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Nonlinear response theory for Markov processes. III. Stochastic models for dipole reorientations
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The nonlinear response of molecular systems undergoing Markovian stochastic reorientations is calculated
up to fifth order in the amplitude of the external field. Time-dependent perturbation theory is used to compute
the relevant response functions as in earlier treatments [G. Diezemann, Phys. Rev. E 85, 051502 (2012); 96,
022150 (2017)]. Here, we consider the reorientational motion of isolated molecules and extend the existing
calculations for the model of isotropic rotational diffusion to the model of anisotropic rotational diffusion and to
the model of rotational random jumps. Depending on the values of some model parameters, we observe a hump
in the modulus of the nonlinear susceptibility for either of these models. Interestingly, for the model of rotational
random jumps, the appearance of this hump depends on the way the coupling to the external field is modeled
in the master equation approach. If the model of anisotropic rotational diffusion is considered, the orientation
of the diffusion tensor relative to the molecular dipole moment and additionally the amount of anisotropy in
the rotational diffusion constants determine the detailed shape of the nonlinear response. In this case, the height
of the observed hump is found to increase with increasing “diffusional anisotropy.” We discuss our results in
relation to the features observed experimentally in supercooled liquids.

DOI: 10.1103/PhysRevE.98.042106

I. INTRODUCTION

The study of the primary relaxation of supercooled liq-
uids by means of dielectric techniques in the linear response
regime is standard and allows investigations over an extremely
broad frequency range [1–3]. Apart from the detailed form
of the spectra, the nature of the dynamical heterogeneities
has been studied using various frequency-selective techniques
[4–7], including higher-dimensional nuclear magnetic res-
onance experiments [8–10] and nonresonant dielectric
hole-burning [11–13]. The latter techniques allow the
frequency-selective modification of the spectrum via the ap-
plication of strong electric fields.

In the recent past, the nonlinear dielectric response of a
number of glass-forming systems has been investigated, and
the results have been used to extract the length scale of
the dynamical heterogeneities or the number of correlated
particles Ncorr, cf. [14,15]. According to theoretical predic-
tions, the modulus of the nonlinear susceptibilities (cubic and
higher-order) exhibits a so-called hump, the height of which
is directly related to Ncorr [16,17]. It is thus assumed that the
origin of the hump is intimately related to the existence of a
growing amorphous order or some kind of domain structure.
On the other hand, it has been argued that the reorientational
motion of individual molecules gives rise to a monotonous
decay of the modulus from a finite low-frequency value to
zero at high frequencies, and this behavior is found for the
model of isotropic rotational diffusion [17–20]. It should be
mentioned, however, that also some models lacking spatial
correlations, such as the Box model and variations of this and
other phenomenological models, have been shown to exhibit
a hump in the nonlinear susceptibilities [14,21–23].

We have computed the third-order and fifth-order re-
sponse functions for the well-known asymmetric double-well

potential model of dielectric relaxation and for the simple
Gaussian trap model for glassy relaxation, and we found a
hump for certain values of the model parameters [24,25].
Additionally, the first results for the cubic response for the
model of rotational random jumps have been presented in
Ref. [26].

In the analyses of most nonlinear dielectric data, it has
been assumed that for very low frequencies the heterogeneous
nature of the response becomes irrelevant and therefore at
these long times the individual reorientational motion of the
molecules determines the response. As mentioned, usually
the model of isotropic rotational diffusion has been used to
calculate the corresponding response functions. However, it
is a well-known fact that this model is not able to reproduce a
number of aspects related to the noninertial molecular reorien-
tations in supercooled liquids; see, e.g., [27]. Various models
introducing finite angular jumps instead of diffusive motions
have been proposed. One of the first attempts to formulate a
general stochastic model of rotational jumps was provided by
Ivanov [28], and since then a number of different treatments of
the rotational motions in liquids have been presented [29–32].
Also, models explicitly taking into account the dynamical
heterogeneities can be used to reproduce a number of the
findings related to the reorientational motion in the primary
relaxation as monitored with different techniques [33,34].

