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Effect of walking distance on a queuing system of a totally asymmetric simple exclusion process
equipped with functions of site assignments
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This paper proposes a totally asymmetric simple exclusion process on a traveling lane, which is equipped
with a queueing system and functions of site assignments along the parking lane. In the proposed system, new
particles arrive at the rear of the queue existing at the leftmost site of the system. A particle at the head of the
queue selects one of the empty sites in the parking lane and reserves it for stopping at once during its travel. The
arriving time and staying time in the parking sites follow half-normal distributions. The random selections of
empty sites are controlled by the bias of the exponential function. Our simulation results show the unique shape
of site usage distributions. In addition, the number of reserved sites is found to increase with an S-shape curve as
the bias to the rightmost site increases. To describe this phenomena, we propose an approximation model, which
is derived from the birth-death process and extreme order statistics. A queueing model that takes the effect of
distance from the leftmost site of the traveling lane into consideration is further proposed. Our approximation
model properly describes the distributions of site usage, and the proposed queueing model shows good agreement
with the simulation results.
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I. INTRODUCTION

The queueing theory, which was started by Erlang [1]
at the beginning of the 20th century, has attracted many
scientists and researchers. Most of the theory is still in veil;
nevertheless, a strong demand for this theory exists not only in
academic studies of nonequilibrium statistical physics but also
in many engineering fields such as traffic system [2], human
dynamics [3,4], and molecular motor transport [5,6]. The
study of queueing systems has been associated with the totally
asymmetric simple exclusion process (TASEP) because of two
main features: transportation in a one-way direction and the
volume exclusion effect, which are suitable for the simulation
of queueing systems [7–9].

This paper proposes a totally asymmetric simple exclusion
process on a traveling lane, which is equipped with a queueing
system and site assignments along the parking lane, under
open boundary conditions. In the proposed system, new parti-
cles arrive at the rear of the queue existing at the leftmost site
of the system. Thereafter, a particle at the head of the queue
selects one of the empty sites in the parking lane and reserves
it for stopping once during its travel. The arriving time and
staying time in the parking sites follow half-normal distribu-
tions. The random selections of empty sites in the site assign-
ments are controlled by the bias of the exponential function.

Similar mechanics of the proposed system can be observed
in many real-world cases (e.g., parking problems in high-
ways, airplane boarding, and airport ground transportation).
Therefore, studying the proposed system is meaningful in
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many application fields. In particular, it is important to inves-
tigate the relationship between the occupancy of parking sites
and the ways of site assignments because they are closely
related to each other. The major scope of this research is to de-
scribe the relationship between the effect of site assignments
in the proposed system and the occupancy of parking sites.

Because the parking site can be regarded as an absorption
site in a wider sense, the proposed model is classified into
the same category of the studies on multiple-lane systems
with Langmuir Kinetics. Many previous studies have reported,
exemplified by Refs. [10,11] for parallel-lane systems under
periodic conditions, Ref. [12] for triple parallel-lane systems
with Langmuir Kinetics, and Refs. [11–17] for two parallel-
lane systems with Langmuir Kinetics. However, queueing
problems are not taken into account in these studies. Regard-
ing the function of site assignments, our previous research
[18] was a pioneering study on site-assignment for parallel-
lane systems; however, the problem of queueing was not
discussed in that study.

In the modeling of queues, we consider the effect of walk-
ing distance from the entrance. Several previous studies have
worked on this problem of walking-distance for specific cases,
exemplified by the D-Fork system [19], D-Parallel system
[19], and combinational queueing system of D-Fork with D-
Parallel system [20]. A distinguishing factor of the proposed
system compared to these previous systems is that the parking
sites (service sites) push the particle back to the traveling lane,
whereas in the previous studies, the particles pass through the
service sites and exit from the opposite side of the traveling
lane. Since the particle reentering the traveling lane causes
delay in the traveling lane, the ways of site usage distributions
affect the queueing system. Hence, the mechanics in the
proposed system are different from those of the previous
studies. In this paper, we propose an approximation model to
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FIG. 1. Schematic view of the target system.

describe the site usage distribution of the proposed system on
the basis of birth-death process for the spatial direction and
extreme order statistics for the time direction.

