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Critical region of long-range depinning transitions
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The depinning transition of elastic interfaces with an elastic interaction kernel decaying as 1/rd+σ is
characterized by critical exponents which continuously vary with σ . These exponents are expected to be unique
and universal, except in the fully coupled (−d < σ � 0) limit, where they depend on the “smooth” or “cuspy”
nature of the microscopic pinning potential. By accurately comparing the depinning transition for cuspy and
smooth potentials in a specially devised depinning model, we explain such peculiar limits in terms of the
vanishing of the critical region for smooth potentials, as we decrease σ from the short-range (σ � 2) to the
fully coupled case. Our results have practical implications for the determination of critical depinning exponents
and identification of depinning universality classes in concrete experimental depinning systems with nonlocal
elasticity, such as contact lines of liquids and fractures.

DOI: 10.1103/PhysRevE.98.042111

I. INTRODUCTION

Many dissipative disordered systems display a collective
depinning transition, from an almost static (or inactive) to a
sliding (or active) regime at a threshold value of a driving
force. Examples range from field-driven domain walls in
ferromagnetic [1–3] or ferroelectric materials [4,5], crack
propagation under stress in heterogeneous materials [6,7],
contact lines of liquids on a rough substrate [8–10], imbibition
of fluids in porous and fractured media [11], reaction fronts
in porous media [12], solid-solid friction [13], sheared amor-
phous solids or yield stress fluids [14], dislocation arrays in
sheared crystals [15], current-driven vortex lattices in super-
conductors [16–18], skyrmion lattices in ferromagnets [19], to
even collective cell migration during wound healing or cancer
invasion [20]. The collective nature of the depinning transition
is often spectacularly manifested at low temperatures through
some kind of “crackling noise” which, well beyond the labora-
tory scale, much resembles earthquakes, motivating also their
study within the very same framework [21,22].

A very fruitful analogy of this problem with equilibrium
phase transitions emerges when considering the driving force
as the control parameter and the mean sliding velocity as the
order parameter. This analogy has been useful in pointing out
directions for seeking universal behavior and inspiring new
methodologies [23,24]. The analogy has also been useful to
point out the relevance of genuine nonequilibrium effects [25],
and to detect nonstandard features of the transition [26–28].
Among the very different models that can be proposed, the
depinning transition of elastic manifolds in random media
has become a paradigmatic basic problem, as it presents
the essential ingredients for a nontrivial universal behavior,
together with an advantageous combination of analytical [29–
32] and numerical [33,34] tractability. Moreover, it is directly
relevant for predicting universality classes of various concrete
systems where the elastic approximation can be justified,
notably magnetic domain walls and contact lines of liquids
menisci.

The depinning transition at zero temperature of an over-
damped elastic interface in a random potential is continu-
ous, nonhysteretic, and occurs at a characteristic threshold
force fc. Close enough and above the threshold, the mean
velocity v of the interface in the direction of the force is
well described by the putative depinning law v ∼ (f − fc )β ,
with β a nontrivial critical exponent. A divergent correlation
length l ∼ (f − fc )−ν and a divergent correlation time τ ∼ lz

characterize the jerky motion as we approach fc from above.
Concomitantly, the rough geometry of the interface becomes
self-affine, with the displacement field growing as u ∼ xζ for
length scales x below l. Hence v ∼ lζ−z and β = ν(z − ζ ).
In this regime, the spatiotemporal fluctuations also display
universal behavior and are controlled by avalanches with a
broad distribution of sizes S (and durations T ∼ Sz/(1+ζ )),
such that P (S) ∼ S−τ , with τ = 2 − (ζ + 1/ν)/(d + ζ ) in
the quasistatic limit. The critical exponents can be calculated
in an ε expansion [29–31,35,36] and also found numerically
[33,37–41] to determine the different universality classes.
These are determined by d, the range [42–46] or nature [47]
of the elastic interactions, the anisotropic [48] or isotropic
correlations of the pinning force [49,50], and by the presence
of additional (i.e., apart from the pinning force) nonlinear
terms [25,48,51–54]. Boundary- [55] or ac-driven [56] depin-
ning of elastic interfaces has been also studied. If the so-called
statistical tilt symmetry holds, only two exponents are needed
to fully characterize the depinning universality class. In any
case, it is very convenient to consider separately the purely
geometric ζ or ν, which do not involve time scaling, from z or
β which do.