In the present paper, we present results for the third-order
and fifth-order nonlinear responses for two models of molec-
ular reorientations. One model treats the isotropic rotations
as random jumps on a sphere, and the other is the model
of anisotropic rotational diffusion. These models can both
be viewed as limiting cases of more general rotational jump
models [31].

The remainder of the paper is organized as follows. In the
following section, we briefly review the models for molecular
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reorientations that will be used in the calculations of the
nonlinear response afterward. After a discussion of the results
for the third-order and fifth-order dynamic susceptibilities, we
close with some concluding remarks.

II. MARKOVIAN REORIENTATIONAL JUMP MODELS

In general, the time-dependent orientation of a molecule
is described in terms of the Eulerian angles �(t ) =
(φ(t ), θ (t ), ψ (t )) relating the axes of a molecular fixed frame
and some laboratory fixed axes system. If P (�, t |�0) denotes
the probability to find an orientation � at time t given that it
was �0 at an earlier time t = 0, the master equation [35] can
be written in the form

Ṗ (�, t |�0) =
∫

d�′W (�|�′)P (�′, t |�0)

−
∫

d�′W (�′|�)P (�, t |�0) (1)

with the probability W (�|�′) for a �′ → � transition. The
initial condition is given by P (�, t = 0|�0) = δ(� − �0)
and the probability of finding a given orientation is related
to P (�, t |�0) via p(�, t ) = ∫

d�0P (�, t |�0)p(�0). The
model of rotational diffusion is recovered in the limit of small
rotation angles, in which case the master equation corresponds
to a Fokker-Planck equation. In general, the conditional prob-
ability can be expressed in terms of Wigner rotation matrix
elements

P (�, t |�0) =
∑

l,m1,m2,n

(
2l + 1

8π2

)
D(l)∗

m1n
(�0)D(l)

m2n
(�)F (l)

m1m2
(t )

(2)

with time-dependent coefficients F (l)
m1m2

(t ) that are solutions
of the respective equations.

In Ref. [31], we have introduced a reorientational jump
model where rotational jumps with fixed angular width ��

have been considered. The transition probabilities for this
model can be written in the form

W (�1|�2) = �R

∑
l,m,n

(
2l + 1

8π2

)
D(l)∗

mn (�1)

×D(l)
mn(�2)�l,m(θ̄ , φ̄)

with �l,m(θ̄ , φ̄) = cos (2mφ̄)d (l)
mm(θ̄ ). (3)

Here, θ̄ and φ̄ denote the jump angles and �R is the jump rate.
In a diagonal approximation, discussed in detail in Ref. [31],
the F (l)

mn(t ) in Eq. (2) are given by F (l)
mn(t ) = δm,nF

(l)
m (t ) with

F (l)
m (t ) = e−�R (1−�l,m(θ̄ ,φ̄))t . (4)

The exact result for the model of rotational diffusion is
recovered for small jump angles, and one has

F (l)
m (t ) = e−{l(l+1)DX+m2(DZ−DX )}t , (5)

where it is assumed that the rotational diffusion coeffi-
cients DY and DX are equal, but not necessarily equal to
DZ . Equation (5) follows from �l,m(θ̄ , φ̄) � 1 − {l(l + 1)
− m2}(θ̄/2)2 + m2(2φ̄2) using DX = �R (θ̄/2)2 and DZ =
�R (2φ̄2). Only for DX = DZ does the second term in the

exponential vanish, and the result for isotropic rotational
diffusion,

PIRD(�, t |�0) =
∑

l

(
2l + 1

8π2

)
D

(l)∗
00 (�0)D(l)

00 (�)e−l(l+1)DXt ,

is recovered. The model of rotational random jumps (with rate
�RJ) is obtained by averaging over all jump angles, and one
finds

F (l)
m (t ) = e−�RJt . (6)

Insertion of this result into Eq. (2) yields the well-known
expression PRJ(�, t |�0) = 1

8π2 + e−�RJt [δ(� − �0) − 1
8π2 ]

[36]. In this case, the coefficients are not only independent of
m but also do not depend on the rank l.

