limit for κs � 1.

B. High values of r

High values of r can be understood by investigating integer
values such as 2, 3, and 4 for which the Eq. (26) can be exactly
solved. For the case r = 2

x = γ (1 − x̃)2 + 2x̃ −
√

γ 2(1 − x̃)2 + 4γ x̃

2x̃
, (39)

where γ = N0/N � 1 and, as before, x = n/N and x̃ =
ñ/N0. We will investigate the simplest case corresponding to
the initial condition N0 = 2, n0 = 1, where φ0(u) = �(u −
1) [relation (29)]. For this initial condition, the moments
equation (33) is greatly simplified:

〈nk〉
Nk

= N0

2

∫ 1

0
xkdx̃. (40)

Using expression (39), performing the integrations involved
by Eq. (40) and keeping only the leading orders of γ , we find
that

〈n(N )〉
N

= 1 − 4

3
√

γ + γ

4
(1 − 2 log γ ) + O(γ 3/2), (41)

σ 2(N )

N2
= γ

(
− log γ − 77

18

)
+ γ 3/2

(
−4

3
log γ + 106

15

)

+O(γ 2). (42)

Expression (42) is valid for N/N0 � 72, which is indeed the
regime of interest (Fig. 8). We see that for r = 2, the variance
increases only as N log N and not N2 as in the neutral case.
Therefore, for high values of N , the coefficient of variation
σ/〈n〉 decreases as (log N/N )1/2. In this regime, fluctuations
become negligible and the deterministic approach is valid.

V. DISCUSSION AND CONCLUSION

In this article, we have investigated the distribution of the
number of individuals n and m of two species A,B during
logistic growth.

The stochastic logistic growth can be considered as a
specific form of competitive Lotka-Volterra growth, which
has been widely discussed in the literature (see, for example,
Dobrinevski and Frey [19] and references within it). Lotka-
Volterra is well adapted to situations where some of the
species prey on others and death rates are important. The
kinds of systems we consider here, i.e., growth of pathogens
inside the host cell or DNA amplification inside droplets, are
devoid of these aspects and the pathogen subpopulations or
DNA strands compete only through depletion of the available
resources. On the relevant timescale of the growth (death of
the host cell, harvesting of droplets), death phenomena are
negligible and the rate equations we have considered contain

only duplication events of the form Xi

ki−→ 2Xi , where ki =
ai (Ns − N ) denotes the exhaustion of the available resources.
Finally, note that many transition rates expressions can lead
to the deterministic logistic growth [(1) and (2)] but the rates
(4) and (5) are the simplest ones adapted to the biological
situations considered in this article.

We have shown in this article that the investigation is
greatly simplified if instead of time t , the independent variable
is chosen to be the total number of individuals N = n + m.
This article was focused on the well-known logistic growth,
but the method and conclusions are valid for any stochastic
growth of the form

W (n,m → n + 1,m) = anf (n,m), (43)

W (n,m → n,m + 1) = bmf (n,m), (44)

where f (n,m) is an arbitrary function not necessarily sym-
metric in m and n.

The most interesting feature of the investigated system
is the large amplitude of fluctuations in the neutral case
r = a/b = 1, where both species have similar growth rate.
Suppose that we draw (and replace) Ns individuals at random
from a pool of N0 individuals when n0 are of the A type. The
distribution of the number of A type in the Ns sample is a
binomial one with parameter p = n0/N0; the fluctuation am-
plitude of this experiment σ/〈n〉 ∼ 1/

√
Ns is small if Ns 
 1.

One could naively suppose that a logistic growth when two
types A and B individuals are competing and the system
expands from N0 to Ns individuals (Ns 
 N0) is similar to
the above drawing experiment: Each individual in the final
pool draws at random its ancestor from the initial pool. This
is, however, not the case and we have shown that, contrary
to the binomial case, the fluctuation amplitude σ (Ns ) scales
linearly as the system size, provided Ns 
 N0.

