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Anomalous heat equation in a system connected to thermal reservoirs
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We study anomalous transport in a finite one-dimensional system with two conserved quantities in the presence
of thermal baths. In this system we derive exact expressions of the temperature profile and the two-point correla-
tions in steady state as well as in the nonstationary state where the latter describe the relaxation to the steady state.
In contrast to the Fourier heat equation in the diffusive case, here we show that the evolution of the temperature
profile is governed by a nonlocal anomalous heat equation. We provide numerical verifications of our results.
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I. INTRODUCTION

Transport of energy across an extended system is a
paradigm of the vast class of nonequilibrium phenomena. At
a macroscopic level this phenomena is often described by
the phenomenological Fourier’s law, which relates the energy
current density j (x, t ) to the gradient of the temperature field
T (x, t ): j = −κ ∂xT , where κ is the thermal conductivity.
This law implies diffusive energy flow across the system
described by the Fourier heat equation

∂tT (x, t ) = D ∂2
xT (x, t ), (1)

where D = κ/c. (For simplicity we assume κ and the spe-
cific heat c to be independent of temperature.) This equation
is widely used in experiments to understand the spreading
of local energy perturbations in equilibrium as well as the
nonequilibrium dynamics of systems connected to reservoirs.

Surprisingly, several theoretical [1–3], numerical, as well
as experimental studies [4] suggest that in many one- and
two-dimensional systems heat transfer is anomalous in the
sense that Fourier’s law is not valid [5–7]. This phenomenon
is usually manifested by several interesting features, such
as divergence of thermal conductivity κ with system size L

as κ ∼ Lα; 0 < α < 1, power-law decay of the equilibrium
current-current autocorrelations, superdiffusive spreading of
local energy perturbations, nonlinear stationary temperature
profiles (even for small temperature differences), and the
presence of boundary singularities in these profiles [1,6–
14]. Similar nonlinear temperature profiles have been ob-
served in simulations of realistic models of nanoscale systems
[15–17]. Apart from the context of heat conduction, anoma-
lous behavior is observed widely in a variety of physical
systems, for example, in the evolution of ultracold atoms in an
optical lattice [18,19], in the statistics of bird flights [20,21], in
the diffusion of lipid granules inside living yeast cells [22,23],
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in light transmission through random media [24,25], and in
various engineering applications [26–28].

There is currently no general framework to describe and
explain anomalous heat transport. Recently, the theory of
nonlinear fluctuating hydrodynamics has been remarkably
successful in predicting anomalous scaling of dynamical cor-
relations of conserved quantities in one-dimensional Hamil-
tonian systems and the corresponding slow decay of the
equilibrium current-current autocorrelations [2,3,29,30]. This
approach provides diverging thermal conductivity (via Green-
Kubo formula) as well as Lévy scaling for the spreading of
local energy perturbation. On the rigorous side, computations
were done for a model of harmonic chain whose Hamiltonian
dynamics was supplemented by a stochastic part that kept
the conservation laws (number, energy, momentum) intact;
we refer to this model as the harmonic chain momentum
exchange (HCME) model. For the infinite HCME system
it was shown exactly that the energy current autocorrela-
tion has a ∼ t−1/2 decay [31]. It was also shown that, in
contrast to Eq. (1), the evolution of an initially localized
energy perturbation satisfied a nonlocal fractional diffusion
equation ∂te(x, t ) = −c(−�)3/4e(x, t ), where e(x, t ) is the
energy perturbation and c is some constant [12–14,32]. The
fractional Laplacian operator (−�)3/4 in the infinite space is
defined by its Fourier spectrum: |q|3/2 whereas the same for
the normal Laplacian operator −� ≡ −∂2

x is q2. In real space
the (−�)3/4 operator is nonlocal [33,34]. In the framework
of nonlinear fluctuating hydrodynamics [3,29], one finds that
energy fluctuations spread superdiffusively, and this provides
an understanding of the origin of the nonlocality.

While all these studies consider transport in isolated sys-
tems, quite often the transport setup in an experiment consists
of an extended system connected at the two ends to heat baths
at different temperatures. For diffusive systems Eq. (1) con-
tinues to describe both nonequilibrium steady state (NESS)
and time-dependent properties in this setup. It is then natural
to ask, what would be the corresponding evolution equation
for the temperature profile in the case of anomalous transport
in the experimental setup? A major problem that now arises
follows from the fact that the fractional Laplacian is a nonlocal
operator and so extending its definition to a finite domain is
nontrivial. Several studies have addressed this issue, using
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a phenomenological approach, in the context of Levy walks
and Levy flights in finite domains [35,36]. It is thus crucial
to have examples of specific microscopic models of systems
exhibiting anomalous transport, for which the time-evolution
equation in an open system setup can be derived analytically,
and where one can see the nonlocal and fractional equation
forms explicitly. This is the main aim of this paper.

