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Stochastic modeling of nonstationary earthquake time series with long-term clustering effects
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Earthquake time series are widely used to characterize the main features of regional seismicity and to provide
useful insights into earthquake dynamics. Properties such as intermittency and nonstationary clustering are
common in earthquake time series, highlighting the complex nature of the earthquake generation process. In the
present work we introduce a stochastic model with memory effects that reproduces the temporal scaling behavior
observed in regional seismicity. For nonstationary earthquake activity, where the average seismic rate fluctuates,
the solution of the stochastic model is the q-generalized gamma function that presents two power-law regimes
for short and long waiting times, respectively, while for stationary activity it reduces to the standard gamma
function. To validate the derived model, we study nonstationary earthquake time series from Southern California
and Japan. The analysis shows that for various threshold magnitudes and spatial areas and after rescaling with the
mean waiting time, the normalized probability density functions fall onto a unique curve, which is characterized
by two power-law regimes for short and long waiting times, respectively, a scaling behavior that can exactly be
recovered by the derived q-generalized gamma function. The results show the validity of the stochastic model
and the derived scaling function, further signifying both short- and long-term clustering effects and memory in
the evolution of seismicity.
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I. INTRODUCTION

Earthquakes are a typical example of complex dynamic
phenomena, exhibiting a high variability in the time and space
of their occurrence. Complexity in the temporal occurrence
of earthquakes, in particular, is manifested in the strong
variations between periods of stationary activity, where few
regional earthquakes occur and the seismicity rate remains rel-
atively constant, and periods of increased activity associated
with sudden seismic bursts, where a significant increase of the
seismicity rate may occur. As such, earthquake occurrence is
an intermittent phenomenon, characterized by fluctuating be-
havior, nonstationary clustering, and (multi)fractal structures
[1,2].

Regarding the temporal occurrence of seismicity, a long-
standing question concerns whether earthquakes occur ran-
domly in time, or if some kind of memory is present in the
seismogenic process. A short-term clustering effect is evident
in aftershock sequences, where the aftershock production rate
decays as a power law with time according to the modified
Omori formula [3]. However, the background activity in a
seismic region is frequently considered uncorrelated and sta-
tistically independent in time, such that models that express
randomness, like the general Poisson model, have been used
to describe its temporal properties [4,5]. The latter properties
are manifested in the waiting time (or interevent time, re-
currence time) distribution between consecutive earthquakes,
where a mixture distribution between triggered aftershocks
that scale according to the modified Omori formula and
a Poissonian background activity has been proposed [6,7].
Such distribution approximately takes the form of a gamma

distribution [7,8]:

f (τ ) = C

(
τ

β

)γ−1

exp

(
− τ

β

)
, (1)

where C is a normalization constant, γ is the exponent
that characterizes the power-law decay of short and inter-
mediate waiting times, and β is a scaling parameter that
marks the crossover to the exponential long waiting times
decay.

This type of scaling has been found in stationary earth-
quake time series [7,8] and is approximately the one pre-
dicted by the epidemic-type aftershock sequence (ETAS)
model [7,9,10]. However, intermittency and clustering in the
temporal occurrence of seismicity contradicts a Poissonian
presumption on the constant seismicity rates and random
temporal occurrence. Furthermore, correlations and long-term
clustering effects, associated with the background activity,
have also been found in earthquake time series [11–16],
which implies memory in the earthquake generation process
[17–19]. In support to the latter, Ref. [15] studied nonsta-
tionary earthquake time series in the Corinth Rift (Greece)
and found a bimodal waiting time distribution of two power-
law regimes that characterize both short and long waiting
times. Similar scaling behavior has previously been found
by [12] and [20] for nonstationary earthquake time series
in Southern California and Japan, respectively. To describe
the observed scaling behavior, Ref. [15] proposed a unified
scaling function that incorporates the two power-law regimes,
namely the q-generalized gamma function [21], that takes
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the form

f (τ ) = C

(
τ

τ0

)γ−1

expq

(
− τ

τ0

)
, (2)

where C is the normalization constant and γ is the scaling
exponent, similar as in Eq. (1), while the last term on the
right–hand side of Eq. (2) is the q-exponential function de-
fined as

expq (x) = [1 + (1 − q )x]1/(1−q ). (3)