In order to quantify the universal properties of the depin-
ning transition for a concrete experimental system (or micro-
scopic model with a yet unknown coarse-grained dynamics)
it is important to determine the critical exponents accurately
enough so as to be able, at least, to differentiate between
different candidate universality classes. Unfortunately, testing
the depinning law is in general a rather difficult task exper-
imentally, and in many cases also numerically. On one hand
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[57], fitting accurately β certainly requires an accurate esti-
mation of the nonuniversal threshold force fc. In that respect
it is important to note that the depinning force fc displays im-
portant sample-to-sample fluctuations in finite systems [58],

with [fc − fc]2 ∼ L
−2/νFS

0 , where L0 is the linear size of the
system and νFS � 2/(d + ζ ) [35]. The thermodynamic limit
L0 → ∞ is also delicate, as the value of fc can be strongly
affected by the anisotropic sample aspect-ratio scaling we
keep in such limits [58,59]. On the other hand, even if we
are able to get a sharply defined fc, we are faced with the fact
that the depinning law is expected to hold only in an unknown
critical region of size ∼�f crit, such that the asymptotic
power-law scaling for v fully develops only for (f − fc ) �
�f crit. Knowing roughly �f crit is thus fundamental for
practical applications of the theory. Little is known, however,
about �f crit for the depinning transition, except that it is
nonuniversal and may be small in practice, as noted already in
pioneer works [31,33]. How does the critical region depend on
the microscopic shape of the disorder, the range of the elastic
interactions, or the dimensionality d? Do scaling corrections
produce intermediate power laws with effective exponents? If
so, are the effective exponents expected to be larger or smaller
than the true ones? Do they violate the expected asymptotic
scaling relations among exponents?

In this paper we try to answer some of the above-mentioned
practical questions by performing numerical simulations on
different microscopic models. We study depinning models
with isotropic uncorrelated disorder and harmonic long-range
elasticity, with the elasticity kernel decaying with distance as
1/rd+σ . We vary the range of the elastic interactions from
the (σ � 0) fully coupled case to the (σ � 2) short-range
cases and compare the critical behavior of the velocity-force
characteristics for two different forms of the microscopic dis-
order. They are termed the “smooth” case (in which the force
originating in the disorder does not have any discontinuities)
and the “cuspy” case (in which the force has an abrupt jump
at the transition point between different potential basins). For
the cuspy potential the extent of the critical region tends to
be large and rather independent of the value of σ . For the
smooth potential the critical region where universality holds
(i.e., where we get the same exponents as in the cuspy case)
decreases by increasing the range of elastic interactions and
strictly vanishes, �f crit → 0, in the fully coupled limit. In
such limit scaling corrections are no longer “corrections” but
control the ultimate asymptotic scaling. This explains the
peculiar nonuniversality of the fully coupled model in the
strong pinning phase (i.e., with fc > 0), which displays two
different exponents, β = 3/2 and β = 1, for the smooth and
cuspy cases, respectively. For σ > 0, where a unique value of
β is the “right” one [60], our results show nevertheless the
great importance of scaling corrections and the emergence of
dangerous effective power laws, which particularly affect the
obtention of the asymptotic dynamical exponents β or z as
compared with the roughness exponent ζ , which is found to
be more robust. These corrections are particularly relevant for
a successful experimental (and also numerical) identification
of depinning universality classes in elastic systems with long-
range interactions (0 < σ < 2) and to explain quantitative
discrepancies with theory.

To arrive at these results and emphasize their practical con-
sequences, we devise a convenient model for comparing the
critical behavior of cuspy and smooth microscopic disorders
accurately. We focus on the d = 1 model with long-range in-
teractions (the d > 1 short-range case will be discussed in the
Appendix). First, in Sec. II the numerical model is presented.
Then in Sec. III A results are presented for both smooth and
cuspy microscopic pinning potentials. These results allow us
to illustrate the kind of effects that can be expected in the
critical region for σ > 0 in both cases. In Sec. III B we look
in detail into the critical region by proposing an alternative
model to compare the two different forms of pinning potential
using discrete displacements and an effective microscopic
potential described by traps and suitable transition rates. In
Sec. V we summarize our results and discuss their practical
implications for the study of the depinning transition.

II. GENERALITIES OF THE BASIC MODEL

We model a d-dimensional interface embedded on a d + 1
disordered material as a collection of blocks i = 1, . . . , N ,
located at sites of a d-dimensional regular lattice and charac-
terized by a continuous displacement u1, . . . , uN in the d + 1
transverse direction. We will assume an overdamped equation
of motion,

u̇i (t ) =
N∑

j=1

Gij (uj − ui ) + Fi (ui ) + f, (1)

where the terms on the right-hand side represent the sum of the
elastic couplings, the disorder, and the uniform and constant
pulling force, respectively.

The G term in Eq. (1) accounts for the harmonic elastic
interactions, with Gij being the spring constant associated
with the blocks i and j . In order to model long-range elastic
interactions we use Gij = κ/|i − j |d+σ , with the normaliz-
ing constant κ used to obtain

∑
j Gij = 1. [Note that the

value of Gii does not influence Eq. (1) and is taken as
zero.] The G term just described implies the convex elastic
energy

∑
ij Gij (ui − uj )2/2.

When σ � 2 the elastic kernel represents a short-range
elastic interaction, while for −d < σ � 0, it represents the
fully coupled case that can be exactly solved using mean field
techniques. Periodic boundary conditions can be taken into ac-
count by summing the elementary kernel over periodic images
of the finite system and by using its Fourier representation
to obtain the elastic forces at each step of time integration
through a numerically efficient convolution.