Such attempts have recently been made in [37–39] where
the problem of nonlinear steady state temperature profiles and
their time evolution in the HCME model were addressed. The
specific model studied was a harmonic chain of N particles
where, in addition to the Hamiltonian dynamics, the momenta
of nearest neighborhood particles is exchanged randomly at
a constant rate γ . The chain is attached to two Langevin
baths at the two ends at temperatures T� and Tr . This system
has three conserved fields: the stretch ri = qi+1 − qi (where
qi, i = 1, . . . , N are the particle positions), the momentum
pi , and the energy εi = p2

i /2 + r2
i /2. This system shows

anomalous current behavior j ∼ N−1/2 as well as exhibits
a nonlinear stationary temperature profile Ti = 〈p2

i /2〉ss =
T (i/N ), which was computed analytically for fixed and free
boundary conditions—surprisingly, the temperature profile
was different for these cases [37,39]. The evolution of the
nonstationary temperature profile T (x, τ ) (where x = i/N

and τ = t/N3/2 is the rescaled time) to the NESS profile was
also studied [40], whereby eliminating the fast variables it was
shown that T (x, τ ) satisfies an energy continuity equation.
From an analysis of this equation it was noted that the evolu-
tion appears to be similar to the fractional diffusion equation.
However, so far this has not been clearly established and
in particular, an explicit representation of the corresponding
fractional evolution operator is not known. In this paper, we
look at a simpler model of anomalous transport in one dimen-
sion where we derive the corresponding fractional evolution
equation for the temperature profile inside a finite domain and
show explicitly how this evolution approaches the appropriate
fractional diffusion operator in the infinite domain.

II. HARMONIC CHAIN WITH VOLUME EXCHANGE:
DEFINITION OF THE MODEL
AND SUMMARY OF RESULTS

This model consists of a finite one-dimensional lattice of
L sites where each site carries a “stretch” variable ηi, i =
1, 2, . . . , L under an onsite external potential V (ηi ) = η2

i /2.
The lattice is attached to two thermal reservoirs at tempera-
tures T� and Tr on the left and right ends, respectively, and
subjected to a volume-conserving stochastic noise. The dy-
namics of this model has two parts: (a) the usual deterministic
part plus the Langevin terms coming from the baths and (b) a
stochastic exchange part where ηs from any two neighboring
sites, chosen at random, are exchanged at constant rate γ . The
dynamics is given by

dηi

dt
= V ′(ηi+1) − V ′(ηi−1)

+ δi,1(−λV ′(η1) +
√

2λT�ζ�(t ))

+ δi,L(−λV ′(ηL) +
√

2λTrζr (t ))

+ stochastic exchange at rate γ, (2)

with fixed boundary conditions (BCs) η0 = ηL+1 = 0. Here
ζ�,r (t ) are mean zero and unit variance, independent Gaussian
white noises. Note that in contrast to the HCME case, this dy-
namics has two conserved quantities: the “volume” ηi and the
energy V (ηi ). This model was first introduced by Bernardin
and Stoltz in the closed system setup [13], where starting from
the harmonic chain with the Hamiltonian given earlier, they
have treated the positions qis and the momenta pis on the
same footing. Note that for a harmonic chain, the dynamics
of the “stretch” variable ri = qi+1 − qi and the momentum
variable are similar: ṙi = pi+1 − pi and ṗi = ri+1 − ri for
i = 1, 2, . . . , N . Hence for N = L/2, defining η2j−1 = rj

and η2j = pj , one finds that both the above equations can
be expressed in a single equation: η̇m = ηm+1 − ηm−1 for
m = 1, 2, . . . , L. The system can also be interpreted as a fluc-
tuating interface where the algebraic volume of the interface
at site m is given by ηm and the energy V (η) = η2/2 [13].
Hence, the stochastic exchange part in Eq. (2) can be thought
of as a volume-energy conserving noise. We call this model a
“harmonic chain with volume exchange” (HCVE).

It has been shown that the HCVE model defined on an
isolated infinite one-dimensional lattice [i.e., λ = 0 in Eq. (2)
with i = −∞, ..,−1, 0, 1, ..,∞] exhibits superdiffusion of
energy [32]:

∂te(x, t ) = −L∞[e(x, t )],

L∞ = 1√
2γ

[(−�)3/4 − ∇(−�)1/4],
(3)

where the skew-fractional operator L∞ has the Fourier rep-
resentation |q|3/2[1 − i sgn(q )] with i = √−1 and sgn(q) is
the signum function. Note that the spectrum is different from
that in the infinite HCME model. In this paper, however, we
consider the HCVE model on a finite lattice of size L in open
setup, i.e., connected to heat baths at the two ends as described
in Eq. (2). It is known that in this case also, as in HCME, the
stationary current scales as j ∼ L−1/2 [32].

Results. We explicitly find that in the large-L limit the
average energy current j = −2〈ηiηi+1〉 − γ (〈η2

i+1〉 − 〈η2
i 〉) in

the stationary state is given by

jss = 1

2

√
π

γ

(T� − Tr )√
L

+ O

(
1

L

)
. (4)

In the nonstationary regime, we numerically find that the tem-
perature profile Ti (t ) = 〈η2

i (t )〉 and the two-point correlations
Ci,j (t ) = 〈ηi (t )ηj (t )〉 for i 
= j have the following scaling
forms:

Ti (t ) = T
(

i

L
,

t

L3/2

)
,

Ci,j (t ) = 1√
L
C
( |i − j |√

L
,
i + j

2L
,

t

L3/2

)
,

(5)

in the leading order for large L. The scaling functions T (y, τ )
and C(x, y, τ ) satisfy the following equations inside the
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domain D = {0 � x � ∞ ; 0 � y � 1}:

∂yC(x, y, τ ) = −γ ∂2
xC(x, y, τ ), (6)

∂yT (y, τ ) = −2γ [∂xC(x, y, τ )]x=0, (7)

∂τT (y, τ ) = 2∂yC(0, y, τ ), (8)

with C(x, y, 0)|x→∞ = 0 and C(x, y, 0) = 0. We find that the
exact solutions of these equations are given by

T (y, τ ) = Tss (y) + Tr (z = 1 − y, τ ), (9)

C(x, y, τ ) = Css (x, y) + Cr (x, z = 1 − y, τ ). (10)

In the above equation, the NESS parts of the profiles are

Tss (y) = Tr + (T� − Tr )
√

1 − y,

Css (x, y) = −T� − Tr

4

√
π

γ
erfc

(
x√

4γ (1 − y)

)
. (11)

The relaxation parts to the above steady states are given as

Cr (x, z, τ ) = −
∫ z

0

exp
(− x2

4γ (z−z′ )

)
√

4πγ (z − z′)
∂Tr (z′, τ )

∂z′ dz′, (12)

where Tr (z, τ ) satisfies the following continuity equation:

∂τTr (z, τ ) = 1√
πγ

∂z

[∫ z

0
dz′ ∂z′Tr (z′, τ )√

z − z′

]
, (13)

inside the domain 0 � z � 1 with BCs Tr (0, τ ) = Tr (1, τ ) =
0. The relaxation parts Tr (z, τ ) and Cr (x, z, τ ) describe the
approach towards the NESS solutions in the τ → ∞ limit.
Note that Eq. (13) can formally be written in terms of the
Riemann-Liouville operator. Equations (4), (11), (12), and
(13), comprise our main results. The evolution of the tem-
perature in Eq. (13) is indeed given by a linear but nonlocal
equation defined inside a finite domain 0 � z � 1. How-
ever, following a similar calculation for the infinite system
we later show that Eq. (13) reduces to Eq. (3) in Sec. III.
This establishes, without ambiguity, that the nonlocal operator
in Eq. (13) is the correct finite domain representation of the
fractional operator L∞ in Eq. (3). Another point to note is
that the temperature profile in SS, Tss (y), is asymmetric under
space reversal as the microscopic model itself does not have
such symmetry. As a result, any locally created perturbation
splits into one traveling sound mode and one nonmoving heat
mode. This is in contrast to the HCME model, where one
observes two sound modes moving in opposite directions in
addition to a nonmoving heat mode [13,29]. Consequently, in
this case there is singularity in ∂yTss (y) only at one boundary
and we find that the meniscus exponent [41] is again 1/2 as
in the HCME model with fixed boundary conditions. Interest-
ingly, it turns out that for this boundary condition, both the
temperature and the correlation become independent of the
strength of coupling λ with the heat baths in the large L limit.

III. DERIVATION OF THE RESULTS

A. The Fokker-Planck operator and discrete
equations for correlation functions

We start with the Fokker-Planck (FP) equation associated
to the dynamics Eq. (2), which describes the evolution of the
joint distribution P (�η, t ) of �η = (η1, η2, . . . , ηL) at time t :

∂tP (�η, t ) = [L� + Lb + Lex] P (�η, t ), (14)

where L� is the Liouvillian part, Lb contains the effects of
the Langevin baths at the boundaries, and Lex represents the
contribution from the exchange noise. The explicit expression
of the deterministic part of the FP equation given by operators
Ll , Lb is defined as

Ll =
L−1∑
i=2

[V ′(ηi−1)−V ′(ηi+1)]∂ηi
+V ′(ηL−1)∂ηL

−V ′(η2)∂η1 ,

Lb = λT� ∂2
η1

+ λ∂η1V
′(η1) + λTr ∂2

ηL
+ λ∂ηL

V ′(ηL),

where T� and Tr are the temperatures of the reservoirs on the
left and right, respectively. The stochastic part Lex is given as

Lex = γ

(
L−1∑
i=1

P (�ηi,i+1) − P (�η)

)
, (15)

where �ηi,i+1 denotes the configuration after the exchange
of variable i with i + 1. Starting from the FP equation in
Eq. (14), we obtain the dynamical equations satisfied by Ti =
〈η2

i (t )〉 and Ci,j = 〈ηi (t )ηj (t )〉 for i 
= j in the bulk:

Ċij = Ci+1,j − Ci−1,j + Ci,j+1 − Ci,j−1

+ γ [Ci−1,j + Ci+1,j + Ci,j−1 + Ci,j+1 − 4Ci,j ],

Ċi,i+1 = Ti+1 − Ci−1,i+1 + Ci,i+2 − Ti

+ γ [Ci−1,i+1 + Ci,i+2 − 2Ci,i+1],

Ṫi = 2[Ci,i+1 − Ci−1,i] + γ [Ti+1 + Ti−1 − 2Ti]. (16)

The rest of the equations at the boundaries are given in
Appendix. Fortunately, the equations for two-point correla-
tions do not involve higher-order correlations, which allows
us to solve these equations analytically, in the L → ∞ limit.