The remainder of this paper is structured as follows. Sec-
tion II provides a summary of the target system and that of
the classical M/M/c queueing model. Section III investigates
the dependence of the utilization of parking sites on the distri-
bution parameter of the exponential function through simula-
tions. In Section IV, we propose an approximation model that
describes the site usage distribution of the proposed system
on the basis of the birth-death process and extreme statistics.
Section V summarizes our results and concludes this paper.

II. MODELS

A. Target system

A schematic view of the target system is depicted in Fig. 1.
The system consists of two parallel lanes: a traveling lane,
which is composed of L sites, and a parking lane, which is
composed of Ns sites (Ns = L/2). The distance between two
parking sites �l is set to be 2. In our system, a particle takes
four different states. The cross-hatched green state indicates
that the particle is in a state of queuing. The hatched red state
indicates that the particle is in transport before stopping at
the designated site of the parking lane. The dashed yellow
state indicates that the particle is currently stopping at the
site of the parking lane. The solid blue state indicates that
the particle is in transport after exiting the parking lane. To
sum up, the flow of a particle is described as follows. A
particle arrives at the rear of the queue, which emerges at the
leftmost site. After staying in the parking site, the particle goes
back to the traveling lane, changing its state from the dashed
yellow state to the solid blue state, and then moves towards the
rightmost site. The particle in the traveling lane is eliminated
from the system at the next step after moving to the rightmost
site. Additionally, a parking site takes three kinds of states
(reserved state, occupied state, and empty state). We call both
the occupied state and reserved state simply as “a busy state”

in this study. For the time integration, we adopt the parallel
update method.

The interesting subjects of this study are not only the
problems with the random arrival, such as the parking in high-
ways, but also the problems with the scheduled arrival with
the random delay such as the airport ground transportation.
Especially in the last case, the use of normal distribution is
reasonable, however, it has a practical problem in that we
have to cut the tail of the left side of the distribution in some
cases. To avoid this problem, we take up to use the half-normal
distribution in this study.

The interval of the arrival time is set to follow a half-normal
distribution; the mean τin and deviation σin of the interval of
arrival time are given as follows:

τin = τ̄in + σ̄in

√
2

π
, (1)

σin = σ̄in

√(
1 − 2

π

)
. (2)

Here, τ̄in and σ̄in are the mean and deviation of the original
normal distribution, respectively. A schematic view of τin, σin,
τ̄in, and σ̄in is depicted in Fig. 2.

A particle at the head of the queue selects one of the
empty sites in the parking lane and reserves it for stopping
once during its travel. Similar to that of the arrival time, the
interval of the staying time is also set to follow a half-normal
distribution

τs = τ̄s + σ̄s

√
2

π
, (3)

σs = σ̄s

√(
1 − 2

π

)
. (4)

Here τs and σs are the mean and deviation of the half-normal
distribution, while τ̄s and σ̄s are those of the original normal
distribution, respectively. Unless otherwise noted, the mean
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FIG. 2. Schematic view of the parameters of the interval of ar-
rival time which follows half-normal distribution. The horizontal axis
indicates the time step and the vertical axis indicates the probability.

and deviation of the two cases are indicated by τin, σin, τs , and
σs in this paper.

Two important rules are made to the system. The particle
at the head of the queue is not permitted to reserve the parking
site that has already been reserved by the other particle unless
the site releases the particle. In addition, the dashed yellow
particles in the parking sites have priority access to the upper
site on the traveling lane compared to the hatched red or solid
blue particle, which is to access the same traveling site.

The random selection of an empty parking site by the
particle at the head of the queue is controlled by the exponen-
tial function ke−kx (x � 0, k > 0). In the case of “ascending”
in Fig. 1, the random selection of the empty sites becomes
biased toward the leftmost site as the parameter increases.
In the case of “descending” in Fig. 1, the random selection
becomes biased toward the opposite rightmost site by set-
ting the reversed sequential number to the number of sites
L. Note that the inverse transform sampling (ITS) [21,22]
is introduced to generate random variables that follow the
exponential distribution.