The second term in Eq. (1) (the only nonlinear term of the
equation of motion) accounts for the pinning forces. For the
moment we will just assume it is statistically characterized
by Fi (u) = 0, Fi (u)Fj (u′) = �(u − u′)δij , where · · · stands
for the average over disorder realizations and �(u) is a short-
ranged function with �(0) measuring the strength of the
disorder.

The motion described by Eq. (1), with its convex elas-
tic energy, is characterized by a unique critical force fc

in the large-size limit [61]. This critical force is important
in determining the fate of the system at very long times.
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If f < fc the system reaches a static solution such that
u̇i (t ) = 0 ∀i. For f > fc it reaches a unique steady state
with u̇i (t ) � 0 univocally defined up to a global time shift,

with the mean velocity defined as v ≡ N−1∑N
j=1 u̇i (t ) or

by v ≡ limt→∞ (Nt )−1 ∑N
j=1[ui (t ) − ui (0)], thanks to self-

averaging. The properties just described are consequences of
the Middleton theorems [62] which assure that the dynamics
described by Eq. (1) with its convex elastic energy converges
for f � fc to a unique “Middleton attractor.” The properties
of this attractor can be exploited to devise smart algorithms
to target the critical force and critical configuration in finite
samples without solving the true dynamics [63,64]. It also
allows one to cleanly visualize the convergence towards the
steady state by reparametrizing the time with the system
center of mass u(t ) ≡ N−1 ∑Ld

j=1 ui (t ) [65]. In this paper we
will rely (apart from the unicity of the dynamical attractor)
on the general property u̇i (t ) � 0, valid in the f � fc steady
state. This will be particularly important in relation to the
model discussed in Sec. III B.

It is also worth remarking here that the so-called statistical
tilt symmetry (STS) holds for Eq. (1), so ν = 1/(σ − ζ ) for
d/2 � σ � 2, ν = 1/(2 − ζ ) for σ � 2, and ν = 1/2 for σ <

d/2 [24]. Therefore only two exponents are needed to fully
characterize the depinning universality class [66] The dis-
cussion of anisotropic depinning universality classes, where
STS is broken will be published elsewhere. Nevertheless, we
believe that our general conclusions hold also for this case.
Using the STS, in this work we will consider separately ζ and
β to characterize the universality classes. As we will discuss
later, this arbitrary separation is nevertheless quite convenient,
as ζ (and ν) has a purely geometric origin unlike β (and z),
which are related with time scaling and thus affected by local
nonuniversal bottlenecks. This has important consequences
from a practical point of view. For instance, it is easier to get
much more accurate values for ζ (or ν) by exploiting different
methods which do not involve a true temporal evolution, such
as the variant Monte Carlo algorithm [63,64] or the metastable
configurations obtained by relaxing a flat configuration below
the depinning threshold [67].

For f � fc the effect of the disorder can be treated as
a perturbation. At first order disorder mimics an effective
temperature proportional to v−1. In this so-called “fast flow”
regime the interface can be fairly described by the forced
Edwards-Wilkinson equation [68] and v ≈ f [69]. For the low
velocity critical regime f � fc we are interested in, pertur-
bation theory fails. Numerical simulations and the functional
renormalization group (FRG) approach applied to Eq. (1)
teach us that, for σ > 0, the above description uniquely de-
termines the critical depinning exponents of the model. Their
values depend on d, and smoothly evolve with decreasing
σ , from their short-range values for σ � 2 to the mean field
value for σ � d/2 or equivalently, d � dc(σ ), with dc = 2σ

the upper critical dimension [70]. The exact “shape” of the
microscopic pinning force Fi is believed to be unimportant
in many respects. Indeed, FRG tells us that for the model
of Eq. (1), the bare correlator of the pinning force �(u)
flows under coarse graining above the fundamental Larkin
scale Lc towards a correlator with a “cuspy” singularity. The
existence of such a cusp nicely accounts for the existence

of a critical force and also for the existence of avalanches.
The fixed point of the renormalization flow equations for
the pinning correlator function gives us access to unique
values of β ≡ β(d, σ ) and ζ ≡ ζ (d, σ ), which completely
characterize the depinning universality class of our model.
These FRG calculations are performed assuming in principle a
small separation ε 
 1 from the upper critical dimension, ε =
dc(σ ) − d, with dc = 2σ . One may thus question their valid-
ity for the experimentally relevant case d = 1, for instance.
Numerical simulations by Rosso et al. [40] fairly confirm,
however, the FRG picture for one-dimensional interfaces with
short-range elastic interactions (σ � 2), showing its validity
for the extreme ε = 3 case.