It should be mentioned that the orientation �(t ) is the ori-
entation of the tagged molecule at a given time in a laboratory
fixed frame. For instance, in the case of anisotropic rotational
diffusion �(t ) represents the orientation of the coordinate
system of the diffusion tensor (D) in the laboratory fixed
frame (L). Experimentally, however, the orientation of the
principal axes system (P ) of the relevant interaction in the
L-system is observed. In the case of dielectric relaxation, for
instance, the P -system is defined by the orientation of the
molecular dipole relative to the D-system. This means that
the expectation value of the dipole moment (the response) is
written as

〈M (t )〉 = M
〈
D

(1)
00 [�PL(t )]

〉
= M

∑
n

D
(1)
0n (�PD )

〈
D

(1)
n0 [�DL(t )]

〉
, (7)

where we used the fact that D(l)
mn(�PL) = ∑

n′ D
(l)
mn′ (�PD )

D
(l)
n′n(�DL) and that �PD is a static quantity defined by the ge-

ometry of the molecule considered. Here M denotes the static
value of the dipole moment, and M (�PL) = M cos (�PL).
The expectation value of an orientation-dependent quantity
A(�) can be expressed in terms of the solution of the master
equation,

〈A(�(t ))〉 =
∫

d�

∫
d�0A(�)P (�, t |�0)peq(�0),

where peq(�0) denotes the equilibrium probability, in our
case peq(�0) = 1/(8π2) because all orientations are equally
probable.

III. NONLINEAR RESPONSE THEORY
FOR MARKOV PROCESSES

The response of the system to an external E field applied
at time t = 0 and measured by the moment M (t ) is given by
Eq. (7), which in terms of the solution of the master equation
in the presence of a field E is written as

χ (t ) = 〈M (t )〉
= M

∑
n

D
(1)
0n (�PD )

∫
d�

∫
d�0D

(1)
n0 (�)

×P (E)(�, t |�0)peq(�0). (8)

Here, � is a shorthand notation for �DL. The time-
dependent perturbation theory for the conditional probability
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P (E)(�, t |�0) has been discussed in detail in Refs. [24–26].
For the models considered in the present paper, it is sufficient
to note that the field is coupled to the transition probabilities
W (�1|�2) in Eq. (3) via the orientation-dependent dipole
moment M (�) in the following way:

W (E)(�e|�i ) = W (�e|�i )e
−βE(t )[μM (�i )−(1−μ)M (�e )], (9)

where μ is a model parameter that determines how the system
couples to the field. For μ = 1, the coupling takes place via
the initial orientation of the transition (�i), and for μ = 0
only the destination orientation (�e) is relevant. The particular
choice μ = 1/2 is important for small step reorientations
because in this case [M (�i ) − M (�e )] ∼ dM/d� and there-
fore it represents the force acting on the system via the
application of the field.

As detailed in Refs. [24,25], Eq. (9) is used in the
master equation for P (E)(�, t |�0), and the time-dependent
perturbation theory is obtained from a series expansion of
W (E)(�e|�i ). From this, the conditional probabilities are
obtained in any desired order in the field amplitude. We will
compute the experimentally relevant response to a sinusoidal
field of the form E(t ) = E0 cos (ωt ). In the following, we will
write for the corresponding susceptibilities monitored after
the decay of initial transients:

χ (1)(t ) = E0

2
[e−iωtχ1(ω) + c.c.],

χ (3)(t ) = E3
0

2

[
e−iωtχ

(1)
3 (ω) + e−i3ωtχ

(3)
3 (ω) + c.c.

]
, (10)

χ (5)(t ) = E5
0

2

[
e−iωtχ

(1)
5 (ω) + e−i3ωtχ

(3)
5 (ω)

+ e−i5ωtχ
(5)
5 (ω) + c.c.

]
,

where c.c. denotes the complex conjugate.
In the present paper, we will concentrate on the discussion

of the response functions χ
(k)
k (ω), i.e., we focus on the highest

frequency component in a given order (third order or fifth
order). We note that we only consider systems that are in ther-
mal equilibrium, and therefore the well-known fluctuation-
dissipation theorem (FDT) relating the linear response to a
short field pulse, R(1)(t ), and the autocorrelation function of
the dipole moment holds; see, e.g., [37].