The q-exponential function is associated with nonextensive
statistical mechanics as it maximizes the nonadditive entropy
Sq [2,22] and its applicability to earthquake dynamics has
been demonstrated in numerous studies [2,14–16,19,23]. In
Eq. (2) q is the nonextensive parameter that marks how far or
close to exponential and thus to random behavior the system
is and τ0 marks the time of crossover to the second power-law
regime. In the limit q → 1 the q-generalized gamma func-
tion exactly recovers the ordinary gamma function, Eq. (1).
Equation (2) is similar to the F distribution [24] known from
statistics and is a particular case of the pathway model of
Ref. [25]. It has also empirically been proposed to describe
stock traded volume distributions in financial markets [26].

In the present work we extend previous results on the
scaling properties of nonstationary earthquake time series
and use statistical physics to propose an underlying mecha-
nism for the temporal occurrence of earthquakes. Within this
framework we develop a stochastic mechanism with memory
effects whose exact solution for nonstationary series is the
q-generalized gamma function given in Eq. (2). To test the
validity of the derived model, we further study the scaling
behavior of earthquake time series in Southern California
and Japan. The analysis demonstrates results consistent with
the stochastic model, indicating clustering effects at all time
scales and both short- and long-term memory in the seismo-
genic process.

II. STOCHASTIC MECHANISM
WITH MEMORY EFFECTS

Let’s consider the following stochastic differential equa-
tion for the evolution of seismicity:

dτ = −k(τ − τ̄ )dt + ϕ
√

τWt , (4)

where the temporal occurrence of earthquakes is represented
by the waiting time series τ after some time t . The latter
stochastic equation manifests two parts controlling the evolu-
tion of seismicity. The first deterministic part aims to keep the
seismic rate R stable to the typical value of R = 1/τ̄ according
to a restoring constant k that represents the rate of relaxation to
the mean waiting time τ̄ . The second stochastic part represents
memory effects in the evolution of seismicity. The stochastic
term Wt is the standard Wiener process following a Gaussian
distribution with zero mean and unitary variance that mimics
the microscopic effects in the evolution of τ . Due to its
random sign, Wt leads to an increase (Wt > 0) or decrease
(Wt < 0) of τ . The term ϕ adds some noise to the process
and can be expressed as a function of the mean waiting time
τ̄ and the restoring constant k as ϕ = √

(2/γ )kτ̄ , where γ is a
characteristic constant of the system.

The stochastic differential equation given in Eq. (4) is
a classic example of multiplicative noise, further known in
statistics as the Feller process [27]. It has previously been
introduced by Heston to derive stochastic volatility in trading
price returns [28,29] and by [21] to describe stock traded
volume sequences in financial markets. Interestingly, finan-
cial time series present similar characteristics to earthquake
time series, such as high fluctuations, power-law scaling, and
multifractal behavior, among others [30–32].

To determine the evolution of the waiting time series τ

after some time t , given by the probability distribution f (τ, t ),
we can write the corresponding Fokker-Planck equation for
Eq. (4) [33,34]:

∂f (τ, t )

∂t
= ∂

∂τ
[k(τ − τ̄ )f (τ, t )] + ∂2

∂τ 2

[
τ τ̄

k

ζ
f (τ, t )

]
. (5)

The stationary solution of the latter Fokker-Planck equa-
tion, Eq. (5), is the gamma distribution [35]:

f (τ ) = γ γ

�[γ ]τ̄

(
τ

τ̄

)γ−1

exp

[
−γ

τ̄
τ

]
. (6)

Let’s now consider local fluctuations in the seismic rate
R associated with nonstationarities in the evolution of the
earthquake activity over time scales much larger than k−1,
which is necessary for Eq. (4) to reach stationarity. In this case
local fluctuations of the mean waiting time τ̄ appear and we
assume that these fluctuations follow the stationary gamma
distribution:

P (τ̄ ) = (γ /λ)δ

�[δ]
τ̄−(δ+1) exp

[
− γ

λτ̄

]
. (7)

In this case Eq. (6) provides the conditional probability of
τ given τ̄ , hence

f (τ ) → p(τ |τ̄ ) = γ γ

�[γ ]τ̄

(
τ

τ̄

)γ−1

exp

[
−γ

τ̄
τ

]
. (8)

