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Scaling property of the heat-current flows across a weak interface
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We systematically study heat current J that flows through a few one-dimensional nonlinear lattices, each of
which consists of two identical segments that are coupled by a weak interface. Existing theoretical analyses
expect that J is generally proportional to the square of the interface strength when the temperature drop is fixed
and small. However, we observe two completely different classes in our numerical simulations. One follows the
original expectation. In the other class, however, J follows a power-law decay with the strength and the detailed
power exponent depends on the details of the lattices and the interface interaction. Further theoretical analyses
reveal that in the former class the interface potential energy decays with the interface strength linearly, which is
commonly observed. In the latter class, the interface potential energy approaches a constant that is independent
of the interaction strength. The detailed power exponents are then well explained.
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I. INTRODUCTION

When heat flows through an interface between two ma-
terials, an interface thermal resistance (ITR) must be over-
come [1]. ITR was once regarded as negligible, until 1941
Kapitza reported the temperature jump near the boundary be-
tween helium and a solid when heat flows across it [2,3]. Such
a thermal boundary resistance is then often called as a Kapitza
resistance. Later, the acoustic mismatch model [4] and diffuse
mismatch model [5], which assume no phonon scattering
at interface, and all phonons incident on the interface will
scatter, were proposed to describe the solid-liquid and solid-
solid interfaces, respectively. The related topics have attracted
much interest in the past decades.

In the application aspect, recent successes in fabrication
of nanoscale materials have enabled us to control heat flow
intelligently in microscopic scale. With the successfully pro-
posed toy models of thermal diode [6–8] that rectifies heat
flow, thermal transistor that switches and modulates heat
flow [9], thermal logic gates that realize all fundamental logic
operations [10], and thermal memory that stores information
by heat [11], etc., information carrying and processing by
heat has become theoretically possible [12]. Some nanoscale
thermal devices have also been experimentally realized, e.g.,
a phonon waveguide [13] and a thermal rectifier by nan-
otubes [14]. It is worth mentioning that the physical under-
lying mechanism of many of the above-mentioned thermal
devices is that the ITR depends on the match-mismatch of the
phonon spectra at the interface sensitively [8], in particular
when the interface is very weak.

Besides the phonon spectra, the strength of the interface is
another important factor that controls the heat flow largely. It
is easily understood that generally the weaker the interface in-
teraction the smaller the heat current. The detailed dependence
is not so straightforward and has been rarely studied. It has
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been observed by numerical simulation that J flows through
a weak interface in a model of thermal diode that consists of
two Frenkel-Kontorova (FK) [7] segments, decays with the
interface strength kint by k2

int in the small kint limit. Recently,
such a k2

int law has been proven analytically and claimed as a
general relation that is independent of any detail of segment
materials and interface [15].

In this paper we shall investigate systematically the gen-
erality of the above-mentioned k2

int law in a serial of one-
dimensional (1D) nonlinear lattice models and reveal that
although such a law is correct in a wide class of models, there
still exists at least another class of models in which the law is
violated. In that class, J still satisfies a power-law decay with
kint by kα

int. The detailed power exponent α does, however,
depend on the details of the materials and the interface.

The paper is organized as follows. The lattice models
and interfaces that we shall study are introduced in Sec. II.
Numerical simulation results for those models and interfaces
are presented in detail in Sec. III. Theoretical analyses that
explain all the numerical findings are presented in Sec. IV.
Conclusions and remarks are in Sec. V.

II. LATTICE MODELS AND INTERFACE INTERACTIONS

Each 1D nonlinear lattice that we shall study consists of
two identical bulk segments that are connected through a weak
interface interaction. The Hamiltonian of a whole system
takes the general form

H = HL + Hint + HR

=
N/2∑
i=1

[
ẋ2

i

2
+ V (xi − xi−1) + U (xi )

]

+ Vint (xN/2+1 − xN/2)

+
N∑

i=N/2+1

[
ẋ2

i

2
+ V (xi+1 − xi ) + U (xi )

]
. (1)
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The mass of all particles has been set to unity and we have
already assumed that the left and right segments take the same
form and both of them consist of N/2 particles with N an even
number. When necessary, two different kinds of boundary
conditions (BC) shall be considered, i.e., the fixed BC (x0 =
xN+1 = 0) and the free BC (x0 = x1 and xN+1 = xN ). Three
representative types of lattices will be studied. They are: (1)
the φ4 lattice [16] with V (x) = 1