B. Derivation of continuum equations for the temperature and
correlation fields from the discrete equations

In this section, we outline the steps to obtain the continuum
set of partial differential equations (PDEs), Eqs. (6)–(8).
We first solve the discrete equations numerically to observe
that for large L the solutions have the scaling properties as
given in Eq. (5), where we have two length scales of O(L)
along the diagonal (i + j = constant) and of O(

√
L) along

perpendicular to the diagonal (|i − j | = constant) direction,
and a timescale of O(L3/2). This timescale can be anticipated
from the propagator e−|q|3/2[1−i sgn(q )]t of Eq. (3) in Fourier
space. The two length scales are understood by looking at the
orders of the Ci,j and Ti , and their derivatives numerically.
Interestingly, the scaled correlation function C relaxes very
fast over a much shorter timescale [O(L)] compared to the
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FIG. 1. Data collapse of the correlation functions and temperature profile confirming the scaling behaviors in Eqs. (17) and (18). (a, b) The
data collapse as a function of the scaling variable y = (i + j )/2L with four systems sizes L = 1000 (blue, dark gray), L = 2000 (orange, deep
gray), L = 3000 (green, light gray), and L = 4000 (red, bottom dark gray), for two fixed values of x = |j − i|/√L. (c, d) The data collapse
as a function of the scaling variable x with the above four system sizes for two fixed values of y. The collapse is so good that other colors
and shades are not visible. (e) The scaling behavior for the evolution of the temperature T (y, τ ) = T
yL�(τL3/2) at a fixed position y = 0.025
for different system sizes as a function of the scaled time τ = t/L3/2. Note that the temperatures are of O(1) whereas the correlations are of
O(1/

√
L). Also note from figures (c) and (b) that Css (x → ∞, z) = 0. (f) Establishes that the current in the system is of order 1/

√
L and also

evolves in scaled time τ = t/L3/2. The other parameters in the simulation are γ = � = 1, T� = 1.1, Tr = 0.9.

evolution timescale [O(L3/2)] of the temperature field T . Due
to this fact, Eqs. (6) and (7) do not involve the time derivative.
As a result, the correlation function C evolves adiabatically,
obeying the (anti-)diffusion Eq. (6), with a drive at the bound-
ary by the time-dependent temperature field through Eq. (7).
The equation for the temperature profile given in Eq. (8) is in
the expected continuity equation.

These observations suggest that we look for solutions
of Eq. (16) in the scaling form Eq. (5). In the nonstation-
ary regime, we numerically find that the temperature pro-
file Ti (t ) = 〈ηi (t )2〉 and the two-point correlations Ci,j (t ) =
〈ηi (t )ηj (t )〉 for i 
= j have the following scaling forms,

Ci,j (t ) = 1√
L
C
( |i − j |√

L
,
i + j

2L
,

t

L3/2

)
, (17)

Ti (t ) = T
(

i

L
,

t

L3/2

)
, (18)

in the leading order for large L which are also supported by
numerical evidence shown in Fig. 1. In Figs. 1(a)–1(d) we
verify the scaling behaviors of the correlations in Eq. (17).
Figures 1(c) and 1(d) describe scaling behavior with respect to
time. Using these, we define continuum ordinates as |i−j |√

L
= x,

|i+j |
2L

= y, t
L3/2 = τ , and 1√

L
= ε, where x ∈ (0,∞) and y ∈

(0, 1). In the following, we insert this scaling form and Taylor
expand in ε = 1/

√
L. Keeping terms to leading order in ε we

obtain the continuum equations.
1. Bulk Equations, |i − j | � 2

The discrete equation in bulk:

Ċi,j = −(
Ci−1,j − Ci+1,j + Ci,j−1 − Ci,j+1

−γ [Ci,j−1 + Ci,j+1 + Ci+1,j + Ci−1,j − 4Ci,j ]
)
,

(19)
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using above scaling definitions, we can write the above-mentioned discrete equation as

ε4∂τC(x, y, τ ) = −ε

{
C
(

x − ε, y − ε2

2

)
− C

(
x + ε, y + ε2

2

)
+ C

(
x + ε, y − ε2

2

)
− C

(
x − ε, y + ε2

2

)

−γ

[
C
(

x + ε, y − ε2

2

)
+ C

(
x − ε, y + ε2

2

)
+ C

(
x + ε, y + ε2

2

)
+ C

(
x − ε, y − ε2

2

)
− 4C(x, y)

]}
,

(20)

which by Taylor expansion of each term in x, y, and τ , we
obtain the leading-order terms for the continuum dynamical
equation as

ε4∂τC(x, y, τ ) = 2ε3∂yC(x, y, τ ) + 2γ ε3∂2
xC(x, y, τ ). (21)

At the dominant order (O(ε3)), we find

∂yC(x, y, τ ) + γ ∂2
xC(x, y, τ ) = 0. (22)

2. Nearest-neighbor term, j = i + 1
The off-diagonal term,

Ċi,i+1 = Ti+1 − Ci−1,i+1 + Ci,i+2 − Ti

+ γ [Ci−1,i+1 + Ci,i+2 − 2Ci,i+1], (23)

after proper scaling, we get,

ε4∂τC
(

ε, y + ε2

2
, τ

)

= T (y + ε2) − T (y) + εC(2ε, y + ε2) − εC(2ε, y)

+ γ ε[C(2ε, y) + C(2ε, y + ε2) − 2C(ε, y + ε2/2)].