IV. RESULTS FOR SIMPLE MODELS
OF MOLECULAR REORIENTATIONS

Here, we consider the Brownian rotational motion of
molecules in terms of the simple models of rotational random
jumps (RJ) and anisotropic rotational diffusion (ARD) in
addition to the model of isotropic rotational diffusion (IRD).
In the terminology of Refs. [38,39], these models describe the
“trivial” dynamics of individual molecules in a glass-forming
liquid without any so-called glassy correlations, and therefore
they cannot account for the nontrivial features such as the
observed hump in the nonlinear response. We do not go into
technical details of the calculations, which are lengthy but
straightforward. The results for χ

(k)
k (ω), k = 1, 3, 5, for the

three models considered in the present paper are explicitly
given in the Appendices.

The linear dielectric susceptibility for the IRD model and
the RJ model can be written in the form

χ1,Z (ω) = �χ1
1

1 − iωτ10
with �χ1 = β

M2

3
, (11)

where the relaxation time is τ10 = 1/(2DX ) if Z = IRD and
τ10 = 1/�RJ for Z = RJ. Furthermore, β = 1/(kBT ) denotes
the inverse temperature, and we will set the Boltzmann con-
stant kB to unity in all of the following expressions. The
static linear response (corresponding to �ε in the dielectric
terminology) is denoted by �χ1. For the ARD model, one
finds

χ1,ARD(ω) = �χ1

(
cos2 (�)

1 − iωτ10
+ sin2 (�)

1 − iωτ11

)
(12)

with 1/τ1m = 2DX + m2(DZ − DX ) and � ≡ �PD denoting
the angle between the z axes of the molecular axis system (P -
system) and of the principal axis system of the diffusion tensor
(D-system). Thus, in this case one has a superposition of two
Lorentzians with weights depending on the value of �. Only
for � = 0, π/2 is one left with one Lorentzian. However,
the fact that the spectrum is given by a superposition of two
Lorentzians is not relevant in the present context because in
supercooled liquids usually distributions of relaxation times
exist that give rise to very broad spectra. In the general case,
the relaxation time is most meaningfully defined via the decay
time of the normalized dipole autocorrelation function,

τ1 =
∫ ∞

0
dt〈M (t )M (0)〉n = cos2 (�)τ10 + sin2 (�)τ11,

(13)

which reduces to τ1 ≡ τ10 for the IRD model and the RJ
model. In the following, we will present all spectra as a
function of ωτ1 with the consequence that χ1(ω) for the RJ
model and IRD model coincide. Furthermore, for the ARD
model, the spectra for � = 0◦ and 90◦ are identical to that for
the IRD model.

In the past, experimental results of nonlinear dielectric
spectra have either been presented in terms of real and imag-
inary part of the susceptibility or, alternatively, the modulus
and the phase have been considered. In particular, it has
proven meaningful to scale the modulus by the static linear
response in the following way:

X3(ω) = T

(�χ1)2

∣∣χ (3)
3 (ω)

∣∣ and

X5(ω) = T 2

(�χ1)3

∣∣χ (5)
5 (ω)

∣∣. (14)

These definitions eliminate the trivial temperature depen-
dences, χ

(3)
3 ∝ β3 and χ

(5)
5 ∝ β5. Using �χ1 = βM2/3 and

the expressions given in the Appendices, one can write the
moduli in terms of the spectral functions for each of the
models considered:

X3,Z (ω) = 3
20 |S3,Z (ωτ1)|, X5,Z (ω) = 9

560 |S5,Z (ωτ1)|,
(15)

where Z is an abbreviation for IRD, ARD, or RJ. The low-
frequency limits for all models considered coincide and are
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FIG. 1. Real and imaginary parts of the cubic susceptibility χ
(3)
3 (ω) (left) and the fifth-order susceptibility χ

(5)
5 (ω) for the models of

rotational diffusion (red dashed lines) and rotational random jumps for μ = 1 (black full lines) and μ = 0 (blue dot-dashed lines). The green
dotted lines represent the linear response, cf. Eq. (11), scaled by a factor of 10.