2x2 and U (x) = 1
4x4, (2) the

coupled rotator lattice with V (x) = 2.5[1 − cos(x)] [17] and
U (x) = 0, and (3) the Fermi-Pasta-Ulam(FPU)-β lattice [18]
with V (x) = 1

2x2 + 1
4x4 and U (x) = 0. The temperatures in

these studies are around 1. Heat conduction in a φ4 lattice
is normal due to the on-site potential that breaks the total
momentum conservation, which is typically a necessary con-
dition for a normal heat conduction in 1D systems. At such
a temperature heat conduction in the coupled rotator lattice is
normal too. It is one of the very seldom exceptions that a 1D
system without an on-site potential has a normal heat conduc-
tion. Heat conduction in the FPU-β segment is divergent. It
is also a very presentative example showing that without an
on-site potential, nonlinearly alone is generally not sufficient
to induce a normal heat conduction in 1D systems [19,20].

The interface interactions also include three representative
types: (1) the nonlinear quartic interaction that Vint (x) =
kint

1
4x4, (2) the linear interaction that Vint (x) = kint

1
2x2, and

(3) the rotator interaction that Vint (x) = kint[1 − cos(x)]. We
shall reveal that the detailed type of interaction does play an
important role in determining the decay properties of the heat
current J even in the small interface strength kint limit.

In the numerical simulations, two Langevin heat baths with
slightly different temperatures 1.1 and 0.9 are coupled to the
left and right ends of the lattice, i.e., the first and N th particles.
Average heat current J that flows through the lattice is then
calculated after the system reaches a stationary state. The
damping coefficient γ of the heat baths is always set to 2,
unless otherwise stated in Sec. III C 3, where we shall study
its role. A fifth-order Runge-Kutta algorithm [21], which
provides a high cost-effect, is applied for the calculation.

III. NUMERICAL SIMULATIONS

A. The φ4 lattice

The first lattice that we study consists of two φ4 segments.
The results of this lattice are simple. The temperature profiles
for the quartic interface and different values of kint are plotted
in Fig. 1(a). We see when kint is small enough, temperature
profiles in the two segments are flat, which implies that the
temperature jump at the interface is basically the value of the
whole temperature difference of the two heat baths. In such
a situation, heat resistance in the two segments is negligible.
We shall not plot the temperature profiles for the other two
lattices, since the pictures are similar. In Fig. 1(b) the heat
current J versus the strength of interface interaction kint for
various types of interface interaction and length of lattice
N = 32 and 64 are plotted. The data for different N basically
overlap each other, which confirms the fact again that the
bulk heat resistance can be ignored. In the small kint limit,
J follows k2

int exactly, i.e., the k2
int law holds. The BC is fixed

and we have checked that it does not affect the results.

FIG. 1. (a) Temperature profiles in the φ4 lattice with quartic
interface. N = 64. (b) Heat current J versus kint for various interface
and lattice length N . The error bars are basically invisible, except for
some data with very small kint . Dashed lines with slope 2 are drawn
for reference. (c) The mean square relative displacement between
the interface particles �2

int versus kint for various interface. Open and
solid symbols are for N = 32 and 64 in all the figures.

For further study and comparison, the mean square relative
displacement between interface particles �2

int ≡ 〈(xN/2+1 −
xN/2)2〉 is also plotted in Fig. 1(c). The physical meaning of
�2

int is clear. It measures the relative movement of the two
interface particles, and the larger the magnitude of relative
movement the larger the �2

int. It can be easily seen and
understood that due to the hard [22] on-site potential U (x),
the particles can only vibrate around their equilibrium posi-
tions. Therefore, �2

int depends on kint only very slightly and
approaches a temperature-dependent constant in the no-link
(kint → 0) limit.

B. The coupled rotator lattice

The second lattice we shall study is the coupled rotator
lattice. In Fig. 2(a) the heat current J versus the strength
of interface interaction kint for various types of interface
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FIG. 2. The coupled rotator lattice with free BC. (a) Heat current
J versus kint for various interfaces and lattice length N . The symbol
groups from the top down are for the quartic, the linear, and the
rotator interfaces, respectively. The error bars are basically smaller
than the symbol size. The solid, dashed, and dotted lines with slope
0.5, 1, and 2, respectively, are drawn for reference. (b) The mean
square relative displacement between the interface particles �2

int

versus kint for the the quartic and the linear interfaces. That for the
rotator interface is not plotted since it diverges. Solid and dashed
lines are with slope −1 and −0.5. Open and solid symbols are for
N = 32 and 64 in all the figures.

interaction and length of lattice N = 32 and 64 are plotted. In
the small kint limit, J always follows a power-law dependence
on kint, i.e.,

J ∼ kα
int. (2)

However, the detailed value of α varies for different interface
interactions. For the quartic, the linear, and the rotator inter-
actions, α = 0.5, 1, and 2, respectively. Only the last case is
originally expected. In the figure only the results for free BC
are plotted but we have checked again that it does not affect
the conclusions for this lattice.