To get an intuitive understanding of these giant fluctu-
ations, we note that the relative amplitude of fluctuations
σ/〈n〉 ∼ 1/

√
N0 can be numerically small if the initial pop-

ulation size were large and in this case, a deterministic ap-
proach captures the main behavior of the system. We can
therefore subdivide the growth process into two periods: In the
first period, beginning with a small population size (n0,m0),
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FIG. 9. Phase portrait (n, m) of individual-based simulation for
the neutral case r = 1. The data are the same as in Fig. 1 but for
each stochastic trajectory, at time t the number m of B individuals
is reported as a function of the number n of A individuals. Thick
solid black line m = n is the solution of the deterministic equations
(6) and (7) with initial condition m0 = n0 = 1. Inset: Same data but
zoomed-in to show the randomness of the initial growth.

the system is mostly stochastic and reaches a random state
(n1,m1) where the population size cannot be considered small
anymore. From this point onward, the system behaves more or
less deterministically and reaches the final state corresponding
to initial condition (n1,m1). This intuitive understanding is
best illustrated in the phase portrait of the system where m(t )
is plotted against n(t ) (Fig. 9) in the neutral case. We see that
after an initial period when population size is small, the trajec-
tories are approximately straight lines m = κn, corresponding
to the deterministic solution; on the other hand, during the
initial period (Fig. 9, inset), trajectories are mostly random.

Various experiments can be devised to test the relevance
of the above computations. For example, a phage such as λ

can be modified into few different mutants, each expressing
a different fluorescent proteins (such as GFP, RFP, and YFP);
the mutants can then be used to co-infect a bacterial culture.
The distribution of the colors in the culture after some time
can be related to the probabilities we have computed through
a convolution by a Poisson-Binomial distribution to account
for variation in the initial number of co-infectors. A similar
experiment can be performed using PCR amplification of few
similar DNA strands [20] of the same length and characteris-
tics in droplets and then analyze the number of strands copy
in each droplet.

The problem we have investigated can also be used to
extend the Wright-Fisher (WF) model of population genetics
to variable size population (see, for example, Refs. [21–23]).
In the WF model with fixed population size N0 and two
mutant types A and B, each generation is formed by selecting
randomly N0 individuals among the progeny of generation
i to form generation i + 1. If x is the proportion of the A

type with reproductive advantage r = 1 + s, then a diffusion
(Kimura) equation can be derived for the evolution of the
population [24,25] where the drift and diffusion coefficient
are a(x) = sx(1 − x) and b(x) = x(1 − x)/(2N ).

We can generalize the WF model by allowing, at each
generation i, the population to expand to size Ns and then
select N0 individuals among them to form the new generation
i + 1. By using the result of Sec. IV A, it is straightforward to
show that the diffusion equation governing this system is the
same as before except that the relative excess fitness is now
renormalized to s ′ = s log(Ns/N0). The fact that the effective
fitness increases in a growing population was already noted
by Ewens [21], although the amplifying factor in the problem
investigated by him was proportional to the harmonic mean
Ns and N0 rather than their logarithmic difference as here.

In summary, we have shown that populations subjects
to logistic-like growth such as Eqs. (43) and (44) can be
modeled by deterministic equations only if there is significant
difference (r � 2) between their growth rates. If they have
similar growth rate, then the deterministic equation must be
abandoned and a stochastic treatment used instead.
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APPENDIX A: DISCRETE MASTER EQUATION
DERIVATION AND ITS APPROXIMATION

1. Derivation

A stochastic process such as the one given by rates (4)
and (5) contains essentially two different kinds of information
[16]. When the system is in state (n,m), one birth event will
eventually happen and increase the total number of individuals
by one unit: N → N + 1. The timing of this event is exponen-
tially distributed with rate

W = W1 + W2,

where W1,2 are the rates for n → n + 1 and m → m + 1
events given by (4) and (5). On the other hand, once one birth
occurs, the probability that it was a type i that duplicated is

pi = Wi/W.

In particular, the probability that it was an A (respectively,
B) individual duplicating is (conditioned on the occurrence of
one birth)

p(n → n + 1|N → N + 1) = αn
N = rn

N + (r − 1)n
,

p(m → m + 1|N → N + 1) = βn
N = 1 − αn

N .

