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Minimal dissipation in processes far from equilibrium
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A central goal of thermodynamics is to identify optimal processes during which the least amount of energy is
dissipated into the environment. Generally, even for simple systems, such as the parametric harmonic oscillator,
optimal control strategies are mathematically involved and contain peculiar and counterintuitive features. We
show that optimal driving protocols determined by means of linear-response theory exhibit the same step and
δ-peak-like structures that were previously found from solving the full optimal control problem. However, our
method is significantly less involved, since only a minimum of a quadratic form has to be determined. In addition,
our findings suggest that optimal protocols from linear-response theory are applicable far outside their actual
range of validity.
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I. INTRODUCTION

For infinitely slow processes the maximally usable work
is given by the change of availability or exergy [1,2]. All real
processes operate in finite time and thus they are accompanied
by dissipation into the environment. For instance, for isother-
mal processes the amount of energy that is irretrievably lost is
quantified by the irreversible work Wirr = W − �F [3]. One
of the central goals of modern thermodynamics is to develop
methods to minimize Wirr , i.e., to identify optimal processes
during which the least amount of energy is wasted.

One of the first approaches was developed in finite-time
thermodynamics [4–6]. Here the irreversible entropy produc-
tion is calculated from a heuristic expansion of the thermo-
dynamic entropy around its value in equilibrium. The leading
order of the expansion can then be used as the definition of the
thermodynamic length [5]. This length measures how far from
equilibrium a system operates [7–9] and it allows, e.g., one to
measure the arrow of time [10]. It also has been shown that
the thermodynamic length induces a Riemannian geometry.
Therefore, optimal processes can be found as geodesics on
the thermodynamic manifold [11–18] and the irreversible
entropy production can be written as a quadratic form of the
susceptibility matrix [12,19,20].

The downside of this approach is its limited range of
validity since it is inherently a linear-response theory [21–24].
More detailed insight and general results can be obtained by
means of stochastic thermodynamics [25–27]. In particular,
the theorems of Jarzynski [28] and Crooks [29] motivated
us to analyze stochastic properties of thermodynamic work
rather than to focus on its average value. In stochastic ther-
modynamics a system is described microscopically, e.g., by
a Langevin equation. Thermodynamic quantities like work,
heat, or entropy are then associated with single realizations
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or single trajectories of the process under study. From this
approach optimal driving protocols can then be studied ex-
plicitly, which showed some rather unexpected features, such
as jump and δ-peak-like protocols [30–37]. These “ragged”
driving protocols appear to be in stark contrast to the very
smooth functions commonly used in free-energy estimation
[38].

A disadvantage of the microscopic approach is that only
relatively few problems can be solved analytically. Thus, for
general situations, advanced and computationally expensive
tools from optimal control theory need to be employed [39].
The natural question arises whether and how well results
from a phenomenological approach based on linear-response
theory carry over to systems that are driven far from thermal
equilibrium.

The purpose of the present analysis is twofold: In a previ-
ous work [22] we found that for slowly driven processes the
resulting irreversible work for optimal protocols from exact
microscopic dynamics and linear response become identical.
In the following, we will demonstrate convergence of the
driving protocols by numerically solving the optimal control
problem. However, we will also find that the jump and δ-peak-
like features [30–32] are not present in the regime of slow
driving. Therefore, we developed an approach to find optimal
driving protocols of the linear-response quadratic form in the
regime of weak but fast driving. As a main result we will
show the appearance of jumps and δ-peak-like features. Our
findings suggest that optimal protocols from linear-response
theory might perform remarkably well far outside their actual
range of validity.

II. OPTIMAL CONTROL VERSUS LINEAR RESPONSE

We consider a system with Hamiltonian H (λ) weakly
coupled to a heat bath. Initially, the system and heat bath
are in thermal equilibrium for a fixed value λ = λ0. An
external observer then varies λ in finite time τ using a certain
protocol g(t ) such that λ(t ) = λ0 + δλg(t ), with g(0) = 0

2470-0045/2018/98(4)/042103(7) 042103-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.98.042103&domain=pdf&date_stamp=2018-10-02
https://doi.org/10.1103/PhysRevE.98.042103


MARCUS V. S. BONANÇA AND SEBASTIAN DEFFNER PHYSICAL REVIEW E 98, 042103 (2018)

FIG. 1. Illustration of the four classes of processes: class 0, slow
and weak perturbation; class 1, conventional linear-response theory;
class 2, slowly varying processes; and class 3, arbitrary driving far
from thermal equilibrium.

and g(τ ) = 1. This allows us to characterize the processes
under consideration by their strength δλ/λ0 and their speed
τR/τ , where τR is a typical relaxation time. The corresponding
“phase” diagram is depicted in Fig. 1.

