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Cover-time distribution of random processes in granular gases
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Random processes have attracted much attention due to their broad applications. Despite the many varieties
of random processes, it is proposed that there can be universal properties, e.g., the cover-time distributions for
noncompact random walks. In this work, we investigate experimentally the cover-time distribution in random
processes of granular gases. In particular, the trajectory of a tracer particle in the granular gases is read out
by a high-speed camera, which forms a random process that is specific to granular gas systems. Analysis of the
covering process of this trajectory is then carried out to get the cover-time distribution. The direct results of cover-
time distribution deviates from the universal law, which can be attributed to two main factors: the attracting effect
at the boundary and the nonperiodic boundary condition due to the fixed boundaries. By efficiently removing
these effects step by step, the cover-time distribution recovers to the universal law approximately, which also
reveals that the attracting effect at the boundary is the most dominant factor leading to the discrepancy. We have
carried out three distinct experiments with different granular gas circumstances, and all agreed well with the
universal distribution after removing the boundary effects.
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I. INTRODUCTION

Random walk was first proposed by Karl Pearson in 1905
[1], and it has attracted continuous attention for more than 100
years due to the simplicity of the mathematical models and
its broad applications in many different disciplines of science
[2]. Particularly, in the past few decades, there have been
developed more complicated random walk models, such as the
Lévy walk [3], persistent random walk [4,5], and self-avoiding
random walk [6], etc. Different models typically have dis-
tinct diffusion behaviors. However, beyond these different
features, there could exist some hidden universal properties
among the varieties of random walks, such as the first-passage
time distribution [7], the cover-time distribution [8], etc. A
straightforward question is how universal are these properties.
Are they broadly applicable in realistic random processes or
there are certain limitations? In this work we shall try to
tackle this problem of cover-time distribution by exploiting
the random processes of a tracer particle in a vibrated granular
gas environment.

The cover process is that a random walker visits a given
set of sites at least once [9]. There is a long history in
investigating the cover process of a random walker in a given
domain. One of the motivations to investigate the lattice
covering problem is to find out how a fractal trajectory fills
in higher-dimensional space. There were some early explo-
rations in this interesting problem. The mean cover time
has been studied since the 1990s, and analytical expressions
have been obtained for one-dimensional random walks with

*huangl@lzu.edu.cn

both periodic and fixed boundary conditions [10]. In a one-
dimensional chain, the cover-time problem is equivalent to
the first-passage time problem, but in higher dimensions the
cover-time problem becomes an independent issue. For an
m-step search process in a D-dimensional space, it is well
known that the area (volume) visited by the walker is Sm ∼
m1/2 for D = 1, and Sm ∼ m/ ln m for D = 2, Sm ∼ m for
D > 2 [10]. However, the question of how long a walker
needs to cover an N -site lattice is not the inverse problem
of the previous one. In particular, let tN be the N -site lattice
cover time; it is found that tN ∼ N2 for D = 1, tN ∼ N ln2N

for D = 2, and tN ∼ N ln N for D � 3 with N going to
infinity [11,12]. For D = 2, the asymptotic behavior of the
random walk cover-time problem was considered on a torus as
well [13]. Partial cover time is the time that a random walker
visits a given fraction of area, and random cover time is the
time to visit a fraction of area previously chosen at random.
They are related [14–17] and they have both been discussed in
one dimension [14–16] and higher dimensions [17]. Related
topics were studied, such as the probability that a site is the
last one to be visited, and how long does a walker visit one
specific site k times [18].