The above picture, valid for σ > 0 and in principle any
dimension d � 1, sharply contrasts with the σ � 0 fully
coupled limit, where the depinning model becomes equivalent
to the exactly solvable one-particle Prandtl-Tomlinson model,
one of the most popular models in nanotribology [71]. For the
strong pinning phase of this model, which has fc > 0 (see,
e.g., Ref. [72]), the critical behavior of the velocity v ∼ (f −
fc )β becomes nonuniversal for different microscopic poten-
tials. On one hand, for a smooth random potential Vi such
that Fi (u) = −(d/du)Vi (u) does not have jumps, one has
β = 3/2. On the other hand, for a cuspy random potential with
force discontinuities β = 1 is obtained, a value that coincides
with the mean field value expected from FRG for d � dc(σ ).
We will concentrate in explaining this unusual behavior. As
we will see, the explanation implies for smooth potentials the
progressive reduction of the extent of the critical region as
σ → 0. In turn, this will prove to have practical consequences
when addressing the experimental determination of critical
exponents in systems evolving on smooth pinning potentials.

III. RESULTS

A. Numerical results: Continuous potentials

We will present results of direct numerical simulations
of Eq. (1) to have a first clear picture of the differences
that appear between smooth and cuspy pinning potentials.
In concrete, the numerical potentials we used are defined as
follows (see Fig. 1). For each site i a potential Vi (ui ) is con-
structed. The generic potential V (u) is constructed piecewise
by dividing the u axis in segments through a set of values
an. In each interval an-an+1 (defining a ≡ (an+1 + an)/2 and
� ≡ an+1 − an) the potential is defined as

V (u) = [(u − a)2 − (�/2)2] (2)

for the cuspy case and

V (u) = −3�2

2π2

[
1 + cos

(
2π (u − a)

�

)]
(3)

for the smooth case. Note that even in the smooth case
the potential is not analytic, but it has a continuous second
derivative, which is enough for our purposes. The separation
� between an and an+1 is stochastically chosen from a flat
distribution between �min = 1 and �max = 2.

Equation (1) is integrated using a first-order Euler method
with a time step of 0.1. The results are obtained starting at
large values of applied f and progressively reducing it until
the critical force fc is reached when the velocity drops to
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FIG. 1. Typical forms of the pinning potentials we analyze. Tran-
sition points for a particle moving to the right are indicated by stars.
(a) A cuspy potential, in which there is a jump of the force at the
transition point. (b) A smooth potential, in which the potential itself
and its derivatives (up to second order at least) are continuous.

zero. In Fig. 2(a) we see the value of v as a function of
f for the case of cuspy potentials for a few values of σ

going from nearest neighbor interaction (σ → ∞) to mean
field interaction (σ → 0). The plot in logarithmic scale with
respect to the critical force fc (Fig. 3) (fitting in each case the
value of fc) displays a robust critical region in which the β

exponent can be defined. The value of β as a function of σ

(reported also in Fig. 3) increases when σ moves from large
values to σ = 0. Moreover, the actual values of β obtained for
different σ accurately fit those known from the literature [73].
This represents the “standard” behavior that is compatible
with the analysis using renormalization group techniques.

The results of simulations using smooth potentials are
shown in Fig. 2(b). They show apparently larger values of β

than the values for cuspy potentials at the same σ [Fig. 2(a)].
For instance, the curve for σ = 1 seems to have a slope close
to 1, instead of displaying β � 0.62 as in the cuspy case.

As we have anticipated, the way out of this conundrum is to
realize that the critical region at which the results for smooth
potentials should coincide with those of cuspy potentials may
be small and we might not be observing it in Fig. 2(b). The
critical region should become observable when plotting the
results of Fig. 2(b) in logarithmic scale with respect to the crit-
ical force fc. However, the identification of the critical region
and the true value of β relies on the accurate determination
of the value of fc, and this has to be done at the same time
as fitting the value of β, so it is very difficult to get reliable
values of β if the critical region is expected to be very small.

FIG. 2. Velocity as a function of force for a system of N =
216 sites, for different values of σ , using cuspy (a) and smooth
(b) pinning potentials. Curves with the same value of σ display
apparently larger values of β in (b) than in (a).

To overcome this difficulty and try to set this point, we have
done simulations in a modified model that is described in the
next section.

B. Numerical results: Discrete pinning potential

The results for the flow curves contained in the previous
section (Figs. 2 and 3) suggest that there are strong nonuniver-
sal effects associated to the form of the pinning potential that
is used. These nonuniversal effects can mask the true critical
behavior (that must be independent of the form of the potential
for σ > 0), and so they have a great practical importance.
Yet to determine accurately the behavior close to the critical
force fc we face the problem mentioned at the end of the
previous section: The value of the critical force is not known
in advance, and it has to be determined during the fitting

FIG. 3. The data in Fig. 2(a) plotted in logarithmic scale, fitting
the critical force for each value of σ . The value of the β exponent
is obtained as the slope of the asymptotic straight behavior, as
indicated.
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process itself. This may be quite inconvenient when the extent
of the critical region is very small, as a slight uncertainty in the
critical force can completely alter the results in this critical
region.