given by

X3,Z (ω → 0) = 1
20 and X5,Z (ω → 0) = 1

280 . (16)

However, for high frequencies the limiting behavior for the
RJ model differs from that for the diffusion models. One
finds X3,Y (ω → ∞) ∼ ω−3 and X5,Y (ω → ∞) ∼ ω−5 for
Y = IRD, ARD while for the RJ model one has Xk,RJ(ω →
∞) ∼ ω−1 for both X3 and X5. However, we will not discuss
this high-frequency behavior any further as it does not appear
to be observable in supercooled liquids due to the existence
of other relaxation phenomena such as the so-called wing or
secondary processes at higher frequencies [2].

In Fig. 1, we show the real and imaginary parts of the
third-order and fifth-order responses for the model of isotropic
rotational diffusion and for the RJ model. In the latter case,
we used two values for the parameter μ that describes the

coupling to the external field, cf. Eq. (9). For μ = 1 (black
full lines) the coupling takes place via the initial state of a
rotational transition, and for μ = 0 (blue dot-dashed lines)
only the destination state is relevant. For the RJ model, it
appears that μ = 1 is the more natural choice because the
idea underlying the model is that every single transition com-
pletely decorrelates the orientation in the sense that starting
from a given orientation, any other orientation can be reached
in a single step. It is then meaningful to assume that start-
ing with a coupling to an initial orientation according to
[−EM (�i )], an average over all possible destination orien-
tations is to be performed, 〈[−EM (�e )]〉, which vanishes.
Therefore, according to Eq. (9), this corresponds to choosing
μ = 1.

The overall behavior of the results for the IRD model and
the RJ model is quite similar for both response functions, in
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FIG. 2. Upper panels: X3(ω) (left) and X5(ω) (right) for the models of rotational diffusion (red dashed lines) and rotational random jumps
[black full lines (μ = 1) and blue dot-dashed lines (μ = 0)]. The insets show the relative maximum value of the hump, X̂k = Xmax

k /Xk (0), as
a function of μ. Lower panels: phase ϑk (ω) = a cos[χ (k)′′

k (ω)/χ (k)′
k (ω)] (in deg) as a function of frequency.
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FIG. 3. X3(ω) (left) and X5(ω) (right) for the models of isotropic rotational diffusion (red dashed lines) and anisotropic rotational diffusion
for parameters as indicated in the figure. Here, � = DZ − DX .

particular if μ = 0 is chosen in the case of the RJ model (blue
dot-dashed lines). For μ = 1 (black full lines), the deviations
from a monotonous behavior of the real parts are stronger.

In Fig. 2, the modulus and the phase are shown for the
same parameters as in Fig. 1. It can be seen that in both
cases, i.e., the third-order and fifth-order responses, the RJ
model with μ = 1 gives rise to a hump in Xk (ω). The insets
in the upper panels of Fig. 2 show the relative magnitude
X̂k = Xmax

k /Xk (0) of the hump as a function of the parameter
μ. For values μ � 1/2, no hump appears. For larger values of
μ one observes a clear hump with a maximum at a frequency
somewhat smaller than ωτ1 � 1. This means that the simple
model of isotropic rotational random jumps in which each
transition completely destroys the orientational correlations
yields results similar to the nonlinear response observed for
supercooled liquids. However, the behavior observed in Fig. 2
does not depend on temperature since all spectral functions
are only dependent on the scaled frequency ωτ1, cf. the
expressions given in the Appendices. Thus, the experimentally
observed decrease of the height of the hump with increasing
temperature can only be modeled by changing the parameters
of the model, in particular the value of μ.