In this paper, we shall focus on the full cover process,
where all sites are visited at least once. Cover time obviously
depends on the type of random walks and space dimension.
For instance, a Lévy walk is more efficient than Brownian
motion in a two-dimensional (2D) searching process. Surpris-
ingly, Chupeau et al. recently found that cover times of non-
compact explorations, e.g., three-dimensional (3D) Brownian,
2D or 3D Lévy walk, persistent random walk, etc., have a
universal distribution [8]. With periodic boundary conditions,
the time τ that a noncompact random walker takes to visit all
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N sites satisfies the distribution [8]

P (x) ∼ exp[−x − exp(−x)], (1)

where

x = τ

〈T 〉 − ln N, (2)

and 〈T 〉 is the global mean first-passage time, i.e., the mean
first-passage time (MFPT) of all directional pairs of sites
t and s. MFPT is an important characteristic of random
walk. It is the expected time that a random walker first
arrives target site t from site s by averaging over all possible
paths 〈Tt←s〉. This characteristic has been investigated
exclusively in previous works [19–23]. The numerical results
of the cover-time distribution are in good agreement with
Eq. (1) [8]. However, the real diffusion (exploration) process
could be much more complex than simple random walk
models, such as diffusion of granular matter in a vibrated
environment.

Dilute granular systems are regarded as granular gases,
and interactions between particles are inelastic so that in each
collision some energy is lost. Energy dissipation in granular
gases leads to a homogeneous cooling state of which mean
square displacement (MSD) can be precisely calculated by
means of the Chapman-Enskog method [24,25], and particles
perform an extremely compact diffusion. Moreover, this kind
of model was used for discussing the ergodicity in granular
diffusions [26]. For the nonequilibrium steady state of par-
ticles driven by a vibration table, some interesting velocity
distributions have been discovered in simulations and exper-
iments [27–29]. From these results, the velocity distribution
includes a low-velocity Gaussian core and a high-velocity tail
described by exponential functions. In Ref. [30], it is found
that in certain cases the velocity distribution can be fitted to a
mixture of two non-Gaussian distributions.

Diffusion in granular gases is complicated and quite differ-
ent from the anomalous diffusion models [31,32]. Therefore,
it is important to examine whether the universal rule Eq. (1) is
applicable to realistic diffusion processes in granular gases. In
this paper, we present results of cover-time distribution from
three experiments (I, II, III) under different circumstances.
The random walk derived from the original data do not
satisfy the noncompactness and periodic boundary condition
required by the theory [8]; thus the cover-time distribution
does not follow the universal rule. However, after neglecting
the data around the edges, which can be regarded as a surface-
mediated process [33,34] that makes the equivalent random
walk less compact, and applying an approximation method
for periodic boundary conditions, the cover-time distribution
converges to the universal rule, especially for long cover
times.

The following parts of the paper are organized as follows.
Section II describes the experimental setup and the treatment
for cutting edges (removing the trajectory data close to edge)
and applying the periodic boundary approximation. Section
III shows the results for the three experiments. A conclusion
is provided in Sec. IV.
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FIG. 1. (a) The schematic diagram of the experimental appara-
tus. The vibration table is marked by V.T. in the figure. It vibrates in
vertical direction with frequency 32 Hz for all three experiments. The
high-speed video camera is on top of the container. (b)–(d) Overlook
of the three experiments: (I) Brownian motion, (II) low-damping
Brownian motion [35–37], and (III) quasi-2D granular diffusion. The
particle marked by the red arrow is the tracer particle. The rest of the
particles are the granular matter.

II. EXPERIMENTAL SETUP

The schematic diagram of the experimental setup is shown
in Fig. 1(a). The container is a cuboid glass box 15 cm long
and 15 cm wide. We can adjust the height of the top cover
from 1 to 10 cm. In our experiments, the glass container is
fixed on a vibration table. One tracer particle with diameter D

is put into the container together with the granular particles
with average diameter d. The color of the tracer particle
is typically in strong contrast to the granular particles. The
density of the granular particle can be characterized by the
filling rate, which is given by