As a zeroth class we categorize processes that are induced
by weak, δλ/λ0 � 1, and slow, τR/τ � 1, perturbation; class
1 refers to weak but not necessarily slow driving, whereas
class 2 consists of slowly varying processes [22]. Finally, a
third class refers to any other driving, which is neither slow
nor weak.

Since our main interest is to asses how well optimal pro-
tocols from approximate theories perform far from thermal
equilibrium, we begin the analysis with class 3. For such
driving, optimal protocols can be determined by means of
optimal control theory [39,40].

Consider a physical system whose state is fully described
by a vector xt . The components of xt could be the real
physical microstate, a point in phase space, the state of a qubit
[41], or a collection of macroscopic variables such as voltage,
current, volume, pressure, etc. The evolution of xt for times
0 � t � τ is described by a first-order differential equation,
the so-called state equation

ẋt = f (xt ,λt ), xt=0 = x0, (1)

where the vector λt is a collection of external control parame-
ters or simply the control.

The task is then to find the particular λ∗
t such that a

performance measure or cost functional is minimized. In other
words, to find the optimal control λ∗

t we have to minimize the
cost functional J [xt ,λt ] under the condition that xt evolves
under the state equation (1). In the present context, J [xt ,λt ]
can be naturally identified with the irreversible work Wirr .

Note that generally not all controls λt are physically al-
lowed or admissible. In particular, we will see in the following
example that if we restrict ourselves to continuous protocols

with fixed initial and final values, no jump or δ peculiarities
are found.1

To illustrate the application of optimal control theory and
as a fully solvable case study we consider the time-dependent
harmonic oscillator with the Hamiltonian

H (t ) = p2

2
+ λt

q2

2
, (2)

where we set the mass m = 1. For this system exact op-
timal driving protocols have been derived analytically for
overdamped dynamics [30], numerically in the underdamped
regime [31], and analytically for slowly varying processes
by means of linear-response theory [22]. In either case the
irreversible work can be written as

Wirr = 1

2

∫ τ

0
dt λ̇tq2 + 1

2
ln

(
λ0

λ0 + δλ

)
, (3)

where we set β = 1. Thus, we choose as a performance
measure

J [q, λt ] =
∫ τ

0
dt λ̇tq2. (4)

In the case of overdamped dynamics the state equation reads
[30]

∂tq2 = −2λtq2 + 2, (5)

whereas we have in the underdamped regime [31]

∂tq2 = 2qp,

∂tp2 = −2λtqp − 2γp2 + 2γ,

∂tqp = p2 − λtq2 − γ qp. (6)

The latter performance measure (4) together with the state
equation (5) or (6) allows us to formulate Pontryagin’s ex-
tremum principle [39]. Optimal protocols are then numer-
ically found by a modified algorithm of steepest descent
[41], where we restrict ourselves to continuous protocols with
g(0) = 0 and g(τ ) = 1.

In Fig. 2 we plot the results from optimal control theory
together with the analytically obtained optimal protocol for
slowly varying processes [22]

g∗(t ) = −λ0

δλ
+ 1

A[(t/τ ) + B]4
, (7)

where A and B are free constants to be determined by the
boundary conditions g∗(0) = 0 and g∗(τ ) = 1. We observe
that for slow processes, i.e., long switching times τ , the
protocols obtained from the full dynamics are in very good
agreement with the result from linear-response theory (7).
For faster driving, i.e., short switching times τ , the optimal
protocols significantly differ.2

1From a mathematical point of view this restriction might appear
a bit simplistic. However, our only motivation for this section is to
illustrate the breakdown of linear response theory from class 2.

2It is worth noting that the optimal control problem was solved by
the simplest available algorithm, a modified algorithm of steepest
decent [41]. Therefore, refined numerics and more involved algo-
rithms might be able to further lower the irreversible work for short
switching time.
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FIG. 2. Optimal driving in class 3: optimal driving protocols for
the time-dependent harmonic oscillator (2) with λ0 = 1 and δλ = 3.
Blue lines correspond to overdamped dynamics (5) with τ = 1 (blue
lower solid line) and τ = 10 (blue dashed line) and red lines are
found for underdamped dynamics (6) with γ = 1 and τ = 1 (red up-
per solid line) and τ = 10 (red dashed line). The analytical protocol
(7) for slowly varying processes (black dotted line) coincides to very
good approximation with slow (τ = 10) processes for any damping.