Thus, the joint probability for obtaining certain values of τ

and τ̄ is P (τ, τ̄ ) = p(τ |τ̄ )P (τ̄ ). The marginal probability of
τ , independent of τ̄ , is now given by

P (τ ) =
∫ ∞

0
P (τ |τ̄ )dτ̄ =

∫ ∞

0
p(τ |τ̄ )P (τ̄ )dτ̄ . (9)

From Eqs. (7)–(9) and by performing the integration, we
get the solution for varying τ̄ :

P (τ ) = λ�[γ + δ]

�[γ ]�[δ]
(λτ )γ−1(1 + λτ )−(γ+δ). (10)

By further carrying out the changes in the variables,

λ = q − 1

τ0
, δ = 1

q − 1
− γ, (11)

and considering the q-exponential function given in Eq. (3),
Eq. (10) can be written as [21]

P (τ ) = (q − 1)γ+1�[1/(q − 1)]

τ0�{[1/(q − 1)] − γ }�[γ ]

(
τ

τ0

)γ−1

expq

[
− τ

τ0

]
.

(12)

The last equation, Eq. (12), has the exact form of the
q-generalized gamma function given in Eq. (2). Equation
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(12) has been derived by the stochastic model, Eq. (4), for
varying mean waiting time τ̄ , i.e., nonstationary earthquake
activity. If τ̄ does not fluctuate, i.e., if the earthquake activity
is stationary, then the gamma function, Eqs. (1) and (6), is
dynamically recovered.

III. SCALING PROPERTIES OF NONSTATIONARY
EARTHQUAKE TIME SERIES

To validate the derived stochastic model, we study earth-
quake time series in Southern California and Japan [36]
(Fig. 1). Earthquake activity in the studied regions is typically
characterized by nonstationarities and fluctuating behavior,
where stationary periods of low to moderate earthquake
activity are interspersed by sudden seismic bursts, which
are related to the occurrence of earthquake sequences and

FIG. 1. Epicentral distribution of the 03/06/2002–30/06/2016 re-
gional seismicity in Japan (a) and of the 01/01/1981–30/06/2011
seismicity in Southern California (b) for earthquakes with magnitude
M � 2.

earthquake swarms, such as the 2016 Kumamoto earthquake
sequence (Japan), or more frequently to the occurrence of
stronger events followed by subsequent aftershock sequences,
observed for instance after the 2011 MW9.1 Tohoku mega-
earthquake (Japan), or following the 1992 MW7.3 Landers
earthquake and the 2010 MW7.2 Baja California earthquake
(Southern California) (Fig. 2). During such earthquake se-
quences a significant increase of the seismicity rate is ob-
served, represented by large spikes in Fig. 2. Such earthquake
sequences indicate a short-term clustering effect, which is
evident in almost every earthquake catalog [37].

To extract further information regarding the temporal struc-
ture of seismicity and to validate the stochastic model, we
define the distribution of waiting times τ , i.e., the time inter-
vals between successive earthquakes, defined as τi = ti+1−ti ,
where ti is the time of occurrence of the ith event, i =
1, 2, . . . , N − 1, and N is the total number of events. The
waiting time series for Southern California and Japan are
shown in Fig. 3, presenting high fluctuations over almost eight
orders of magnitude, indicating once more the intermittent
character of the earthquake occurrence.

Similar to the analysis of [6,38], we cover the areas un-
der study with a grid of cell sizes L × L and estimate the
waiting time series in each cell. We estimate the probability
density Pm,L(τ ) of waiting times τ for all earthquakes with
magnitude equal to or greater than a threshold magnitude m

occurring within range L. The probability density Pm,L(τ ) is
then constructed by counting the number of τ that fall into
logarithmically spaced bins and then normalized by dividing
this number by the bin width and by the total number of
counts, so that the probabilities of occupation sum to 1.
We don’t consider waiting times shorter than 1 min due to
overlapping of the successive events in the seismograms and
the possible incompleteness of the catalogs at very short-time
scales [38,39].