φ = nπd2

4L2
, (3)

where L is the length of the container and n is the number
of the granular particles. The vibration table oscillates in
vertical direction with amplitude A. In this work, since the
results are insensitive to the vibration frequency, we shall fix
the frequency at f = 32 Hz. The tracer particle’s motion is
recorded by a high-speed camera from the top. There are
1000 × 1000 pixels in the field of view. Typical views of the
three experiments are shown in Figs. 1(b)–1(d). The detailed
parameters are as follows. For experiment I, both the tracer
particle and the granular particles are made of ZrO2, where
the average diameter of the granular particles is d = 1.27 mm,
and the diameter of the tracer particle is D = 4.2 mm, the fill-
ing rate is φ = 0.622, the height of the container is 10 cm, and
the amplitude of vibration is 0.588 mm. For experiment II, the
granular particles are the same as that in experiment I, but the
tracer particle is different, which is made of Si3N4 with diam-
eter D = 3.0 mm; the filling rate is decreased to φ = 0.15, the
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FIG. 2. (a)–(c) Typical trajectories of the tracer particle for ex-
periments I, II, and III, respectively.

amplitude of vibration is changed to 0.27 mm. For experiment
III, the tracer particle and the background granular particles
are the same and are made of plastic with diameter D =
d = 6.0 mm, the filling rate is φ = 0.226, the height of the
container is 1.5 cm, and the amplitude of vibration is 1.4 mm.

Using a template matching algorithm, we can acquire the
position of the tracer particle in every frame of the video. Then
the trajectory of the tracer particle is obtained, as exemplified
in Fig. 2. For different parameters such as the granular particle
density, the vibration amplitude, or the different height of the
container, the tracer particle can exhibit different diffusion
behaviors [30,32].

The boundary for the tracer particle is fixed; thus one
would not expect that the cover-time distribution follows the
universal rule in Ref. [8]. Particularly, the tracer particle is
more likely to be attracted close to the boundary of the con-
tainer. A long-time correlation would appear when the tracer
moves around the boundaries, and it cannot be neglected
by changing to a larger container. Therefore, we propose to
take a pretreatment on the original data, i.e., edge cropping
and periodic boundary approximation, to reduce the fixed
boundary effects, and see if the results will converge to the
theory in Ref. [8].

To be specific, in order to eliminate the boundary effect
for a container with reasonable size, in the experiments, we
cut out the edge region if the distance to the boundary is
smaller than parameter lcut, as indicated by the shaded part
in Fig. 3, and the trajectory that the particle moves in the
edge region is neglected, i.e., the clock is stopped when the
tracer particle enters the shaded edge region, and is started
again when the particle reenters the central region. To obtain
as many covering trajectory samples and full-covering events
as possible, and also to approximate the periodic boundary
condition, the central region of the container is divided into
M blocks (M = 1 or 4) with the same size, as shown in
Fig. 3. These blocks are regarded to be equivalent, that is,
the tracer’s trajectory can be translated into one block. To
examine the cover-time distribution, the view field needs to
be coarsened into a much smaller system to balance between
efficiency and precision. Specifically, this block is discretized
into 9 × 9 or 20 × 20 grids. When the center of the tracer
moves into one grid, this grid is regarded to be visited by
the tracer. The time that all grids are visited is the full cover
time τ . With the experimentally obtained trajectory of the
tracer particle, the first-passage time for each pair of grid
sites can be measured, and then the global mean first-passage
time 〈T 〉 can be determined by averaging the measured
first-passage times for all pairs. With Eq. (2), the correspond-

FIG. 3. Schematic of the treatment to the trajectory data to ap-
proximate the noncompact random walk. The shaded part is regarded
as the edge region, and the width lcut is between 0 and 200 pixels. To
remove the fixed boundary effect, the trajectory in the edge region
such as t1 → t2 is excluded for the covering process statistics. The
central region is equally divided into M blocks (M = 1 or 4), which
are regarded as equivalent, that the trajectories in different blocks
can be translated into one block, e.g., t3 → t4, and do the cover-time
statistics. For M > 1, i.e., M = 4, this procedure approximates the
periodic boundary.