As the first main result, we find that numerically exact
solutions from optimal control theory converge to the optimal
protocols from linear-response theory by taking the appropri-
ate limits. Note, however, that a judicious choice of boundary
conditions g∗(0) = 0 and g∗(τ ) = 1 and restricting the admis-
sible protocols to continuous functions suppressed jump and
δ-peak features. The remainder of this analysis is dedicated
to finding exactly these features from linear-response theory,
which illustrates that phenomenological tools can be powerful
also far outside their range of validity.

III. OPTIMAL DRIVING FROM CLASS 1

To describe the work performed along processes lying in
class 1 (see Fig. 1), we demand that |δλg(t )/λ0| � 1 for
0 � t � τ . This allows for a linear-response treatment of the
average work Wirr whose expression reads [23]

Wirr ≡ W − �F

= (δλ)2

2

∫ 1

0
ds

∫ 1

0
ds ′�0[τ (s − s ′)]ġ(s)ġ(s ′), (8)

where ġ(s) and ġ(s ′) denote the derivatives with respect
to s ≡ t/τ and s ′ ≡ t ′/τ , and �0(t ) = β[〈∂λH (0)∂λH (t )〉 −
〈∂λH (0)〉2] is the relaxation function [22,42] with β =
(kBT )−1 and 〈·〉 denoting an average with the canonical
distribution. Within this framework, the relaxation time τR

may be defined as

τR =
∫ ∞

0
dt �0(t )/�0(0). (9)

As explained in Ref. [22], the relaxation function is the
phenomenological input of the Hamiltonian-based linear-
response theory since its fully microscopic derivation requires
the solution of classical or quantum equations of motion of
the system plus heat bath. Hence, this is the strong point of
our linear-response approach since it circumvents the lack
of an exact treatment of a specific system and, at the same

FIG. 3. Optimal protocol for overdamped dynamics: optimal
protocol (red solid line) that minimizes Eq. (8) using a truncated
expansion of g(s ) with 35 modes and the relaxation function
�0(0)e−α|t |. The switching time τ was chosen to be five times bigger
than the relaxation time τR . The blue dotted line corresponds to the
linear protocols g(s ) = s. The inset shows the short-time behavior of
the optimal protocol showing a smooth version of a step.

time, allows for system-independent conclusions from the
qualitative behavior of �0(t ).

The phenomenological modeling of the relaxation function
provides the possibility of finding optimal protocols of (8) not
only for one or two examples but for classes of systems. At
the same time, we still want to keep track of the influence of
a specific system in our results. As shown in Ref. [22], this
can be done through a self-consistent modeling that matches
a given ansatz of �0(t ) with its Hamiltonian requirements.

Figures 3 and 4 show optimal protocols obtained from
Eq. (8) using two models for the relaxation function, namely,
the overdamped �0(t ) = �0(0)e−α|t | and the underdamped
�0(t ) = �0(0)e−α|t |[cos (ωt + (α/ω) sin (ω|t |)]. The nomen-
clature we use clearly refers to the corresponding regimes
of Brownian motion under an external harmonic potential

FIG. 4. Optimal protocol for underdamped dynamics: optimal
protocol (red solid line) that minimizes Eq. (8) using a truncated
expansion of g(s ) with 35 modes and the relaxation function
�0(0)e−α|t |[cos (ωt ) + (α/ω) sin (ω|t |)]. The switching time τ was
chosen to be five times bigger than the relaxation time τR . The
blue dotted line corresponds to the linear protocol g(s ) = s. The
inset shows the short-time behavior showing that after the peak, the
optimal protocol also presents a smooth step since it oscillates around
a linear protocol (green dashed line) whose inclination is lower than
one.
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[30,31]. Nevertheless, they are not limited to describe the
relaxation of this physical system only. They are very good
models for several different phenomena such as the relaxation
of dielectric polarization or magnetization or even the decay
of quasiparticles in quantum systems.

To obtain the optimal protocols we note that Eq. (8)
is a quadratic form in the ġ(s). Therefore, we expand the
functions ġ(s) in a series of Chebyshev polynomials Tn(u)
in the interval [0,1]. The series is then truncated and therefore
regularized (to deal with the common problems of finite-order
expansions) using well-known methods [43]. The expansion
reads

ġ(s) =
N∑

n=1

angN,nTn(2s − 1), (10)

where

gN,n = 1

N + 1

[
(N − n + 1) cos

(
πn

N + 1

)

+ sin

(
πn

N + 1

)
cot

(
π

N + 1

)]
(11)

is a factor that regularizes the truncated series with finite N

terms (see Sec. II C of Ref. [43]).
Inserting the finite-order expansions (10) in Eq. (8), the

double integrals can be solved analytically and the parity
of the Chebyshev polynomials and of �0(t ) [the relaxation
function satisfies �0(−t ) = �0(t ); see Refs. [22,23]] help
to verify that many of them are zero. Consequently, expres-
sion (8) becomes the finite quadratic form