In this section we present a modification of the model
used previously Sec. III A that does not have this drawback
and allows a more precise characterization of the effects
we are studying. In addition, it also allows a very precise
determination of other exponents of the transition, in partic-
ular, the dynamical exponent z, something that we are also
interested in.

The modified model has been used to study thermal creep
in Ref. [28] and also in the context of earthquake dynamics
[22], where it was termed the narrow wells approximation. It
is obtained in the following way. Referring to Fig. 1, imagine
that instead of an immediate concatenation of parabolic or
cosinusoidal pieces we introduce flat portions of potential
between consecutive wells. In the limit in which the wells are
narrow compared to the intervening flat regions and very deep,
the interface can only be pinned at the (now discrete) positions
of the wells. Each well is characterized by a threshold force
f th

i for the interface to escape from it. (For simplicity in the
simulations we take the values of f th

i as constant: f th = 2.5.)
The next step is to avoid the full simulation of the transition
when the interface is jumping from one well to the next. The
transition is supposed to occur in a single time step, but taking
into account the time the transition takes in the original model.
To introduce the transition rates we use, we first define the
applied force f app at site i as

f
app
i =

N∑
j=1

Gij (uj − ui ) + f. (4)

The interface jumps between successive discrete positions
(that are taken completely random, with an average separation
of 0.1) when f

app
i exceeds the local critical force f th

i . The
jump itself is considered to be instantaneous (it takes a single
time step), but the transition between consecutive positions
does not occur immediately after the critical force is exceeded.
Instead, a transition rate is considered. Cuspy and smooth
cases of the model in the previous section differ qualitatively
in the time it takes for a particle that has exceeded the stability
limit of one potential well to reach the next equilibrium point
at the next well. In the case of cuspy potentials this time
is roughly constant, independent of the extent by which the
threshold force has been exceeded. In the case of smooth
potentials this time goes as ∼(f app − f th)−1/2, typical of
saddle-node bifurcations. We can model this behavior by
assigning a constant transition rate λ ∼ cte to mimic the
effect of cuspy potentials (this will be referred to as the
“constant rate” case) and a rate that depends on applied
force as λ ∼ (f app − f th)1/2 to simulate the case of smooth
potentials (referred to as the “variable rate” case) [74]. In
the concrete implementation, we consider all unstable sites
for which f

app
i > fth and calculate an expected time τi for

each site to jump, taken from a Poisson distribution with
the corresponding rate λi . The lowest of all τi is chosen
and this is the site that is actually moved. Time is advanced
by this minimum τi , elastic forces are recalculated, and the
process is continued. Average velocity is simply calculated

FIG. 4. (a) Flow curves of the discrete pinning potential model
with constant transition rate for different values of σ . (b) Same data
in logarithmic scale, fitting the value of fc in each case. From these
curves the value of the β exponent can be determined.

as [u(t ) − u(0)]/t in a run over a long time interval t . Note
that although the positions of the interface are discrete, the
dynamics is still continuous time, and no more that a single
site is assumed to jump at each time step.

The advantage of the discrete potential model is that its
quasistatic properties are completely independent of the rate
law that is used. In fact, let us consider, for instance, two
avalanches in the system that start from the same configu-
ration but that evolve according to two different rate laws.
Since the effect of any forward jump of any portion of the
interface is to increase the force over any other site in the
system, the avalanches will be exactly the same whatever the
rate law is; the only possible difference is in the order and
time of activation of different sites, by virtue of the Middleton
theorems. This means at once that all static critical exponents
such as τ , ζ , ν... must be independent of the rate law. In
addition, the critical force will also be independent of the
rate law, which is very convenient from the point of view
of accuracy of the simulations, as explained previously. The
only exponents that can depend on the rate law are those that
sense temporal properties of the dynamics. They are the flow
exponent β and the dynamical exponent z.

The flow curves obtained at constant rate for different
values of σ are shown in Fig. 4. There is a clear difference
in the flow curves between Figs. 4 and 2 for large values of
f , which is a consequence of the details of the models. (The
discrete pinning model does not have a “fast flow” regime, but
a velocity saturation at large forces.) However, the values of
the β exponent determined from the logarithmic plots [panel
(b)] are in excellent agreement with those in Fig. 3, showing
that the discrete model with constant rate in fact reproduces
the behavior of the continuous cuspy pinning potential.
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FIG. 5. (a) Flow curves of the discrete pinning potential model
with rate transition λ that depend on stress as λ ∼ (f app − f th)1/2,
for different values of the long-range interaction exponent σ . (b)
Same data in logarithmic scale, using the value of fc previously used
in Fig. 4(b). The continuous straight lines have the same slope than
in the previous figure.