We denote this last type of bias by multiplying the negative
sign to parameter k for the sake of easy view. Namely, in the
notation of ke−kx , the random selection gets biased towards
the leftmost site as parameter k increases while k > 0. In
contrast, it gets biased towards the rightmost site as parameter
k decreases while k < 0. In the case of setting parameter k to
be zero, no external bias is given to the random selection.

B. Classical M/M/c queue

In this section, we overview the classical queueing the-
ory. A queueing system is characterized by six stochastic
properties: the arrival process A, service process B, number
of servers in the system C, maximum number of possible
customers who will arrive at the system K , number of sources
of customers N , and service discipline D. All these properties
are summarized as A/B/C/K/N/D by Kendall’s notation
[23]. The notation of K and N are abbreviated in case of
infinity and that of D is abbreviated in the case of first come
first served (FIFS); in this case, the system can be represented

simply as A/B/C. Our system is categorized into M/M/c

queueing systems because the arriving time and staying time
follows the Markov process and the system has a finite number
of parking sites Ns . Note that the left and right M indicate the
Markov process, and the notation c indicates the number of
servers (the c corresponds to Ns in the system). In this section,
several important formulas of the classical M/M/c queueing
system are enumerated. For more details on queueing theories,
refer to Refs. [24,25].

The arrival rate λ and service rate μ are defined as the char-
acteristic values of the queueing system. On the condition that
the λ and μ are given as constant parameters, a distribution of
probability Pn that the whole system (including queue) has n

customers at a stationary state is obtained as a consequence of
solving the transition equation of length of queue between the
time step n and time step n + 1 as follows:

Pn =
{

an

n! P0, (n = 1, 2, . . . , c),
an

cn−cc!P0, (n = c + 1, c + 2, . . . ),
(5)

P0 =
{

c−1∑
n=0

an

n!
+ ac

c!

1

1 − ρ

}−1

, (6)

a = λ

μ
, (7)

ρ = λ

cμ
. (8)

Additionally, the length of queue Lq , total number of cus-
tomers in the whole system Lc, and the number of utilized
servers U are obtained from Eq. (5) to Eq. (8), as follows:

Lq =
∞∑

n=c+1

(n − c)Pn = C(c, a)
a

c − a
, (9)

C(c, a) = c

c − a

ac

c!
P0, (10)

Lc =
∞∑

n=0

nPn = Lq + a, (11)

U = Lc − Lq = a. (12)

Consequently, the utilization of servers corresponds to the
parameter a, which is defined as the value of the arrival rate
divided by the service rate, as shown in Eq. (7).

In the case of c = 1 (M/M/1 queue), the arrival rate λ and
service rate μ are defined as the inverse values of arrival time
and service time, as follows:

λ = τin
−1, (13)

μ = τs
−1. (14)

Even in general cases of c > 1, all the servers are assumed
to have the same values of arrival rate λ and service rate
μ defined by Eqs. (13) and (14), respectively, similar to
the M/M/1 queue in the classical M/M/c queueing model.
However, this assumption causes a nonnegligible deviation
from real-world systems because the effect of walking dis-
tance to each server is not considered in the classical queue-
ing theory. In particular, this assumption becomes a serious
problem in our system because the reentering customer causes
a delay in transportation on the traveling lane. To solve this
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FIG. 3. Dependence of particle flux Q at the rightmost site on
the number of parking sites Ns for different values of the total time
steps Nstep from 20 000 to 2 000 000.

problem, in this paper, approximation models that consider
the effect of walking distance are proposed in Sec. IV.

III. SIMULATIONS

The input parameters of our system are given as the set of
(Ns , τ̄in, σ̄in, τ̄s , σ̄s). From Eqs. (1) and (4), we immediately
obtain the set of (Ns , τin, σin, τs , σs), which our system
follows in practice during the simulation. In the parameter
settings, the coefficient of variation (CV), defined as the ratio
of the deviation to the mean value must be considered since
the CV determines the degree of the stochastic dispersion
of simulations; to complete the simulations in acceptable
computational time, we set the input parameters (τ̄in, σ̄in, τ̄s ,
σ̄s) to (20, 1, 300, 10) to obtain resulting CVs σin/τin and
σs/τs smaller than 0.03.