Wirr[(δλ)2�0(0)/2]−1 =
∑
n,l

Anlanal (12)

for the coefficients an, with the matrix Anl given by

Anl =
∫ 1

0
ds

∫ 1

0
ds ′�̃[τ (s − s ′)]

× gN,ngN,lTn(2s − 1)Tl (2s ′ − 1), (13)

where we have defined �̃(t ) = �0(t )/�0(0).
The extremum of Eq. (12) is obtained by solving a min-

imization problem with Lagrange multipliers. This comes
down to solving numerically a linear system of equations. The
unknown variables of this system are the coefficients an of the
finite-order expansion of the ġ(s) subjected to the boundary
conditions g(0) = 0 and g(1) = 1. The results clearly show
smooth versions of the same features (steps and peaks) ob-
tained in Refs. [30,31] for a driven Brownian particle trapped
in a harmonic potential in overdamped and underdamped
regimes. As mentioned above, exact optimal protocols are
determined by solving Eqs. (5) and (6), respectively (see
Refs. [30,31] for the details).

It is remarkable that our linear-response optimization leads
to the same counterintuitive features which were originally
attributed to far-from-equilibrium driving. As the process gets
faster (i.e., τ approaches τR), such features become even
sharper (see Fig. 5). In addition, for a fixed switching time
τ , the steps and peaks also get sharper as we increase the

FIG. 5. Optimal protocols for different τ : protocols that mini-
mize Eq. (8) using a truncated expansion of g(s ) with 35 modes and
the relaxation function �0(0)e−α|t |[cos (ωt ) + (α/ω) sin (ω|t |)]. The
ratio τ/τR was chosen to be 2.5 (blue solid line), 5 (red dotted line),
and 10 (green dashed line).

number of polynomials in the finite-order expansion of g(t )
(see Fig. 6). This suggests that the optimal linear-response
process can get arbitrarily close to the singular features of the
exact result of Ref. [31].

A natural question to ask then is how well the linear-
response optimal paths perform in the nonequilibrium region.
To test this, we have solved numerically Eqs. (6) since we
need q2(t ) to obtain Wirr [see Eq. (3)]. We were not able
to go beyond an expansion of g(s) with 17 modes due to a
numerical instability caused by high-frequency oscillations.
Hence our preliminary results about performance show that,
for fixed τ = 5τR and for δλ/λ0 ranging from 1 to 2.7,
the linear-response optimal paths are roughly 1%–5% better
than a linear protocol (although it sometimes performs worse
since Wirr seems to have a nonmonotonic dependence with
δλ/λ0 for the linear protocol). However, our optimal protocols
are always 6%–14% better than the C2(t ) protocol proposed
by Watanabe and Reinhardt in the context of free-energy
estimation [see Eq. (5) in Ref. [38]].

FIG. 6. Optimal protocols for different orders of truncation: pro-
tocols that minimize Eq. (8) using a truncated expansion of g(s )
with 17 modes (blue solid line) and 35 modes (red dashed line)
and the relaxation function �0(0)e−α|t |[cos (ωt ) + (α/ω) sin (ω|t |)].
The switching time τ was chosen to be five times bigger than the
relaxation time τR . The green dotted line corresponds to the linear
protocol g(s ) = s.
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FIG. 7. Exponential relaxation: protocol (red solid line) that min-
imizes Eq. (8) for the relaxation function �0(0)e−α|t |(1 + α|t |/2)2

using a truncated expansion of g(s ) with 35 modes and τ/τR = 5.
The blue dotted line corresponds to g(s ) = s. The inset shows the
optimal protocol oscillating around a linear function f (s ) = as + b

with a < 1.

IV. PERSPECTIVES OF THE PRESENT APPROACH

The results obtained in Refs. [30,31] have opened several
questions about the optimization problem of finite-time pro-
cesses, of which some have not been satisfactorily answered
so far. For instance, the physical origin of the unexpected fea-
tures (namely, steps and peaks) appearing in the optimal pro-
tocols has remained elusive. Moreover, it is not clear whether
these sharp features are restricted to the dynamics of specific
models studied. We have shown that these features are also
present even when fixed boundary conditions g(0) = 0 and
g(1) = 1 are demanded, which means, in our interpretation,
that they may not be just a by-product of some optimization
procedure. Moreover, they can occur in close-to-equilibrium
processes.