The resulting Pm,L(τ ), for various cell sizes L and thresh-
old magnitudes m, are shown in Fig. 4. In each case, we
rescale the observed variables with the mean waiting time τ̄ ,
which is equivalent to rescaling with the mean seismicity rate
(R = 1/τ̄ ). As Ref. [8] has explicitly showed, after rescaling
with τ̄ (or R), the observed Pm,L(τ ) fall onto a unique curve.
As evident from Fig. 4, the rescaled Pm,L(τ ), for both datasets
and for the various L and m, approximately fall onto a unique
curve, which consists of two parts: for short and intermediate
waiting times the observed Pm,L(τ ) decay as a power law until
some characteristic waiting time τc, while for long waiting
times (τ > τc ) Pm,L(τ ) decay faster according to another
power law. The two power-law regimes are evident from the
linear decay of Pm,L(τ ) with τ in the double logarithmic axes
representation of Fig. 4, which span for almost 11 orders
of magnitude in the y axis. Hence, the scaling behavior of
nonstationary earthquake time series in Southern California
and Japan is characterized by a bimodal distribution between
two power laws in short and long waiting times, respectively,
indicating both short- and long-term clustering effects.

Such scaling behavior can well be approximated by
the q-generalized gamma function, Eq. (2), for the val-
ues of C = 0.147 ± 0.011, τ0 = 2.02 ± 0.14, γ = 0.216 ±
0.005, and q = 1.39 ± 0.11 for Japan and the values of
C = 0.052 ± 0.009, τ0 = 3.55 ± 0.45, γ = 0.1 ± 0.008 and
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FIG. 2. Seismicity rate per day for Japan (a) and Southern California (b), for earthquakes with magnitude M � 2.

q = 1.43 ± 0.08 for Southern California (Fig. 4). Thus, the
q-generalized gamma function offers a unified function to
describe the observed double power-law behavior in nonsta-
tionary earthquake time series, in accordance with the stochas-
tic model that has been introduced in the previous section.
According to this scaling behavior, for short waiting times,
Pm,L(τ ) scales as a power law ∼τ γ−1 up to a characteristic
waiting time τc = τ0/τ̄ , indicating short-term clustering. For
waiting times greater than τc, Pm,L(τ ) scales as another power
law ∼τ (1−γ )/(1−q ), showing clustering effects at the long term.

IV. DISCUSSION

In view of the statistical physics of earthquakes, the most
important task is to elucidate general physical mechanisms
that produce the scale invariant properties that are evident
in the sizes of earthquakes and faults, as well as in the
spatiotemporal occurrence of earthquakes [2,40]. In this line,
in the present work we introduced a stochastic model with
memory effects to describe the scaling properties of earth-
quake time series and consequently the temporal evolution of
seismicity. During periods of stationary earthquake activity,
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FIG. 3. The waiting time series τ (in days) for Japan (a) and Southern California (b), for earthquakes with magnitude M � 2.

where the average seismic rate is relatively constant, the
stochastic model produces the gamma function as the scaling
function of the waiting time series of earthquakes. However,
during periods of nonstationary earthquake activity, where the
average seismic rate fluctuates, the stochastic model provides

the q-generalized gamma function as the scaling function of
the waiting time distribution.

To test and validate the stochastic model, we studied
nonstationary earthquake time series in Japan and South-
ern California. For both regions and for various threshold
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FIG. 4. Normalized probability densities Pm,L(τ ) of the rescaled waiting times τ for Japan (a) and Southern California (b), for various cell
sizes L and threshold magnitudes m. The model (solid line) represents the q-generalized gamma function, Eq. (2) for the values of C = 0.147,
τ0 = 2.02, γ = 0.216, and q = 1.39 for Japan (top) and C = 0.052, τ0 = 3.55, γ = 0.1, and q = 1.43 for Southern California (bottom).

magnitudes m and spatial areas of size L, the analysis showed
that the scaling structure of the waiting time series is char-
acterized by a bimodal distribution and a crossover behavior
between slow power-law decay for short waiting times and
faster power-law decay for long waiting times. Such scaling
behavior can exactly be reproduced by the stochastic model
and the derived q-generalized gamma function that unifies
the observed double power-law behavior for short and long

waiting times, respectively. According to this scaling be-
havior, the normalized probability density Pm,L(τ ) for short
waiting times scales as a power law with τ as ∼τ γ−1, while
for long waiting times Pm,L(τ ) scales as another power law
with τ as ∼τ (1−γ )/(1−q ), indicating both short- and long-term
clustering effects in the evolution of seismicity. Such results
lay further support to the double power-law behavior in the
waiting time distribution found previously by [12,15,20] and
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the long-term clustering effects and memory in the earthquake
activity shown by [11,17,18], respectively.