Expanding the above equation in x and y, and keeping the
relevant order terms in ε we get the continuum equation as

ε4∂τC(0, y, τ ) = ε2[∂yT (y, τ ) + 2γ ∂xC(0, y, τ )] + O(ε3),
(24)

and hence to the dominating order, the governing continuum
equation is

∂yT (y, τ ) + 2γ ∂xC(0, y, τ ) = 0. (25)

3. Diagonal term i = j

Next is the diagonal term where i = j ,

Ṫi = 2[Ci,i+1 − Ci−1,i] + γ [Ti+1 + Ti−1 − 2Ti], (26)

which in continuum limit given as

ε3∂τT (y, τ ) = 2ε

[
C
(

ε, y + ε2

2

)
− C

(
ε, y − ε2

2

)]

+ γ
[
T (y + ε2) + T (y − ε2) − 2T (y)

]
.

After expansion, we arrive at

ε3∂τT (y, τ ) = 2ε
[
ε2∂yC(0, y, τ ) + ε3 γ

2
∂2
yT (y, τ )

]
+O(ε4). (27)

Hence, the leading-order term is

∂τT (y, τ ) = 2∂yC(0, y, τ ). (28)

4. Current
The microscopic energy current in the system is defined
through

∂t 〈η2
i 〉 = −[ji→i+1 − ji−1→i], (29)

where ji→i+1 = −2Ci,i+1 − γ (Ti+1 − Ti ). The stochastic part
of the current decays as O(1/L) and in the macroscopic
limit goes to zero. In the continuum limit, the determin-
istic part contributes in the leading order to provide j =
−2C(0, y, τ )/

√
L.

The above analysis gives us the bulk equations for the
system as given in Eqs. (6)–(8). Solutions of these equations
for C(x, y, τ ) and T (y, τ ) have two parts, Eq. (10). It is
easier to deal with these equations with the transformation of
z = 1 − y, which satisfies

∂zC(x, z, τ ) = γ ∂2
xC(x, z, τ ) , (30)

∂zT (z, τ ) = 2γ ∂xC(x, z, τ )x=0 , (31)

∂τT (y, τ ) = −2∂zC(0, z, τ ). (32)

These equations have to be solved with appropriate bound-
ary conditions which will be discussed in the next few sec-
tions, where we discuss the solution of these equations in
steady state and the approach to it.

C. Stationary state solution of T (z) and C(x, z)

In the NESS the equations (30)–(32) become simpler, since
∂τT → 0 as τ → ∞, implying Css (0, y) = d. Now making
the variable transformation z = (1 − y), the problem of find-
ing Css reduces to solving a diffusion equation with its value
at x = 0 held fixed for all y. We need to solve these equations
along with the boundary conditions,

(i) Css (x, z → 0) = 0, (ii) Css (x → ∞, z) = 0,

(iii) Css (x = 0, z) = d. (33)

The boundary conditions (i) and (ii) follow from our nu-
merical observations shown in Figs. 1(a,b) and Figs. 1(c,d),
respectively. The last boundary condition (iii) is obtained
by observing that the left-hand side of (32) is zero in the
steady state; hence [∂zCss (0, z) = 0]. The unknown constant
d will be fixed by the temperatures at the boundary. The first
equation is easy to solve by taking the Laplace transform in
z along with boundary conditions. Finally, after inverting the
Laplace transform, we find the solution is given by

Css (x, z) = d erfc

[
x√
4γ z

]
, (34)

042105-5



PRIYANKA, KUNDU, DHAR, AND KUNDU PHYSICAL REVIEW E 98, 042105 (2018)

FIG. 2. Numerical verification of the analytical NESS predictions for (a) Tss (y ) and (b) Css (x, y ) in Eq. (11). Symbols denote corresponding
quantities that are obtained from simulations with ω = γ = 1, T� = 1.1, Tr = 0.9, and N = 1024, whereas the dashed lines are from theory.

where erfc is the complimentary error function defined
as erfc(x) = 1 − 2√

π

∫ x

0 dte−t2
. Now, using this solution in

Eq. (31), we get ∂zTss (z) = −d
√

4γ /πz, whose solution is

Tss (z) = Tss (0) − 2d

√
4γ z

π
. (35)

The constants Tss (0) and d will now be determined from the
boundary conditions of the temperature field, T (z = 0) = Tr

and T (z = 1) = T�. We finally have

T� − Tr = − 2d

√
4γ

π
, d = − �T

4

√
π

γ
, (36)

where �T = (T� − Tr ) is the temperature difference between
the left and right heat baths. Reverting now back to y variables
using z = 1 − y, the exact expressions for the steady-state
temperature profile and correlations are

Tss (y) =Tr + �T
√

1 − y, (37)

Css (x, y) = − �T

4

√
π

γ
erfc

[
x√

4γ (1 − y)

]
. (38)

Hence the current in the system is given by jss = Jss√
L

, where,

jss = − 2Css (0, y)√
L

= �T

2

√
π

γ

1√
L

. (39)

In Fig. 2 we verify the analytical results for Tss and Css

numerically, where we observe nice agreement. Next, we
study the solution in the relaxation regime.