The potentially interesting aspect of our approach relies on
the phenomenological modeling of the relaxation function. In
contrast to stochastic thermodynamics methods, the present
approach easily provides means of testing different kinds
of relaxation behavior and therefore investigate whether the
features we observe in the optimal protocols are universal.
Figure 7 shows that even the monotonic exponential decay
given by e−α|t |(1 + α|t |/2)2 (this relaxation function can be
derived from Brownian motion; see Appendix B of Ref. [22])
leads to very pronounced peaks and “steps” since, apart from
the boundaries, the protocol oscillates around a linear function
f (s) = as + b with a < 1. This naturally raises the question
of why this case is closer to the underdamped result of Fig. 4
even though the relaxation function decays monotonically as
in the overdamped case.

A possible hint to answer this question lies in the short-time
behavior of the relaxation functions. Although both the �0(t )
leading to Figs. 3 and 7 decay monotonically, for small t we
have

e−α|t |
(

1 + α|t |
2

)2

= 1 − α2|t |2
4

+ O(|t |3), (14)

e−α|t | = 1 − α|t | + O(|t |2). (15)

FIG. 8. Nonexponential relaxation: optimal protocol (red solid
line) that minimizes Eq. (8) using a truncated expansion of g(s )
with 35 modes, τ/τR = 80, and the relaxation function �0(0)J0(αs ),
where J0(x ) is the Bessel function of the first kind. The blue dotted
line corresponds to the linear protocol g(s ) = s.

For the underdamped �0(t ), we have

e−α|t |[cos (ωt ) + (α/ω) sin (ωt )]

= 1 − (α2 + ω2)|t |2
2

+ O(|t |3), (16)

which shows that the short-time behavior of expressions (14)
and (16) for �0(t ) is |t |2 in both cases.

Figure 8 shows an example of an optimal protocol for a
nonexponential decay of the relaxation function. Very pro-
nounced peaks are also present in this case and persist for
much slower processes (τ = 80τR for that result). It can be
easily verified that, for small t , the leading-order behavior of
�0(t ) is also |t |2 in this case.

The short-time behavior of �0(t ) has a clear physi-
cal meaning in linear-response theory since the relaxation
function is related by −�̇0(t ) = �0(t ) to the so-called re-
sponse function �0(t ) [42,44]. In the present case, �0(t ) =
〈{∂λH (0), ∂λH (t )}〉, with {A,B} denoting either the Poisson
bracket or the commutator between A and B. Hence, the
short-time behavior of �0(t ),

�0(t ) = �
(0)
0 (0) + �

(1)
0 (0)t + �

(2)
0 (0)

t2

2!
+ O(t3), (17)

with coefficients given by [42,44,45]

�
(0)
0 (0) = 〈{∂λH (0), ∂λH (0)}〉 = 0,

�
(1)
0 (0) = 〈{∂λH (0), {∂λH (0),H }}〉,

�
(2)
0 (0) = 〈{∂λH (0), {{∂λH (0),H },H }}〉, (18)

is determined by Hamiltonian constraints. In particular,
Eqs. (18) demand that �0(t ) must have t2 instead of t depen-
dence in leading order. In addition, these equations can also
give us expressions for the free parameters α and ω of our
phenomenological models (14) and (16) in terms of average
values of observables (see Ref. [22] for more details).

V. CONCLUSION

In the present analysis we found that although much work
has been done to find optimal linear-response processes in
class 2, namely, slowly varying optimal processes, those lying
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in class 1 are much closer to what happens in the fully
nonequilibrium regime. Hence they should be a better choice
as seeds of optimal control procedures far from equilibrium.
Our results also show that, despite sharing the same underly-
ing theory, the linear-response approaches for the irreversible
work in classes 1 and 2 are qualitatively different and only
match when δλ/λ0 and τR/τ are both much smaller than 1.

The phenomenological modeling of relaxation functions
give us a great deal of flexibility to analyze several distinct
physical systems both classical and quantum. Thus, our results
state that the peculiar features found in Refs. [30,31] are
indeed very general and are not restricted just to driven Brow-
nian motion. In this sense, we can easily go beyond stochastic
thermodynamics methods to obtain qualitative answers since
our approach does not rely on exact solutions.

We have also provided a preliminary analysis suggesting
that what happens at the boundaries of the optimal protocols

depends strongly on the short-time behavior of the relax-
ation function (which is linear for overdamped dynamics and
quadratic for the underdamped one). It is possible to show
that the sum rules of linear-response theory [45] (which can
be used to make the phenomenological relaxation functions
compatible with the underlying Hamiltonian dynamics [22])
demand a quadratic behavior for short times. Nevertheless,
further analysis is still necessary to settle the physical origin
of the peculiar features at the boundaries of optimal protocols.
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