ing x value can be calculated. Assume there are Ñ full cover-
ing events for the whole experimental period, discretizing the
x axis with a step δ; then if in [x − δ/2, x + δ/2] there are
k events, the probability function P (x) can be approximated
by k/Ñ/δ. Considering k following the binomial distribution,

the uncertainty of P (x) will be around
√

k(Ñ − k)/Ñ3/δ.
Theoretically, there are three requirements for the cover-

time distribution to follow Eq. (1): noncompact random walk,
periodic boundary condition, and large N [8]. However, in
realistic cases, the parameters should be chosen properly to lie
in an intermediate range to reasonably satisfy all these require-
ments. In particular, the grids in a block cannot be divided too
fine to obtain large N . Firstly, the tracker’s position given by
the template matching algorithm may have uncertainties of a
few pixels; thus if the grids are too fine to be comparable with
the uncertainties, it could generate fake movements between
adjacent grids. Secondly, more grids need a longer cover time,
which could significantly reduce the number of full covering
events in the limited experimental time. Our results indicate
that a 5 × 5 grid already shows reasonable agreements with
the theory. Empirically, a square lattice with 9 × 9 grids and
periodic boundary condition is large enough for checking
the cover-time distribution of the random walk model from
experimental data, which shows good agreement with Eq. (1)
when lcut = 200 and M = 4 (Fig. 5). In addition, a 20 × 20
grid is also used to check the validity of the results when
varying the discretized grid size, which exhibits similar results
as that for the 9 × 9 grid. However, increasing the grid size
further, say, to 40 × 40, then our experimental data is not long
enough to have reliable statistics.

In principle, for a large enough container, its bottom can be
divided into more blocks that the tracer particle’s trajectory
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would cover one block before the tracer touches the edge
region of the container; then a perfect periodic boundary
condition might be realized.

III. EXPERIMENTAL RESULTS

A. Results for experiment I: Brownian motion

Brownian motion was first observed in a pollen’s move-
ment on the surface of water [38]. The pollen is collided
randomly by liquid molecules. The random force leads to
Brownian motion of the pollen. In our experiment, the gran-
ular matter plays a similar role as the liquid molecules and
the tracer particle mimics the pollen. The tracer particle and
granular matter are driven by the vibration table in z direction,
but in the horizontal direction (x, y-direction), the force only
comes from the collision of the tracer with the granular
particles, which can be regarded as random forces. When the
time interval of the observation is long, the tracer’s motion
could be Brownian in x and y directions, where the particle’s
velocity obeys Maxwell distribution:

P (vi ) ∼
(

mβi

2π

)1/2

e−mv2
i βi/2, (4)

where vi (i ∈ {x, y}) is the tracer’s velocity in one direction
and m is the tracer’s mass. For convenience, we shall use
dimensionless quantities for the length (L) and the time (T ),
which are normalized as follows:

l = L

spatial resolution
,

t = T

frame duration
. (5)

In this way, both space and time become discretized quan-
tities, with units of pixels and frame duration, respectively.
Without loss of generality, we can set m = 1. The tracer’s
velocity distribution in x direction and in y direction both sat-
isfy the Maxwell distribution [Eq. (4)], as shown in Fig. 4(a).
The average inverse temperature βi of the tracer particle
in both directions equals 0.11. Furthermore, we have tested
different directions, i.e., y = x, and the velocities follow the
same distribution. During about 100 h of the vibration table
experiment, the inverse temperature βx and βy are close to
each other and stable.