In contrast to the case in Fig. 1(b), �2
int plotted in Fig. 2(b)

follows a power-law dependence on kint, i.e.,

�2
int ∼ k

−β

int , (3)

and approaches infinity in small kint limit, where β = 0.5 and
1 for the quartic and linear interface interactions, respectively.
In these hard interface cases, the k2

int law is violated. As for the
rotator interface, since interactions in both the segments and
the interface are soft, �2

int diverges in the long time limit. In
this case, the k2

int law holds.

C. The FPU-β lattice

The third lattice we shall study is the FPU-β lattice. Upon
understanding the cases in the previous two lattices, the case
in this lattice, although is much more complicated, can be
well explained. In the following we study the roles of different
factors in this lattice.

1. The role of the interface interaction

We first study the cases for free BC, which is relatively
simple. In Fig. 3(a) the heat current J versus kint for various
types of interface interaction and length of lattice N = 32 and
64 are plotted. Again the length N plays only invisible role. In
the small kint limit, J follows again a power-law dependence
on kint and α = 0.5, 1, and 2, respectively, for the quartic, the
linear, and the rotator interfaces. Only the last one meets the
original expectation.

As for the mean square relative displacement between the
interface particles �2

int that is plotted in Fig. 3(b), it follows
a power-law with β = 0.5 and 1 for the quartic and linear
interface interactions, respectively. All these above results are
similar to those for the coupled rotator lattice.

2. The role of the boundary conditions and lattice length N

Figures 3(c) and 3(d) are for the fixed BC. In Fig. 3(c) we
see that in the not-very-small kint regime, J basically follows
the same power-law dependence as it does in the free BC
cases. However, in the small kint limit, all the power exponents
approach 2. The picture for the �2

int that is plotted in Fig. 3(d)
is also quite similar. It follows the similar slopes as it does in
the free BC case in large kint regime. In the small kint limit,
however, �2

int approaches constants, and the longer the lattice,
the larger the constants.

3. The role of the heat bath damping coefficient γ

Heat current J in the FPU-β lattice versus kint for the
heat bath damping coefficient γ = 0.5 and 2.0 are depicted
in Fig. 4(a). It is observed with surprise that it depends so
greatly on γ , even in the small kint limit. In very large kint

regime, the larger γ induces a larger J . While in the very
small kint cases, it reverses. The smaller value of γ = 0.5
induces a much larger J , which is about four times of that with
γ = 2.0. However, the power-law dependence on kint remains
unchanged. The power exponent α keeps 0.5 and 1 for the
quartic and linear interface interactions, respectively. In order
to confirm it we have to extend the calculation to extremely
small values of kint.

To understand the above finding, we have calculated the
power spectra of the two interface particles in the no-link
(kint = 0) cases. The results plotted in Fig. 4(b) and 4(c)
reveal that in the case γ = 0.5 the power spectra concentrate
much more on the low frequency regime. It is well known
that low frequency phonons carry heat energy much more
efficiently than the high frequency ones do. This well explains
the resulted much larger heat current in the quartic and the
linear interface cases. The case for the rotator interface is quite
different. This mechanism lose its effectiveness completely
because low frequency phonons cannot carry energy across
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FIG. 3. Upper row: FPU lattices with free BC. (a) Heat current J versus kint for various interfaces and lattice length N . The symbol groups
from the top down are for the quartic, the linear, and the rotator interfaces, respectively. Solid, dashed, and dotted lines with slope 0.5, 1, and 2,
respectively, are drawn for reference. (b) �2

int versus kint for the quartic (squares) and the linear (circles) interfaces. That for the rotator interface
is not plotted since it diverges. Solid and dashed lines are with slopes −1 and −0.5. Lower row: FPU lattices with fixed BC. (c) Heat current
J versus kint for various interfaces and lattice length N . The symbol groups from the top down are for the quartic, the linear, and the rotator
interfaces, respectively. Open and solid symbols are for N = 32 and 64. Lines with slope 2 are drawn for reference. (d) �2

int versus kint for the
quartic (squares), the linear (circles), and the rotator (triangles) interfaces. Solid and dashed lines are with slopes −1 and −0.5. Open and solid
symbols are for N = 32 and 64 in all the figures.

such a soft interface at all. As a consequence, heat current J

for different γ is basically the same.