The probability P (n,N + 1) of having n individuals of
type A (and m = N + 1 − n of type B) when there are
N + 1 individuals present is as folows: (i) either there were
n − 1 individuals when the system size was N AND when a
duplication occurred it was an n − 1 → n event OR (ii) there
were n individuals when the system size was N AND when a
duplication occurred it was a B duplicating event (n remains
constants). Therefore,

P (n,N + 1) = P (n − 1, N )αn−1
N + P (n,N )βn

N, (A1)

which is the discrete master equation (8).
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2. Approximation by a PDE

When r > 1, the discrete master equation cannot be solved
exactly anymore, but it can be approximated by a PDE in a
Van Kampen’s like expansion. We assume that Ns 
 1 and
use it as the system size. Let us define � = 1/Ns , x = n/Ns ,
and z = N/Ns . Furthermore, we set

P (n,N ) = �2p(x, z). (A2)

Note that the expression of α is conserved in the new variables
x, z:

αn
N = rn

N + (r − 1)n
= rx

z + (r − 1)x
= α(x, z).

In the new variables x, z, the master equation (A1) becomes

�2[p(x, z + �) − p(x, z)]

= �2[α(x − �, z)p(x − �, z) − α(x, z)p(x, z)]

expanding this expression to the leading order in � leads to

∂p

∂z
= −∂ (αp)

∂x
, (A3)

which is a PDE in “continuous” variable x, z. We can solve
this equation by the technique detailed in Appendix C to
obtain p(x, z) and then get back to P (n,N ) through relation
(A2). On the other hand, we can directly multiply both side of
Eq. (A3) by the factor �2/� = 1/Ns and write it directly as

∂NP (n,N ) = −∂n

[
αn

NP (n,N )
]
,

where n and N are considered as continuous. The two ap-
proach are strictly similar but the latter allows more direct
comparison to the known results and has been preferred in
this article.

APPENDIX B: VARIOUS NEUTRAL COMPUTATIONS

1. Factorial moments

Consider the function f (n) = (n)k = n(n + 1) . . . (n +
k − 1); then

f (n + 1) − f (n) = (n + 1)k−1(n + k − n) = k(n + 1)k−1

and therefore

n[f (n + 1) − f (n)] = k(n)k = kf (n).

Therefore, using the general expression (13), we find the one
term recurrence relation

〈f (n)(N + 1)〉 =
(

1 + k

N

)
〈f (n)(N )〉. (B1)

The solution of one term recurrence relations such as

yN+1 = aNyN

is

yN =
(

N−1∏
�=N0

a�

)
yN0 . (B2)

For example, for the mean, i.e., the first factorial moment with
k = 1,

aN = 1 + 1

N
= N + 1

N
(B3)

the parenthesis term in relation (B2) is of the form

N0 + 1

N0
× N0 + 2

N0 + 1
× . . . × N

N − 1
= N

N0

and therefore the mean is

〈n(N )〉 = (N/N0)n0 = pN,

which is the expression (15). This computation is easily
generalized to higher factorial moments (k > 1) and leads
to expression (20). The variance can be deduced from the
expression

σ 2 = 〈(n)2〉 − 〈n〉2 − 〈n〉
and leads to expression (18).

2. Expression of the probability

To shorten the notations, we use m = N − n whenever
needed. The master equation in the neutral case is

P (n,N + 1) = n − 1

N
P (n − 1, N ) + m

N
P (n,N ). (B4)

Consider

P (n,N ) = (n − n0 + 1)n0−1(m − m0 + 1)m0−1

(N − N0 + 1)N0−1
. (B5)

Pochhammer manipulation is similar to factorial manipula-
tion. In particular,

N (N − N0 + 1)N0−1 = (N − N0 + 1)N0

(n − 1)(n − n0)n0−1 = (n − n0)n0

m(m − m0 + 1)m0−1 = (m − m0 + 1)m0

and therefore, the right-hand side of relation (B4) is found to
be

(n − n0 + 1)n0−1(m − m0 + 2)m0−1

(N − N0 + 1)N0

(n − n0 + m − m0 + 1).