In Fig. 3, we show Xk (ω) for the model of anisotropic
rotational diffusion for various values of the angle �. For
� = 0, the results are identical to those for the IRD model.
The same holds for vanishing “diffusional anisotropy,” � =
0. For small values of �, there are only minor differences
between the results for the two models. With increasing �,
a shoulder or a peak at higher frequencies develops depending
on the value of �. This is clearly observable for � = 40◦,
where a shoulder is found for � = 10 and a peak for � = 50.
This behavior with a varying height of the high-frequency
peak is observed up to angles of approximately � = 70◦
(for � = 10). In this regime also the linear susceptibility is

composed of two Lorentzians with comparable intensities.
For higher values of � the peak shifts to lower frequencies
and a single hump is observed in the moduli X3 and X5, as
is most prominently seen for � = 90◦ in Fig. 3. Note that
for � = 90◦, the scaled linear response of the ARD model
coincides with the corresponding one for the IRD model.
This does not hold for the nonlinear response functions. The
overall behavior of X5(ω) is very similar to that of X3(ω). In
both cases, the position of the hump shifts to slightly smaller
frequencies with increasing � and at the same time it broadens
somewhat.

As an example for the behavior at intermediate angles �,
we plot X3(ω) for � = 60◦ and various values of the diffu-
sional anisotropy � in Fig. 4. It is obvious how for smaller
values of � a shoulder evolves that turns into a secondary peak
for larger anisotropy. The inset in Fig. 4 shows the increase
of the height of the secondary peak with increasing �. This
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10 10
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X
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X

FIG. 4. X3(ω) for the model of anisotropic rotational diffusion
for � = 60◦. The values of � are � = 1, 5, 10, 20, and 50 in the
direction of the arrow. The inset shows the value of the maximum of
the high-frequency peak.
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FIG. 5. Maximum height scaled to the value at zero frequency,
X̂k = Xmax

k /Xk (0) for �=90◦. Lower black line, X̂3; upper blue
line, X̂5; and dashed green line, (X̂3)2.

behavior is similar to the corresponding one for those values
of � for which a hump is observed. This fact is detailed in
Fig. 5, where we present the maximum height of the hump
for � = 90◦. It is apparent that the relative magnitude of
X̂5 = Xmax

5 /X5(0) is larger than the corresponding third-order
quantity. In green (dashed line), we show the square of the
relative amplitude of X3 as one should approximately have
X5 ∼ X2

3 under some additional assumptions [17]. As for the
model of rotational random jumps, also in the present case the
results are independent of temperature.

V. CONCLUSIONS

While linear susceptibilities are related to equilibrium time
correlation functions via the FDT and well-known relations
among the real and imaginary parts of χ1(ω) exist, the sit-
uation is different for nonlinear response functions. To learn
about the information content of the nonlinear susceptibilities,
one has to consider the results of explicit model calculations.
As mentioned in the Introduction, a number of such calcu-
lations have been performed for different models exhibiting
glassy relaxation in the past, and in some cases a behavior sim-
ilar to what is observed in supercooled liquids was obtained.

The interpretations of the hump observed in the nonlinear
susceptibilities of glass-forming liquids in terms of growing
amorphous order are mainly concerned with the phenomena
in the frequency range on the order of the inverse primary
relaxation time of the system. At longer time scales or smaller
frequencies it is assumed that the response does not reflect the
dynamic heterogeneities but is due to the rotational motion of
individual molecules because exchange processes average out
the heterogeneous nature of the relaxation. This is the origin of
the mentioned “trivial” contribution to the nonlinear response
functions. Usually, the model of isotropic rotational diffusion
(IRD) is used for the computation of the nonlinear response
due to this trivial relaxation.

In the present paper, we have also considered the rotational
motion of individual molecules in supercooled liquids. In
addition to the IRD model, we considered two models for
Brownian rotational motion, namely the model of isotropic
rotational random jumps (RJ) and the model of anisotropic
rotational diffusion (ARD). These models are considered
because it has long been known that the IRD model does
not give a reasonable description of the rotational motion

in supercooled liquids and that models using finite jump
angles yield more reliable results. In addition, most molecules
showing a significant glass-forming ability are not adequately
described as spherical, and the rotational motion might show
deviations from isotropy.