IV. THEORETICAL ANALYSES

It is quite clear that the behaviors of �2
int directly connect to

how the heat current J decays with kint. The relation between
the two power exponents α and β is plotted in Fig. 5(a).
Apparently there exist two completely different classes, class
one is α = 2 and β = 0, and class two follows α = β.

The class one includes (1) the φ4 lattice, (2) the FPU lattice
with fixed BC, and (3) all the lattices with rotator interface.
The case (1) is a lattice with hard on-site potential. In such a
case, all the particles including the two interface particles are
confined, i.e., each of them can only vibrate around a center
with a temperature-dependent finite magnitude. Therefore,
the probability distribution functions (PDF) of the relative
displacement between the two interface particles approaches
a kint-independent asymptotic distribution P (�x) in the small
kint limit, where �x ≡ xN/2+1 − xN/2. Since the interface po-
tential energy takes the general form Vint (�x) = kintf (�x),
its average value 〈Hint〉 in the limit follows

〈Hint〉 =
∫ −∞

−∞
Vint (�x)P (�x)d�x

= kint

∫ −∞

−∞
f (�x)P (�x)d�x. (4)

Apparently, the last integral is finite, non-zero, and kint-
independent. 〈Hint〉 thus decays with kint linearly. �2

int ap-
proaching a constant can also be explained similarly.

The case (2) is a hard inter-particle potential plus fixed
BCs. Although there is no on-site potential, the fixed BCs can
also confine all the particles through their hard inter-particle
interactions. This time, in a finite lattice each interface particle
can vibrate around a center with a temperature-dependent
and also lattice-length-dependent finite magnitude. The above
analyses also apply thus 〈Hint〉 still decays with kint linearly.

Case (3) is quite different. In this case, f (�x) is periodic
and finite. The period equals 2π for the rotator interface that
we studied. Then in the small kint limit, although P (�x) pos-
sibly does not exist if any of the two interface particles is not
confined, P ({�x}) must exist and approach a kint-independent
asymptotic distribution, where {x} ≡ x − [ x

2π
]2π , and [x]

denotes the largest integer that is no greater than x. Therefore,

〈Hint〉 =
∫ 2π

0
Vint ({�x})P ({�x})d{�x}

= kint

∫ 2π

0
f ({�x})P ({�x})d{�x}. (5)

Again, the last integral is finite, non-zero, and kint-
independent, so that 〈Hint〉 decays with kint linearly. The k2

int
law holds in all those three above cases.

The class two includes the FPU lattice with free BC and the
coupled rotator lattice. The interface interaction must be hard.
In those cases since the interface particles are not confined,
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FIG. 4. (a) Heat current J for the FPU-β lattice versus kint with
various interfaces and heat bath γ . N = 32. The black, red, and green
symbol groups from the top down are for the quartic, the linear, and
the rotator interfaces, respectively. Solid squares and open triangles
are for γ = 0.5 and 2. The error bars are basically smaller than the
symbol size. Solid, dashed, and dotted lines are with slopes 0.5, 1,
and 2, respectively. (b) and (c) Power spectra of the two particles left
and right to the interface, for γ = 0.5 and γ = 2, in the no-link case.

P (�x) does not exist in the small kint limit, and because
f (�x) is non-periodic the analyses in Eq. (5) do not apply.
Therefore, 〈Hint〉 no longer decays with kint linearly. In our
studies, all the hard interactions take the general Hn form
Vint (x) = kint

1
n
|x|n. In Fig. 5(a), the results for the FPU lattice

with free BC and various n are plotted. Besides the linear
and quartic interactions that have been discussed in previous
sections, interactions with other values of n = 3, 5, 6, 8, and
10 are also included. All the results satisfy β = 2/n and
α = 2/n perfectly. Therefore, α = β.

β = 2/n can be understood by assuming that the average
interface potential energy 〈Hint〉 keeps a constant independent
of the interface coupling strength kint. Such an assumption
has also been confirmed by our numerical simulation. The
agreement is exact again. Then it is easily proven that �2

int

diverges to infinity in the small kint limit by k
− 2

n

int .
Furthermore, we have also plotted the values of 〈Hint〉 for

various n in Fig. 5(b). All the data, up to n = 10, follow 1/n

exactly. This result agrees with the following analytical ex-
pectation for bulk materials with the temperature T = 1 [23].