The multiplicative process used in the stochastic model can
be understood as a cascade of seismic bursts that interposes
the background earthquake activity, giving rise to intermit-
tency and nonstationary earthquake rates in the evolution of
seismicity. The bimodality in the observed Pm,L(τ ) and the
gradual crossover between the two power-law regimes for
short and long waiting times, respectively, can then express
these two processes. The first one is related to short-term clus-
tering effects induced by aftershock sequences and earthquake
swarms, and the second one to long-term clustering effects,
related to the background activity. Short waiting times decay
as ∼τ γ−1, providing a decay exponent of −0.784 for Japan
and −0.9 for Southern California. The short-term clustering
effect can further be expressed by the Omori formula that for a
single aftershock sequence provides a power-law waiting time
distribution with exponent 2−p−1, where p is the exponent of
the modified Omori formula [3]. Combining the latter with the
decay exponents for short waiting times, we find a p value
of 0.82 for Japan and 0.91 for Southern California. These
values do not represent the p value of the Omori formula in
a strict sense, but rather an average value that expresses the
average deacay rate of aftershocks in the studied regions. The
latter turns out to be faster for Southern California than Japan,
although short-term clustering effects do not only appear due
to aftershock sequences, but also due to earthquake swarms.
In addition, long waiting times decay as another power law
∼τ (1−γ )/(1−q ), providing the almost similar decay exponents
of 2.01 for Japan and 2.09 for Southern California, which are
almost identical to the exponent 2.2 found by [41] for various
earthquake catalogs.

The stochastic model and the proposed scaling for the wait-
ing time distribution introduced in the present study present
the advantage of considering all earthquakes in the seismic
catalog, regardless of their classification as foreshocks, main-
shocks, and aftershocks and without the need to transform
the time series into stationary ones, as it was previously
performed by [8]. Nonetheless, the stochastic model pre-
dicts that during periods of stationary earthquake activity, the
normalized probability densities Pm,L(τ ) scale according to
the gamma function, in accordance to previous results [7,8].
The latter implies that the scaling behavior in the temporal
evolution of seismicity is controlled by the seismic rate, where
nonstationarities in the earthquake activity, giving rise to a

varying seismic rate, determine the emergence of the second
power-law regime for long waiting times.

The results obtained in the present study seem robust
for nonstationary earthquake time series, despite the possi-
ble incompleteness of the earthquake catalogs, the selected
threshold magnitude, or the spatial size of the chosen area,
further signifying self-similarity in the temporal structure of
seismicity. The latter, as well as the almost perfect collapse of
the rescaled Pm,L(τ ) onto a unique curve, further implies that
earthquake hazard assessments in the given regions Pm,L(τ )
can be estimated by just knowing the average seismic rate R as
Pm,L(τ ) = Rf (τ ), where the scaling function f (τ ) can well
be approximated by the q-generalized gamma function.

The scaling properties found from the analysis can further
be viewed in terms of probabilities of subsequent earthquakes.
The observed scaling indicates that the probability of a sub-
sequent earthquake is high immediately after the occurrence
of the previous one and decreases slowly up to a character-
istic waiting time τc, where a crossover to faster decaying
probabilities is observed. In addition, the observed short- and
long-term clustering effects further suggest that short waiting
times are more likely to be followed by short ones and long
waiting times by long ones. Such type of behavior implies that
the longer it had been since the last earthquake, the longer it
will be until the next one, referred to as “the paradox of the
expected time until the next earthquake” [42,43].

To conclude, the stochastic model with memory effects
that has been introduced in the present work to describe
the temporal evolution of seismicity can well reproduce the
observed scaling properties of nonstationary earthquake time
series. These scaling properties, for various threshold magni-
tudes and spatial areas, are characterized by double power-
law behavior for short and long waiting times, respectively,
which can well be reproduced by the derived q-generalized
gamma function that unifies the two power-law regimes,
further indicating both short- and long-term clustering effects
and memory in the seismogenic process.
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