Figure 5(a) displays the flow curves in the variable rate
case, namely, λ ∼ (f app − f th)1/2, mimicking the smooth
continuous potential case. Comparing Figs. 5(a) and 4(a)
we observe again [as between Figs. 2(a) and 2(b)] a clear
difference in the overall form of the curves with values of
β that look larger in Fig. 5(a) than in Fig. 4(a). In order to
quantify this difference in more detail it is necessary to look
close to the critical force. It was already mentioned that the
great advantage of the discrete pinning model is that the values
of critical force for the curves in Fig. 5(a) are the same values
as for the curves in Fig. 4(a), which were already fitted to
construct Fig. 4(b). Using those values we construct the plot
in Fig. 5(b). We note that as far as σ > 0 the curves eventually
reach the same exponent than in Fig. 4 when approaching
the critical force. However, the force range in which this
limiting behavior is obtained shrinks as σ is reduced, and we
are actually unable to observe it clearly once σ � 0.5. Our
conclusion is that the critical region with the same β as in the
constant rate case remains finite for all σ > 0 but shrinks as
σ is reduced, vanishing for σ � 0, where the mean field value
β = 3/2 is reobtained.

An alternative way to look at the effect just described is
to plot the ratio R between the velocities for variable and
constant rates. (Note that this makes sense only in the present
case in which the critical force is the same for the two different
rates.) The results contained in Fig. 6 show a remarkable
systematic trend. As a function of �f ≡ f − fc, the velocity
ratio R behaves as R ∼ C + A�f 1/2. The value of A is
almost independent of the long-range interaction exponent σ ,
but C has a systematic dependence, reducing as σ decreases,
and vanishing at σ = 0. For any σ > 0 the finite value of

FIG. 6. Ratio R between the velocities for variable and constant
rate as a function of the separation from the critical force. Linear (a)
and logarithmic (b) scales. The limiting value C for f − fc → 0 is
plotted in the inset.

C implies the coincidence of the β values for constant and
variable rate. However, as C decreases, the range to observe
this coincidence decreases also, and for σ = 0 (i.e., C = 0)
the value β = 3/2 is obtained for variable rate, instead of the
β = 1 that is obtained for the constant rate.

The estimation we have for R allows us to quantify the
extent of the critical region. We can say that the critical region
extends roughly up to the point where C(σ ) ∼ A�f 1/2. This
provides �f crit ∼ C(σ )2. As C is observed to be roughly
linear with σ , we finally obtain �f crit ∼ σ 2.

IV. IMPLICATIONS ON THE AVALANCHE DYNAMICS

The discrete pinning potential model is also useful to
make an accurate determination of avalanche statistics. In
order to analyze it, we did simulations using a quasistatic
algorithm that keeps the system at the critical force at the same
time that a collection of independent avalanches is generated.
The algorithm consists in adjusting dynamically the value
of the applied force in the following way. Suppose we start
with a stable configuration (f app

i < f th
i for all i). At this

point, f is increased to the point where for some j we get
f
app
j = f th

j , and therefore an avalanche starts at site j . For
every jump from ui to ui + δ within the avalanche, external
force f is reduced to f − δ/N . In this way, f eventually
becomes lower than fc and the dynamic stops. This is the
end of the avalanche. Avalanche size S (calculated as the
difference between

∑
i ui after and before the avalanche),

avalanche duration T (defined as the sum of all activation
times within the avalanche [75]), and spatial extent L (which
is the number of sites that jumped at least once during the
avalanche) are recorded. Then applied force f is increased
again and the process is repeated. The statistical behavior of
these three quantities allows us to determine some important
critical exponents of the transition. For instance, the (average)

042111-6



CRITICAL REGION OF LONG-RANGE DEPINNING … PHYSICAL REVIEW E 98, 042111 (2018)

FIG. 7. Size S vs spatial extent L of individual avalanches (small
dots) obtained in quasistatic simulations of the discrete pinning
potential model, at σ = 1. Averaging over small L intervals the
continuous lines are obtained for different system sizes, which allows
one to determine the value of the critical exponents ζ . The value
obtained ζ � 0.39 coincides with the one reported in the literature.

relation between S and L allows us to determine the roughness
exponent ζ through S ∼ Ld+ζ . In addition the relation be-
tween T and L determines the dynamical exponent z: T ∼ Lz.

In Fig. 7, S vs L is plotted for the “standard” long-range
case σ = 1, which is particularly relevant for propagating
fractures, contact lines of liquids or “magnetically charged”
domain walls [43]. By construction of the model, this plot is
valid both for constant and also for variable rates. Although
the individual data points are quite scattered, averaging over
small intervals of L allows us to obtain a good estimation of
ζ . The value obtained (ζ � 0.39) perfectly coincides within
the error bar with the value reported in the literature (see, e.g.,
Ref. [44]).

We now focus on the duration T vs spatial extent L

relation, determining the dynamical exponent z as T ∼ Lz.
This result depends on the form of the rates. For constant
rate the result is shown in Fig. 8(a) and is consistent with the
expected value of z, namely, z � 0.77 [42,45]. The results in
Figs. 7 and 8(a) further support the claim that the constant
rate discrete pinning potential is a realization of the cuspy
continuous potential case.