In principle, the mean square displacement of a Brownian
motion is proportional to time in all timescales, but in real-
istic cases such as granular gas, different diffusion behaviors
could be observed in different timescales. Figure 4(d) shows
the MSD versus time. For very short time intervals (much
shorter than the mean free time), we observed ballistic motion
〈r2(t )〉 ∝ t2. When t is large, there is a good approximation
to an ideal Brownian motion 〈r2(t )〉 ∝ t . For an even larger
time t , as the system is finite, the MSD becomes saturated.
In principle, the characteristic time and the characteristic path
length can be estimated by finding the transition point from
ballistic or superdiffusion to Brownian motion, which is the
cross point of the scaling lines in Fig. 4(d). The root of
MSD for the cross point yields the characteristic path length.
Although this is feasible for experiment I, there can be big
uncertainties for experiments II and III, as the ballistic part in
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FIG. 4. Characteristics of the random processes in granular
gases. The left panels are for experiment I, the middle panels
are for experiment II, and the right panels are for experiment III.
(a–c) The velocity distribution. The solid red line is fitting to the
Maxwell velocity distribution. The circles and squares are exper-
imental results in x and y directions, respectively. The length is
normalized by pixel, the spatial resolution of the high-speed camera,
and the time is normalized by frame duration. The fitted inverse
temperatures are βx = βy = 0.011; vx = �x/�t and vy = �y/�t

are the x and y direction velocity, where �t = 1, i.e., one time unit
which is the duration between two adjacent camera frames, which is
1/25 s; and �x and �y are the displacement in x and y direction in
one time unit, respectively. Note that both time and length are dimen-
sionless as normalized in Eq. (5). (d–f) Mean square displacement
(MSD). The lines are fitting to the data. (g–i) The distribution of the
excursion length le. The resulting characteristic lengths for the three
experiments are 66, 149, and 58 pixels, respectively.

the MSD plot is missing. In the following, we shall demon-
strate that the experimental data fits well with the persistent
walk model [5] in terms of the distribution function of the
excursion displacement. Therefore the characteristic length
can be obtained as the average excursion displacement. The
two results agree well for experiment I. Therefore we shall
use the fitting to persistent walk only to get the characteristic
length for experiments II and III.

In a sparse granular gas, a particle always has a nonzero
autocorrelation time, i.e., a particle prefers to keep its moving
direction for a while before it changes, and this behavior
is usually described by the persistent walk model [5]. The
probability distribution of the excursion displacement le, i.e.,
the displacement before it changes direction (which are the
four directions x, −x, y, and −y in our case), follows an

042109-4



COVER-TIME DISTRIBUTION OF RANDOM PROCESSES … PHYSICAL REVIEW E 98, 042109 (2018)

10−4

10−3

10−2

10−1

P
(x

)

(a) (b)

−2 0 2 4 6 8
x

10−4

10−3

10−2

10−1

P
(x

)

(c)

−2 0 2 4 6 8
x

(d)

FIG. 5. Cover-time distribution of the random process of the
tracer particle in experiment I as in Fig. 3 but with different param-
eters: (a) lcut = 0 and M = 1; (b) lcut = 200 and M = 1; (c) lcut = 0
and M = 4; (d) lcut = 200 and M = 4. The block is discretized into
9 × 9 or 20 × 20 grids. The circles are experimental results for 9 × 9
grids, and the triangles are results for 20 × 20 grids. The red solid
curves are the universal law Eq. (1).

exponential function form P (le ) ∼ exp(−γ |le|), as shown in
Figs. 4(g)–4(i) for the three experiments, where γ is a fitting
parameter. The characteristic length is thus given by 1/γ .
Note that minus le indicates the −x or −y direction. For
experiment I, the characteristic length obtained in this way
is 66 pixels, while from the MSD curve it is 63 pixels, which
agrees with each other well.

In this experiment, the characteristic time is around four
frame durations (4/25 second), and the characteristic path
length is around 66 pixels (0.99 cm). Thus, even though in
large scale the tracer’s motion is Brownian (normal diffusion),
in local grid coordinates, since the grid length (33 pixels
for 9 × 9 grids, 15 pixels for 20 × 20 grids) is smaller than
the characteristic path length, the motion of the tracer par-
ticle from one grid to another is not a completely random
walk but something between random walk and ballistic or
superdiffusion, introducing local spatial correlations between
subsequent movements.