D. Relaxation to steady state

We now focus on the relaxation to the NESS. It is often
convenient to separate the relaxation part as done in Eqs. (9)
and (10), where Tr (z, τ ) and Cr (x, z, τ ) describe the approach
towards the NESS solutions in Eq. (11). It is easy to see that
Cr (x, z, τ ) and Tr (z, τ ) satisfy the following equations:

∂zCr (x, z, τ ) = γ ∂2
xCr (x, z, τ ), (40)

∂zTr (z, τ ) = 2γ [∂xCr (x, z, τ )]x=0, (41)

∂τTr (z, τ ) = −2∂zCr (0, z, τ ), (42)

with initial condition Cr (x, z, 0) = 0 and BC
Cr (x, z, τ )|x→∞ = 0. The above equations are obtained
from Eqs. (6)–(8) after subtracting the steady-state part
and then making the variable transformation z = (1 − y).
Note that the BC in Eq. (41) acts like a current source,
at the x = 0 boundary, to the diffusion equation (40).
The Greens function g(x, z) of this equation with
above BCs satisfies ∂zg(x, z) = γ

2 ∂2
x g(x, z), where

g(x, z) is given by g(x, z) = √
4γ zh(x/

√
4γ z), where

h(w) = e−w2

π
− werfc(w); hence the general time-dependent

solution is written as

Cr (x, z, τ ) = 2
∫ z

0
dx ′ e

−(x−x ′ )2/(4γ z)

√
4πγ z

Cr (x ′, 0, τ )

− 1

2γ

(∫ z

0
dz′[g(x, z − z′)∂2

z′Tr (z′, τ )]

)

− 1

2γ
∂z′Tr (z′, τ )g(x, z)|z′→0. (43)

With the initial condition Cr (x, 0, τ ) = 0 the first term drops
out. It is easy to check that the remaining part satisfies (40)
with boundary condition (41) as follows:

∂xCr (x, z, τ )|x→0

= 1

2γ

(∫ z

0
dz′∂2

z′Tr (z′, τ ) + ∂z′Tr (z′, τ )|z′→0

)

= 1

2γ
∂zTr (z, τ ), (44)

where we have used ∂xg(x, z)|x→0 = −1. Further, using the
fact that g(x, z − z′)∂z′Tr (z′)|z′→z → 0 we can simplify (43)
as

Cr (x, z, τ ) = 1

2γ

(∫ z

0
dz′∂z′ [g(x, z − z′)]∂z′Tr (z′, τ )

)

= − 1√
γ

∫ z

0
dz′ e

−x2/[4γ (z−z′ )]
√

4π (z − z′)
∂z′Tr (z′, τ ),

which gives the relaxation of the correlation fields. The evolu-
tion of temperature field is obtained from (42) by putting x →
0 in the above expression for Cr (x, z, τ ), and we immediately
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have

∂τTr (z, τ ) = κ ∂z

∫ z

0

∂z′Tr (z′, τ )√
z − z′ dz′, 0 � z � 1, (45)

where κ = 1√
πγ

. The infinite system generalization of this
equation will be discussed later (see Sec. III E).

Series solution of the fractional PDE Eq. (45) in the finite
domain. The evolution of the relaxation part of the tempera-
ture profile, i.e., Tr (1 − y, τ ) = T (y, τ ) − Tss (y), is given by
Eq. (45). Note that Tr (z, τ ) is zero at both the boundaries: z =
0 and z = 1. As a result it is natural to expand this function in
αn(z) = √

2 sin(nπz), n = 1, 2, 3 . . . complete basis defined
in z ∈ (0, 1) as Tr (z, τ ) = ∑

n T̂n(τ )αn(z). Substituting this
form in Eq. (45), we have∑

n

˙̂Tnαn(z) = κ
∑

n

T̂n(τ )(nπ )∂z

∫ z

0

φn(z′)√
z − z′ dz′. (46)

Now let us expand the function fn(z) = ∂z

∫ z

0
φn(z′ )√

z−z′ dz′

also in orthogonal basis αn(y), n = 1, 2 . . . .. Let the ex-
pansion be given as fn(z) = ∑

l=1 ζnlαl (z) where ζnl =∫ 1
0 dz fn(z) αl (z). As a result we have∑

n=1

˙̂Tnαn(z) = κ
∑
n,l=1

T̂n(τ )(nπ )ζnlαl (z). (47)

Using orthogonality, this can be written in vector notation as
(T̂n = 〈n|T̂ 〉),

| ˙̂T 〉 = κ B|T̂ 〉, (48)

where Bnk = (nπ )ζnk and | . . . 〉 denotes a column vector.
If R is the matrix which diagonalizes B as R−1BR =
�, then the time-dependent solution is given as |T̂ (τ )〉 =
Reκ�τR−1|T̂ (0)〉 and temperature at time τ is given as
T (y, τ ) = Tss (y) + ∑

n αn(1 − y)T̂n(τ ). As the temperature
field evolves at much faster timescales compared to the cor-
relation field, the time-dependent solution for correlations
Cr (x, 1 − y, τ ) is governed by the evolution of the tempera-
ture field. The solution for evolution of correlations is written
as C(x, y, τ ) = Cr (x, 1 − y, τ ) + Css (x, y), where

C(x, z, τ ) = −
∫ z

0
dz′ e−x2/(4γ (z−z′ ))

√
4πγ (z − z′)

∂z′Tr (z′, τ ),

=
∑
n=1

T̂n(τ )(nπ )
∫ z

0
dz′ e−x2/(4γ (z−z′ ))

√
4πγ (z − z′)

φn(z′),

(49)

where φn(y) = √
2 cos(nπy), n � 1, and φ0(y) = 1. The in-

tegral can be evaluated explicitly, and doing the summations
gives the evolution of the correlation fields.