FIG. 8. Duration vs spatial extent of avalanches obtained in
quasistatic simulations of the discrete pinning potential model with
constant (a) and variable (b) transition rate, at σ = 1.

FIG. 9. Duration vs spatial extent of avalanches obtained in
quasistatic simulations of the discrete pinning potential model, in a
mean field situation (σ = 0). For constant transition rate the expected
result z = 1/2 is obtained, and there are no dependences on system
size besides the appearance of progressively larger avalanches as
system size increases. For a variable transition rate the value z = 1/4
is obtained and in addition, a global dependence on system size of the
form N1/2 is observed.

The results for T vs L for the variable-rate case are pre-
sented in Fig. 8(b). The first thing that is observed is that data
for individual avalanches (small dots) are much more scat-
tered compared to Fig. 8(a). This behavior is clearly related
to the variable rate: whereas for constant rate the avalanche
duration is at most of the order of avalanche size, for variable
rate even small avalanches can last for quite long, as a single
site may take a very long time to be activated if it is only
slightly above the local critical force. The next observation
in Fig. 8(b) is that a relation T ∼ Lz with z being the same
exponent as in Fig. 8(a) is obtained, but only for sufficiently
large avalanches. This is in fact consistent with our view that
the critical region for the variable rate case is much smaller
than for the constant rate case, and only large avalanches
display the correct critical T vs L dependence. For small
avalanches this dependence deviates towards larger values of
T . Interestingly, cracks experiments [6] also show an “excess
duration” for small avalanches, suggesting the nonuniversal
effect of smooth microscopic disorder or “variable rate” local
instabilities. Note also that for these small avalanches the
typical duration depends also on the system size N , an effect
that was already discussed in Ref. [76] in the context of the
yielding transition.

Since the results for the flow curve support the idea that
the size of the critical region shrinks to zero as σ → 0, the
question naturally arises as to what is the nature of the T vs
L dependence and the value of z in this limit, for constant and
variable rates. To address this point we generated avalanches
in a mean field case (σ = 0) and plot the results in Fig. 9,
both for constant and variable rate, for a system of different
sizes. The results for constant rate are consistent with the
standard value of z in mean field, namely, z = 1/2. However,
results for variable rate sharply deviate from this behavior.
We obtain a value of z = 1/4 instead, and also an overall
dependence on the system size, in such a way that we can
write T ∼ L1/4N1/2. This last relation can in fact be obtained
analytically [77].
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σ= d/20σ= σ=2

3/2

1

σ

Fully Coupled

Long−Range Short−Range

Mean−Field

β Δ
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Long−Range Sh
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βeff

FIG. 10. Red and blue lines show the expected value of β for the
two kinds of potentials analyzed. The puzzle posed by the jump of β

at σ = 0 in the continuous case (red line) is solved by noticing that
the extent of the critical region for smooth potentials (measured by
�f crit) reduces continuously to zero as σ = 0 is approached. In the
region σ � 0 the nonuniversal critical exponent β = 3/2 is observed.
This raises the possibility (in experiments or numerical simulations)
to observe strong corrections to scaling in the smooth potential case,
especially at low values of σ , that may induce us to adjust effective
values of the β exponent (roughly indicated by the hatched region)
that are expected to be larger than the true values.

V. CONCLUSIONS

In Fig. 10 we summarize the picture that emerges from our
results. The peculiar breakdown of universality in the σ → 0
limit is explained in terms of a vanishing critical region for
smooth potentials (whenever disorder is strong enough to have
a finite fc in such limits). We argue that the vanishing of
the critical region has practical implications for the analysis
of long-range depinning. Since the fully coupled model has
a β = 3/2 exponent for smooth potentials, larger than the
universal β = 1 for cuspy potentials, effective values 3/2 >

βeff > 1 are plausible to be observed for σ � 0, but also for
even larger σ we expect an excess, i.e., βeff(σ ) > β(σ ). The
difference between the effective and the right exponents are
found to be more important for the dynamical exponents, β

and z, than for the geometric exponents, ζ and ν. From a
simple microscopic model we have shown that this is related
to the competition between the characteristic time τ1 associ-
ated to single particle instabilities with the time associated
to collective instabilities, τ ∼ (f − fc )−zν , which is roughly
controlled by the number of active particles involved in the
spreading of correlations at lengths l ∼ (f − fc )−ν . This
competition is made more clear when we analyze avalanche
dynamics in the quasistatic limit.