Due to the fixed boundary, the tracer particle stays in the
edge region with a higher probability [39]. To systematically
investigate the boundary effects, we consider four different
cases, as Fig. 5 shows. First, we set lcut = 0, discretize the
whole region into 9 × 9 or 20 × 20 grids (M = 1), and cal-
culate the cover time. The results are shown in Fig. 5(a). The
cover-time distribution deviates significantly from the theo-
retical predictions for noncompact random processes. Second,
we cut 200 pixels (lcut = 200) along the boundary, discretize
the remaining region into 9 × 9 or 20 × 20 grids (M = 1),
and calculate the cover time. The distributions are shown in
Fig. 5(b). The results get closer to the theoretical prediction,
especially when the cover time is large. But when the cover
time is small (negative x), the deviation is still apparent. Third,
we set lcut = 0 but carry out the periodic boundary approxima-

tion (M = 4), as explained in Fig. 3. The results are shown in
Fig. 5(c). As compared with Fig. 5(b), the deviation becomes
larger. This indicates that cutting the edge region is more effi-
cient in approximating the situation assumed in the theoretical
prediction [8], especially for slow covering processes. Fourth,
we set lcut = 200 and carry out the periodic boundary approx-
imation (M = 4). The results are shown in Fig. 5(d). Now the
experimental results agree with the universal law well.

B. Results for experiments II and III: Non-Brownian motion
specific to the granular materials

To verify the validity of the universal law in more general
circumstances, we have carried out two more sets of experi-
ments (II and III), which are unique to random processes in
vibrated granular materials. Experiment II is for Brownian
motion with low damping [40], and experiment III is for
unusual diffusion in a quasi-2D granular gas [30].

In experiment II, the granular particles and the container
are the same as in experiment I; the difference from experi-
ment I is that the filling rate of granular matter φ is decreased
to 0.15, much sparser than experiment I, thus the ballistic
motion is more dominant. The tracer particle is made up by
silicon nitride (Si3N4) with diameter D = 3 mm. It is much
larger and heavier than the granular particles (d = 1.27 mm
ZrO2). The vibration amplitude is decreased to 0.27 mm. The
total time for the experiment with effective data is over 110 h.
The speed of the tracer particle in this case is faster. The
characteristic path length is 149 pixels, which is much larger
than the size of a grid (33 pixels for 9 × 9 grids, 15 pixels for
20 × 20 grids) when 200 pixels near the boundary are cut out.
Thus in this case the damping effect for the tracer particle is
less severe.

In this experiment the velocity distribution of the tracer
particle slightly deviates from Maxwell distribution Eq. (4)
in the high-speed regime, but it still contains a Gaussian core
when the speed is small [see Fig. 4(b)]. Also, the frame rate
used in our experiment is not high enough to caption the
short-time ballistic motion of the tracer particle; therefore the
MSD plot [Fig. 4(e)] lacks the ballistic part. For the excursion
displacement distribution Fig. 4(h), different from the other
two experiments, there seems to be two distinct characteristic
lengths, as it is a mixture of two exponential curves, with one
being 149 pixels and the other much smaller.

Experiment III is for dilute quasi-2D granular gas. The
granular particles are made of plastics, whose diameter is 6
mm and the standard deviation is 0.09 mm. The tracer particle
is chosen to be the same as the granular particle but painted in
a different color. The filling rate is φ = 0.226. The vibration
amplitude is 1.4 mm. The container is covered with a height
of only 1.5 cm; thus the particle’s motion is mostly confined
in the (x, y) plane.