For both the RJ model and the ARD model, we find a
hump in the moduli of the nonlinear susceptibilities, X3 and
X5, for some values of the model parameters. This means
that also models for the “trivial” contribution to the response
can show features similar to what is observed in experiments
on supercooled liquids at some temperature. A temperature-
dependent height of the hump can only be modeled via chang-
ing relevant model parameters. We only discussed the intrinsic
features of the response functions and did not attempt to
model the response typically observed in supercooled liquids.
To do so, one would use one of the models for the rotational
motion and fit the linear susceptibility using a distribution of
relaxation times. The nonlinear response could then be fitted
by adjusting the other model parameters, such as μ in the
case of the RJ model and �,� for the ARD model. On the
other hand, if one assumes a different model, for instance
including cooperativity for the primary relaxation, and uses
the model for the reorientational motion solely for the trivial
contribution, one has to be careful when extracting quantities
related to the height of the experimentally observed hump in
X3 or X5.

The calculations presented here clearly indicate that it
is not straightforward to extract information from nonlinear
response functions. As shown earlier, in some cases model
calculations can help to discriminate among different mod-
els [25]. However, general arguments regarding the detailed
behavior of nonlinear susceptibilities are rare, and more theo-
retical effort will be required to obtain conclusive results.
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APPENDIX A: THE MODEL OF ISOTROPIC
ROTATIONAL DIFFUSION

The linear and nonlinear dielectric spectra for the model
of isotropic rotational diffusion have been calculated [17,18]
and the corresponding expressions are repeated here for con-
venience. The method used in Ref. [18] is slightly different
from the time-dependent perturbation theory that is used in
the present approach. The results, however, agree up to a
constant, which is defined indirectly by the definition of the
susceptibilities, cf. Eq. (10). The linear response is determined
by the expression given in Eq. (11). For the cubic response, we
consider the 3ω-component, which for this model is given by

χ
(3)
3,IRD(ω) = − 1

60
β3M4S3,IRD(ωτ1),

S3,IRD(x) = 1

(1 − ix)(1 − i3x)(3 − i2x)
. (A1)

Here, x = ωτ1 with τ1 = 1/(2DR ).
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The 5ω-component of the fifth-order response is given by

χ
(5)
5,IRD(ω) = 1

1680
β5M6S5,IRD(ωτ1), S5,IRD(x) = 4 − i5x

(1 − i5x)(3 − i4x)(1 − i3x)(3 − i2x)(1 − ix)(2 − ix)
. (A2)

APPENDIX B: THE MODEL OF ANISOTROPIC
ROTATIONAL DIFFUSION

For anisotropic rotational diffusion, we proceed in the
following way. We start the calculation from the rotational
jump model discussed in Sec. II and perform the limit of small
jump angles in the end of the calculations. Furthermore, we
use μ = 1/2 as this value is the relevant one in the diffusive
limit of the master equation. Technically, this means that in
the time-dependent perturbation expansion of the propagator
G(E), the matrix of P (E)(�, t |�0), only the terms containing
the linear perturbation V (1) have to be considered in Eq. (8)
of Ref. [25] because all other terms vanish in the diffusive
limit. In the notation used there, this can be written as G(n) =
G ⊗ [V (1) ⊗ G]n with n = 3 or 5. The symbol ⊗ indicates the
convolution G ⊗ V (1) ⊗ G ≡ ∫ t

t0
dt ′G(t, t ′)V (1)(t ′)G(t ′, t0).

As mentioned in the text, in the case of anisotropic re-
orientational motions, the results do not only depend on the
overall value of the molecular dipole moment, M , but also on
the orientation of the diffusion tensor relative to the applied
electric field, cf. Eq. (7), which we write as [�(t ) ≡ �DL(t )]

〈M (t )〉 = M
∑

n

ξn

〈
D

(1)
n0 [�(t )]

〉
with ξn = D

(1)
0n (�PD ).

(B1)

Without going into the details of the lengthy calculations, we
simply will present the results in a compact form. We define
the following function:

Y (L1,M1; L2,M2)

=
∑
N

ξN

(
�L2,M2 + �1,N − �L1,M1

)
(−1)M2

× (2L2 + 1)

(
1 L1 L2

N M1 −M2

)(
1 L1 L2

0 0 0

)
. (B2)

Here, ( 1 L1 L2
N M1 −M2

) denotes a Wigner 3-j symbol, and the
rates are defined by

�L,M = L(L + 1)DX + M2(DZ − DX ), (B3)

cf. the discussion in the context of Eq. (5).