Consider an infinite long lattice with periodic BC and all
Hn type inter-particle interaction, i.e., the Hamiltonian reads

H =
∑

i

[
1

2
mẋ2

i + k

n
(xi − xi−1)n

]
. (6)

FIG. 5. (a) The dependence of the two power exponents α and
β. The dashed line refers to α = β. Class one includes: (1) the φ4

lattice, (2) the FPU lattice with fixed BC, and (3) all the lattices with
rotator interface. Class two includes: hard interfaces that takes the
general form Vint (x ) = kint

1
n
|x|n, between (1) the rotator lattice and

(2) the FPU lattice with free BC. The point α = β = 0, which is
surrounded by the dashed circle, indicates the limiting case for n →
∞. (b) Average interface potential energy 〈Hint〉 versus n for the Hn

type interface in class two. The solid line refers to 〈Hint〉 = 1
n
.

In an equilibrium state,

T =
〈
xi

∂H

∂xi

〉
= k〈xi[(xi − xi−1)n−1 − (xi+1 − xi )

n−1]〉

= k〈xi[(xi − xi−1)n−1] − xi[(xi+1 − xi )
n−1]〉

= k〈xi[(xi − xi−1)n−1] − xi−1[(xi − xi−1)n−1]〉
= k〈(xi − xi−1)n〉 = n〈EP〉,

where 〈EP〉 ≡ 〈 k
n

(xi − xi−1)n〉 is the average per-link poten-
tial energy. The Boltzmann constant kB has been set to unity.
Therefore,

〈EP〉 = T

n
. (7)

Since the space translation symmetry has been applied,
the above derivation is valid only for homogeneous systems.
It looks quite surprising and deserves further study why the
conclusion is still exact for such a single interface. In the
n → ∞ limit, the result approaches the point α = β = 0,
which is surrounded by the dashed circle in the Fig. 5(a).

To explain α = 2/n is not that straightforward. In the
derivation in Ref. [15], it is assumed that the potential en-
ergy at the interface 〈Hint〉 ∝ kint, thus the instantaneous heat
current follows j = f v ∝ ∂Hint

∂x
∝ kint, where f and v are

the instantaneous force and velocity. Therefore, 〈j (0)j (t )〉 ∝
k2

int, which leads to 〈J 〉st ∝ k2
int according to the Green-Kubo

formula. Here, we follow the expression in Ref. [15] that 〈〉st

042108-5



LEI WANG AND YANJIANG GUO PHYSICAL REVIEW E 98, 042108 (2018)

denotes for the nonequilibrium steady state average (with tem-
perature drop), while the 〈〉 refers to the equilibrium average.
The above derivation is correct for the class one since, as we
have shown, 〈Hint〉 indeed decays with kint linearly.

For the class two, however, 〈Hint〉 does not decay with kint,

but approaches a constant instead. In such a case, �2
int ∝ k

− 2
n

int ,
i.e., it follows a power-law divergence in the small kint limit.
As kint decreases, the increase of �2

int slows down the decay of
the instantaneous heat current j . Quantitatively speaking, j ∝
∂Hint
∂x

∝ k
1
n

int. Therefore, when all other factors keep unchanged,

〈j 〉st ∝
∫ ∞

0
dt〈j (0)j (t )〉 ∝ k

2
n

int. (8)

This explains our finding for class two.

V. SUMMARY AND DISCUSSIONS

To summarize, we have systematically studied heat con-
duction in a few nonlinear lattices, each of which consists
of two identical segments that coupled by a weak interface.
We focus on the interface strength kint dependence of the
heat current J that is induced by a fixed small temperature
drop. Existing studies have indicated that in a large amount
of systems, J should generally decays by k2

int. Our numer-
ical simulations confirmed such a k2

int law in the cases that
the mean square relative displacement between the interface

particles �2
int approaches either infinity or a finite constat in

the small kint limit.
Besides, another class has also been revealed. In this class,

J also follows a power-law decay, i.e., J ∼ kα
int. The power

exponent α is, however, not necessarily 2. It is observed that
in this class �2

int follows a power-law dependence in the small
kint limit too, i.e., �2

int ∼ k
−β

int . By assuming that the potential
energy EP of the interface interaction approaches a non-zero
constant, the value of β can be analytically calculated. Based
on it, the kint dependence of J in this class can also be
analytically explained.

Although the systems that are studied here are all one
dimensional, we believe the conclusions can be extended
to high-dimensional systems. However, the real interfaces
between real materials are possibly even much more com-
plicated, e.g., the Kapitza resistance at the interface between
solid and liquid. Therefore, there may also exist different
decay classes other than the two that have been revealed.
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