Generally, the microdynamics of diffusion for a single par-
ticle is described by continuous time random walk (CTRW)
theory [32]. It is supposed that a random walk process can
be split into two parts—waiting and jumping—and the type
of diffusion depends on the convergence or divergence of
waiting time and jumping length. It is common for quasi-2D
dilute granular gases to display a similar but not exactly
the same behavior to what CTRW describes. For instance,
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FIG. 6. Cover-time distribution for experiments II [panel (a)] and
III [panel (b)]. Gray symbols are for lcut = 0 and M = 1; black
symbols are for lcut = 200 and M = 4. Circles are results for 9 × 9
grids, and triangles are results for 20 × 20 grids. The red solid curves
are Eq. (1).

velocity distributions in quasi-2D dilute granular gases could
be highly non-Maxwellian [41] because it consists of two
types of collision [30]: collision with the top or the bottom
of the container and collision with other particles. The former
type of collision, considering the roughness of the top or
bottom, imposes a small and random velocity in horizontal
direction. Because of friction, the velocity could also be
reduced. For the latter type of collision, the tracer particle
gains a high speed by interacting with other particles. The two
types of collisions could occur alternately and together shape
the velocity distribution for the tracer particle. In fact, it is
observed that the particle velocity distribution is a piecewise
exponential function [41], which almost has no Gaussian core
[see also Fig. 4(c)]. Since the velocity is much larger, the
exponent of the fitting to the MSD in the small t limit is
even smaller [Fig. 4(f)]. The excursion length distribution has
a perfect exponential form and yields a characteristic path
length of 58 pixels, which is also larger than the size of a grid.

The cover-time distributions for both experiments II and
III are shown in Fig. 6. Similar to experiment I, without cut-
ting edge and periodic boundary approximations, the results
deviate from the universal law significantly. After cutting the
trajectories close to the boundary and applying the periodic
boundary approximations, the cover-time distribution shows
good agreement with the theoretical prediction. Even still,
there are cases that the cover-time probability is slightly
higher than the theory [Eq. (1)], especially for rapid cover
processes (x < 0), which persists for all three experiments.

IV. CONCLUSION

To conclude, we have carried out granular gas experiments
to investigate whether the random processes in this system sat-
isfy the universal cover-time distribution proposed in Ref. [8].
For different parameters of the system, such as the size and
material of the granular particles and the tracer particle,
the filling rate, the vibration amplitude, etc., the motion of
the tracer particle can be quite different. Interestingly, the
excursion length distribution follows an exponential function
form for all three experiments, suggesting that the persistent
random walk model [5] captures a general feature of granular
gases, although in experiment II there seems to be two distinct
characteristic length scales. The direct cover-time analysis by
discretizing the random processes of the tracer particle into
9 × 9 or 20 × 20 grids indicates a large deviation from the
universal law, which can be understood in that the realistic
random motion of the tracer particle does not satisfy the ideal
assumptions for the theory, such as the attracting effect at the
boundary and the nonperiodic boundary condition due to the
fixed boundaries. To remove the boundary effect, we proposed
to neglect the trajectories of the tracer particle if it is too
close to the boundary, say, lcut, and then do the cover-time
statistics for the central region. This results in an equivalent
surface-mediated process [33,34] that makes the random walk
less compact. Furthermore, the central region can be divided
into four blocks, where they are regarded to be equivalent to
mimic the periodic boundary condition, i.e., the trajectories in
other blocks are translated back to one particular block, and
also to increase the number of full cover events for better
statistics. As a result, after removing the edge region and
applying the periodic boundary approximation, the cover-time
distribution agrees with the universal law quite well for all
three experiments. During this process, it is also found that
the attracting boundary effect is more dominant in causing
the discrepancy from the universal law, especially for long
cover-time processes. Periodic boundary approximation helps
the statistics to agree better with the universal law in the
fast covering process. Our work opens the way to new tests
of the theoretical law Eq. (1) [8] and of its limits, and also
renews interest for a theoretical description of the distribution
of cover times with fixed boundary conditions, and in compact
situations.
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