With this, we find for the cubic response,

χ
(3)
3,ARD(ω) = β3M4

60

∑
m1,m2,m3

(−)m1ξ−m1ξm3�1,m3

×Y (1,m3; 2,m2)Y (2,m2; 1,m1)Gm1,m2,m3 (ω)

(B4)

with

Gm1,m2,m3 (ω) = 5
4

[(
�1,m1 − i3ω

)(
�2,m2 − i2ω

)
× (

�1,m3 − iω
)]−1

. (B5)

For the fifth-order response, one has

χ
(5)
5,ARD(ω) = β5M6

1680

∑
L=1,3

∑
m1···m5

(−)m1ξ−m1ξm5�1,m5

×Y (1,m5; 2,m4)Y (2,m4; L,m3)

×Y (L,m3; 2,m2)Y (2,m2; 1,m1)

×Gm1,m2,m3,m4,m5 (ω), (B6)

Gm1,m2,m3,m4,m5 (ω)

= 35

16

[(
�1,m1 − i5ω

)(
�2,m2 − i4ω

)(
�L,m3 − i3ω

)

× (
�2,m4 − i2ω

)(
�1,m5 − iω

)]−1
. (B7)

APPENDIX C: THE MODEL OF ISOTROPIC
ROTATIONAL RANDOM JUMPS

In this case, one has to consider a ME and one has to fix the
value of μ in Eq. (9) as discussed in the text. Also in this case,
we do not present details of the lengthy calculations and only
present the results.

The linear response is given by the same expression as for
the model of rotational diffusion, Eq. (11), with the replace-
ment τ1 = 1/�RJ. Also the third-order response can be written
in a form that is very similar to Eq. (A1). However, the spectral
function is quite different, and this gives rise to a different
behavior,

χ
(3)
3,RJ(ω) = 1

60β3M4S3,RJ(ω/�RJ), S3,RJ(x) = 1
3 [I3,0(x) + 4μI3,1(x) + 4μ2I3,2(x)] (C1)

with x = ω/�RJ. Here, the individual terms are given by

I3,0(x) = − 2 + i3x

2(1 − ix)(1 − i3x)
, I3,1(x) = ix

(1 − i2x)(1 − i3x)
, I3,2(x) = −2x2 + ix

2(1 − ix)(1 − i2x)(1 − i3x)
. (C2)

For the fifth-order susceptibility, we find

χ
(5)
5,RJ(ω) = 1

1680β5M6S5,RJ(ω/�RJ), S5,RJ(x) = 1
9

[
1
8I5,0(x) − 2μI5,1(x) + μ2I5,2(x) − 4μ3I5,3(x) + μ4I5,4(x)

]
, (C3)
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where the spectral functions are given by

I5,0(x) = 16 − 27x2 + i69x

(1 − ix)(1 − i3x)(1 − i5x)
, I5,1(x) = 40x2 + ix(15 + 36x2)

(1 − i2x)(1 − i3x)(1 − i4x)(1 − i5x)
,

I5,2(x) = 59x2 + 144x4 − ix(3 + 128x2)

(1 − ix)(1 − i2x)(1 − i3x)(1 − i4x)(1 − i5x)
, I5,3(x) = 32x2 + 36x4 − ix(3 + 34x2)

(1 − ix)(1 − i2x)(1 − i3x)(1 − i4x)(1 − i5x)
,

I5,4(x) = −57x2 + 72x4 − ix(4 + 226x2)

(1 − ix)(1 − i2x)(1 − i3x)(1 − i4x)(1 − i5x)
. (C4)

For convenience, we give the expression for the particular choice μ = 1:

S
(μ=1)
3,RJ (x) = −2 − 6x2 + i13x

6(1 − ix)(1 − i2x)(1 − i3x)
(C5)

and

S
(μ=1)
5,RJ (x) = 16 − 1629x2 + 216x4 − ix(227 + 2070x2)

72(1 − ix)(1 − i2x)(1 − i3x)(1 − i4x)(1 − i5x)
. (C6)
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