To illustrate the kind of effects we can expect from the
nonuniversal corrections to scaling arising from smooth mi-
croscopic pinning potentials, in Fig. 11 we show estimations
of β and fc from the raw data points of Fig. 5 for σ = 1
corresponding to the variable jump rate case discussed in
Sec. III B. We use two fitting methods which are often used
in the literature. The best pairs fc and β are obtained from
least squares fits to log v = β log(f − fc ) + cte, varying the
number Np of points considered, starting from the three
lowest values of f . For each case we slowly decrease fc

from the lowest value of f . In Fig. 11(a) we show that for
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FIG. 11. Estimations of β and fc from the raw data points of
Fig. 5 for σ = 1 corresponding to the smooth microscopic pinning
or variable jump rate case. The best pairs fc and β are obtained from
least squares fits to log v = β log(f − fc ) + cte, varying the number
Np of points considered from the lowest f . From (a) we choose the
values that minimize the fit parameter error �β and obtain the fit
shown in (c) [the effective β is shown by a dashed line in (a)]. From
(b) we choose the values that minimize the standard deviation χ of
the fit and obtain the fit shown in (d). (The effective β is shown by a
dashed line in (b).] The obtained values must be compared with the
asymptotic ones β = 0.62 [shown with a solid line in (a) and (b)],
and fc = 2.376 70.

each Np [labels for each Np are shared with Fig. 11(b)]
the fit parameter error �β displays a minimum for a given
value of fc. If we choose the values corresponding to this
minimum we obtain the fairly good fit of the data shown in
Fig. 11(c). If instead we choose the values corresponding to
the minimum of the standard deviation χ of the fit we obtain
the fit shown in Fig. 11(c). (Note that in this case, the optimum
Np and fc are different than with the previous criteria.) The
obtained values must be compared with those obtained from
the more robust constant rate simulations (Fig. 4) β = 0.62
and fc = 2.376 70. It is worth noting that in either case the
effective β is larger than its true asymptotic value, which is
accurately obtained by using the constant rate discrete model.

Our results motivate a reexamination of the empirical
experimental and numerical (smooth potential) long-range
depinning data analysis. In Ref. [7] the depinning exponent
β ≈ 0.8 was directly measured for cracks propagating in an
elastic inhomogeneous material. A less direct estimate, also
for propagating cracks, can be obtained from the experimental
results for the avalanche duration exponent γ = 1.67 reported
in Ref. [46]. Using that γ ≈ β + ζ/(1 + ζ ) and assuming
ζ = 0.39 [44,45], we get β ≈ 0.72. Both values appear to be
larger than those predicted for the universality class of one-
dimensional elastic interfaces with σ = 1 long-range elastic
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couplings and uncorrelated isotropic disorder, where β ≈
0.63 [45,46] and β ≈ 0.68 [42] were found numerically using
“cuspy” or cellular automata lattice models. One can thus
argue that the excess in the effective value of β may arise, in
part, from the strong corrections to scaling we expect for long-
range depinning with smooth microscopic pinning potentials,
due to the vanishing of the critical region approaching the
fully coupled limit.
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APPENDIX: RESULTS IN HIGHER DIMENSIONS

In addition to considering a long-range interaction in a
one-dimensional (1D) system, there is a second standard way
to move towards the mean field limit. This is to consider
the short-range depinning problem in progressively larger
number of dimensions. For short-range interactions, the crit-
ical dimension of the depinning problem is dc = 4, i.e., for
d > dc we expect mean field critical exponents, in particular,
β = 1. The short-range case in dc = 4 corresponds to the
σ = 1/2 case of a 1D system. It is then natural to ask if by
increasing the dimension d we observe the same trends we
observe by decreasing the exponent σ , particularly in the flow
curves.

We have found that the answer to this question is affir-
mative. The relevant results are contained in Figs. 12, 13,
and 14 (which should be directly compared to Figs. 4, 5,

FIG. 12. Velocity as a function of force for interfaces with short-
range elasticity and constant transition rate potentials for interfaces
of different dimensionality d in linear (a) and logarithmic (b) scale.
The fitted values of β are indicated.

FIG. 13. Same as previous figure for variable transition rates.

and 6). There we present simulations of the discrete pinning
potential model, in different numbers of spatial dimensions,
namely, d = 1, 2, 3, 4, and 6, with interactions only among
nearest neighbor sites (corresponding to σ → ∞). In order
to compare different dimensions more easily and to have a
well-defined limit as d → ∞, here the elastic interaction Gij

[in Eq. (1)] is normalized differently, namely, we take the
value of Gij for neighbor sites as 2/d. The trend we observe as
dimension is increased is equivalent to what we have obtained
as σ is reduced, in one dimension: For constant rate a robust
critical region is obtained and the value of β increases with
the number of dimensions, reaching the mean field value
β = 1 for d = 4. For variable rates the extent of the critical
region is smaller and is reduced as d increases. Note, however,

FIG. 14. Ratio between the velocity for variable and constant
transition rates. We observe the same trend as obtained in 1D long-
range interacting systems as a function of σ (Fig. 6). The value of C

decreases with d as d−1/2.
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that the critical region does not vanish at the upper critical
dimension d = 4; our data are consistent with the critical
region vanishing only as d → ∞ where the mean field value

(β = 3/2) is fully observed. As in the case of varying σ , here
we can estimate the extent of the critical region as a function
of d (see Fig. 14) and the result is �f crit ∼ d−1.
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