Eigensystem. The eigenvalues (μn) of the bounded skew-
fractional Laplacian B have interesting behavior; the first four
of them are real and distinct. The higher eigenvalues all come
in complex conjugate pairs. For large n, μn ∼ √

π
2 |nπ |3/2[1 ±

i sgn(n)], but for smaller n there is a systematic deviation due
to the effect of finite domain. In Fig. 3, the real and imaginary
part of alternate eigenvalues are plotted as a function of n,
where the asymptotic scaling with

√
π
2 (nπ )3/2 is seen clearly

for large n. We note that this is not due to the the truncation

FIG. 3. The real and imaginary part of the alternate eigenvalues
for matrix B. The first four eigenvalues are completely real and
distinct. The higher eigenvalue comes in pairs of μn(1 ± i ). For large
n (plotted alternately), the eigenvalues are close to

√
π

2 (nπ )3/2(1 ±
i ). For smaller n, there is a deviation from asymptomatic scaling due
to the finite definition of the operator.

of the matrix but an artefact of the finiteness of the system.
Note that the large n behavior of μn is similar to the Fourier
spectrum of the nonlocal operator L∞ in Eq. (3) describing
the evolution in infinite system. Hence it is interesting to
see if one recovers the evolution equation (3) in the infinite
system limit Sec. III E. The eigenvectors of the operator are
defined as ψn(y) = ∑

l=1 R−1
nl αl (y). Numerically, computing

this gives the first six eigenvectors to be completely real. The
eigenvectors corresponding to higher eigenvalues are complex
and come in pairs. The real and imaginary parts of the first few
eigenvectors are shown in Fig. 4. In Appendix A 3, the real and
the imaginary parts of the eigenvector for n � 7 are plotted in
polar plots. For plane wave solutions these would have been
circles of length 1; here the polar plot shows a spiral decay to
origin owing to the skewness of the operator.

Comparison with numerics. While it is difficult to solve
this infinite order matrix equation analytically, we solve it
numerically by truncating it at some finite order. In Fig. 5,
we compare the evolution from this numerical solution with
the same obtained from direct numerical simulation of Eq. (2)
and observe nice agreement. Using this solution in Eq. (12)
we obtain C(x, z, τ ) in Eq. (10), which we also compare with
simulation results in the inset of Fig. 5 and again observe good
agreement.

E. Fractional evolution of temperature in an infinite line

One can extend the calculation for temperature evolution
Eq. (45) in a finite system of length L and obtain the same
set of bulk equations which now holds for y ∈ [0, L]. We
are interested in the behavior of the evolution of temperature
profile in the L → ∞ limit, where the effect of boundaries
is not important. The evolution equations for the relaxation
parts in this case are the same as those of Eqs. (40)–(42) but
now 0 � x � ∞ and 0 � y � L. To proceed, we introduce
the orthonormal and complete basis in y ∈ [0, L], φ±

n (y) =
1√
L
e±i nπy/L for n � 1 and φ0(y) = 1/

√
L. Expanding the
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FIG. 4. The real (blue, deep gray) and imaginary (orange, light gray) part of the right eigenvectors for the matrix B for the first few
eigenvalues. The plots for even-ordered eigenvectors (n = 8, 10 . . .) are related to the eigenvectors of the previous eigenvectors by a reflection
around the x axis and hence are not plotted. A polar representation is given in the Appendix A 3.

correlations and temperature in this basis as a Fourier series
we get

Cr (x, y, τ ) = Â0(x, τ ) +
∑
n=1

Â+
n (x, τ )φ+

n (y)

+ Â−
n (x, τ )φ−

n (y),

T (y, τ ) = T̂0(τ ) +
∑
n=1

T̂ +
n (τ )φ+

n (y) + T̂ −
n (τ )φ−

n (y),

(50)

where Â±
n (x, τ ) = ∫ L

0 Cr (x, y, τ )φ±
n (y)dy, Â0(x, τ ) =∫ L

0 Cr (x, y, τ )φ0dy, T̂ ±
n (τ ) = ∫ L

0 Tr (y, τ )φ±
n (y)dy, T̂0(τ ) =∫ L

0 Tr (y, τ )φ0dy. Using these expressions in the PDEs (see
Appendix A 2) we get

˙̂T0 = 0, ˙̂T ∓
n = − 1√

2γ
(1 ± i )λ3/4

n T̂ ∓
n , n = 1, 2, 3 . . . (51)

where λn = (nπ/L)2. This can be interpreted in domain y ∈
[0, L] as

∂τTr (y, τ ) = − 1√
2γ

(|�|3/4 − ∇|�|1/4)Tr (y, τ ),

= − 1√
2γ

L∞Tr (y, τ ), (52)

where L∞ is a positive operator defined by its action
as L∞φ±

n (y) = λ
3/4
n [1 − i sgn(n)]φ±

n (y). With L → ∞ the
spectrum becomes continuous and the eigenfunctions become
plane wave. Thus in for an infinite system at equilibrium, evo-
lution of the temperature profile is given by a skew-symmetric
fractional Laplacian given in Eq. (3) of the main text.