As

n − n0 + m − m0 + 1 = N − N0 + 1

and

N − N0 + 1

(N − N0 + 1)N0

= 1

(N + 1 − N0 + 1)N0−1
,

expression (B5) is indeed a solution of the master equation,
up to a multiplicative constant. The constant is found by
stating P (n0, N0) = 1. As the master equation conserves the
probability, the constant is valid for all N .

APPENDIX C: SOLVING THE PDE

Consider a first-order PDE of first order for the function
P (x, t ) of type

∂tP + ∂x (αP ) = 0, (C1)

where α = α(x, t ) is a known function. Let us call R(x, t ) =
Cte the solution of the characteristic equation

dx

dt
= α(x, t ).
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Then, by definition,

∂tR + α∂xR = 0.

Consider the function

Q(x, t ) = ∂

∂x
f (R(x, t )), (C2)

where f () is an arbitrary function. Then

∂tQ + ∂x (αQ) = ∂x{(∂tR + α∂xR)f ′(R)} = 0

and therefore Q(x, t ) is a solution of Eq. (C1). For example,
for α = c, the solution is the trivial propagation P (x, t ) =
f (x − ct ).

The function f (.) has to be determined from the initial con-
dition P (x, t0) = φ0(x). Consider two points (t0, x̃ ) and (t, x)
in the plane, related through R(x, t ) = R(x̃, t0), i.e., they
belong to the same characteristic curve. Obviously, we can re-
verse this relation as x̃ = g(R(x, t ), t0) and therefore write the
general solution (C2) as P (x, t ) = ∂xf (x̃) = (∂x̃/∂x)f ′(x̃).
On the other hand, at the initial time t0, x = x̃, ∂x̃/∂x = 1,
and therefore f ′() = φ0(). The solution of the PDE (C2) with
the initial condition φ0(x) is then

P (x, t ) = ∂x̃

∂x
φ0(x̃).

P (., t ) can be seen as a transformation, i.e., scaling and
deformation of the initial condition φ0(.). An initial Dirac
distribution, however, propagates without deformation along
a characteristic curve because f (x)δ(x) = δ(x): In this case,
the PDE is reduced to the deterministic equations dx/dt = α.

Let us further define the function φ0(.) used in this article
for the PDE (24). The true probability Pd (n,N ) is function
of discrete variables n and N . In order to estimate this proba-
bility, we have used the probability density Pc(n,N ) of con-
tinuous variable n,N . Pc must approximate Pd for large N .

φ0() has to be chosen to make this approximation as precise as
possible. However, we cannot use the discrete initial condition
P (n,N0) = δn

n0
, because the continuous PDE will be reduced

to a deterministic equation. We make the assumption that
the choice of φ0(.) is independent of r and therefore can be
deduced from the known expression of neutral probability. For
r = 1, ñ = (N0/N )n, and therefore we have

φ0(ñ) = N

N0
P1

(
N

N0
ñ, N

)
,

where P1(, ) is the neutral probabilities but the arguments are
continuous.

APPENDIX D: NUMERICAL SIMULATIONS

The individual-based numerical simulations of Eqs. (4)
and (5) (such as shown in Fig. 1) are performed using a
Gillespie algorithm [26] written in the C language. In short,
when the system is in state (m, n), the time to the next
duplication is drawn from an exponential distribution with rate
S = W1 + W2, where W1,2 are the rates (4) and (5) and the
total population size N = n + m is incremented. The decision
that this duplication is an n → n + 1 event is drawn from
a [0,1] uniform probability with weight W1/S. A trajectory
is computed by iterating this process, beginning with initial
condition (n0,m0). M different trajectories are then generated
to perform the necessary statistics.

The numerical solution of the master equation (8) is per-
formed by a simple iteration written in the high-level language
Julia [27]. The basic structure is an Ns × Ns matrix P where
the element Pn,N represent P (n,N ). The solution is computed
by iterations, where column N + 1 is deduced from column N

according to Eq. (8) and illustrated in Fig. 2.
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