One can alternatively see this equivalence from
the integrodifferential evolution in infinite space
through the action of the operator ∂τT (y, τ ) =
− 1√

2γ
L∞T (y, τ ). A similar calculation as in Sec. III D gives

FIG. 5. Numerical verification of the evolution of (a) temperature profiles T (y, τ ) = Tss (y ) + Tr (1 − y, τ ) obtained using the solution of
Eq. (13). (b) The correlation C(x, y, τ ) = Css (x, y ) + Cr (x, 1 − y, τ ) given in Eq. (10), where Cr is computed using the solution in Eq. (12).
The magenta dashed line and the solid black line represent the initial and the NESS temperature profiles, respectively. Symbols are obtained
from simulations with λ = γ = 1, T� = 1.1, Tr = 0.9, and L = 2048, and the solid lines are from theory.
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L∞f (y) = 1√
πγ

∂y

∫ y

−∞
∂y′f (y ′ )√

y−y ′ dy ′, where in contrast to (45),
the lower limit is changed from −∞ to 0. Using the identity∫ y

−∞
dz

1√
y − z

eiqz =
√

π√
iq

eiqy,

one can easily show that

L∞ eiqy = λq eiqy, λq =
√

1

2γ
[1 − i sgn(q )] |q|3/2,

which is same as the Fourier spectrum of the skew-symmetric
fractional Laplacian given in Eq. (3) of the main text.

IV. CONCLUSION

In this paper, we have studied anomalous transport in a
one-dimensional system with two conserved quantities in the
open system setup. Starting from a microscopic description
and acquiring knowledge about scaling properties from nu-
merical studies, we derive exact expressions of the tempera-
ture profiles and the two-point correlations in the steady state.
We also study the evolution of these quantities towards steady
state. We explicitly show that the evolution of the temperature
profiles in this model is governed by a nonlocal operator
defined inside a finite domain which correctly takes the pre-
viously obtained infinite system representation. We provide
numerical verifications of the analytical results. Our work
provides the first clear and transparent microscopic derivation
of a nonlocal heat equation describing anomalous transport
in finite geometry and its connection to the corresponding
skew-fractional equation in the infinite domain.
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APPENDIX

1. Boundary equations

The dynamical equations at the boundaries are given by
1. For i = j = 1

Ṫ1 = 2λT� + 2C1,2 − 2λT1 + γ [T2 − T1] (A1)

2. For i = j = L

ṪL = 2λTr − 2CL−1,L − 2λTL + γ [TL−1 − TL] (A2)

3. i = 1 and 2 < j < L

Ċ1,j = C2,j − λC1,j + C1,j+1 − C1,j−1

+ γ [C1,j−1 + C1,j+1 + C2,j − 3C1,j ] (A3)

4. j = L and 1 < i < L − 1

Ċi,L = Ci+1,L − Ci−1,L − Ci,L−1 − λCi,L

+ γ [Ci−1,L + Ci+1,L + Ci,L−1 − 3Ci,L] (A4)

5. i = 1 and j = L

Ċ1,L = C2,L − C1,L−1 − 2λC1,L

+ γ [C2,L + C1,L−1 − 2C1,L] (A5)

6. i = 1 and j = 2

Ċ1,2 = T2 − λC1,2 + C1,3 − T1 + γ [C1,3 − C1,2] (A6)

7. j = L and i = L − 1

ĊL−1,L = TL − CL−2,L − TL−1 − λCL−1,L

+ γ [CL−2,L − CL−1,L] (A7)

2. Fractional equation in infinite domain

The expansions in the main text Eq. (50) along with the set
of PDEs Eq. (6)–(8) gives the following differential equation

FIG. 6. Polar plots showing the real and imaginary parts of the eigenvectors for n � 7. The polar plots are for n = 7, 9, 11 . . ..
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for the components:

∂2
x Â±

n (x, τ ) = [(1 ∓ i )αn]2Â±
n (x, τ ), ∂2

x Â0(x, τ ) = 0,

± inπ

L
T̂ ±

n (τ ) = −2γ ∂xÂ
±
n (x, τ )|x→0, (A8)

where αn =
√

nπ
2Lγ

. The solutions to these equations are

in general given as Â±
n (x, τ ) = a±

n (τ )e±αn(1∓i )x, Â0(x, τ ) =
d(τ )x + e(τ ). Choosing solutions which do not blow up at
infinity at large x and obey the boundary conditions, we have
Cr (x, y, τ ) = e(τ ) + ∑∞

n=1 a−
n e−αn(1+i )xφ−

n (y) + c.c., where

c.c. stands for complex conjugate. e(τ ) is zero because there
is no time-dependent source in the system. Using the above
equations, we have

T̂ ±
n = 2γ a∓

n (τ )αn

(1 ∓ i )

(nπ/L)
, ˙̂T ∓

n = ∓2i
nπ

L
a±

n (τ ). (A9)

Using these two, we have Eq. (51) of the main text.

3. Polar plots of eigenvectors

The polar plots for eigenvectors of B are given in Fig. 6.
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