We define a particle flux Q as an average number of
particles that exit from the rightmost site per time step.
To determine the condition of reaching stationary state, the
dependence of particle flux Q at the rightmost site on the
number of parking sites Ns was measured for different values
of the total time steps Nstep between 20 000 and 2 000 000, as
shown in Fig. 3. The break in line occurs at approximately
Ns = 17 as all the sites are in use due to the lack of capacity
of sites for Ns < 17. The particle flux Q was observed to
become almost stable after Nstep reaches 2 000 000. Through
this primary investigation, we set Ns and Nstep to be 48 and
2 000 000, respectively.

Figure 4 shows the dependence of the number of reserved
or occupied sites and the number of busy sites (the sum of
reserved sites and occupied sites) on the different values of
distribution parameter k between −10 and 10. It was observed
that the number of busy sites Nb increases with a gentle
S-shape curve as the parameter k decreases. Substantially,
the increase in the number of busy sites Nb is found to be
determined only by the increase in reserved sites Nr . On
the other hand, the number of occupied sites No remained
constant during the simulations. The result in Fig. 4 indicates
that the utilization of U servers in the classical M/M/c

queueing theory corresponds not to the number of occupied
sites No, but to the number of busy sites Nb in our system.
This is because a parking site becomes accessible every time
the previous busy time ends. In the next section, we investigate
the relationship between Nb and the distribution parameter k

of the exponential function.

FIG. 4. Dependence of the number of reserved or occupied sites
and the number of busy sites (the sum of reserved sites and occupied
sites) on the different values of distribution parameter k between −10
and 10.

IV. ANALYSIS

A. First approximation level

At the beginning of this study, we proposed a fundamental
model, which is simulated by the concept of D-Fork system.
By considering the effect of walking distance from the left-
most site, the occupied time Ti of the ith parking site can be
modeled as follows:

Ti = τs + i�l + α. (15)

Here α is a constant parameter and �l is the distance between
two parking sites.

In the right-hand side of Eq. (15), the first term indicates
the staying time in a parking site. The second term indicates
the traveling time to the parking site. In this approximation
level, we ignore the volume exclusion effect in the second
term; a particle is assumed to hop to the neighboring cell per
step. Thus the velocity of the particle becomes 1 since the
length of a cell is set to 1. That is why the notation of velocity
does not emerge in the second term. Instead, we introduce the
α in the third term, assuming that the volume exclusion effect
can be approximated as constant values in the target system.

The maximum service rate μmax and the minimum service
rate μmin are obtained by substituting Ns and 1 to Eq. (15), as
follows:

μmax = TNs

−1, (16)

μmin = T1
−1. (17)

The averaged value of the service rate of the system μavr is
obtained by calculating the arithmetic mean of Eq. (15), as
follows:

μavr =
{

τs + 1

Ns

Ns∑
i=1

(i�l + α)

}−1

(18)

=
{
τs + �l

2
Ns + �l

2
+ α

}−1

. (19)
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FIG. 5. Dependence of the number of busy sites Nb on the total
number of sites Ns in the case of k = 0.

Finally, the averaged number of busy sites Nb is obtained by
dividing Eq. (13) by Eq. (19), as follows:

Nb = λ

μavr
(20)

=
(

�l

2τin

)
Ns + 1

τin

(
τs + �l

2
+ α

)
. (21)

Equation (21) shows that the number of busy sites Nb is a
linear function of the number of sites Ns . Figure 5 shows the
simulation result of the dependence of the number of busy
sites Nb on the total number of sites Ns , in the case of k = 0.
It was observed that the break in the blue circle line occurs at
around Ns = 17, which is because all the sites are in use due
to the lack of capacity of sites when Ns < 17. In comparison
to Fig. 4, the y-intercept value of the fitting line in Fig. 5
corresponds to the value of the number of occupied sites No.
This is because the increment of the number of busy sites Nb

depends only on the increase in the number of reserved sites
Nr . By fitting the line at Ns > 17 according to Eq. (21), the
parameter α is obtained to be 6.215 as a fitting result. It was
confirmed from the red circle line in Fig. 6 that the simulation
results are bounded between the maximum case (the dotted
line) and the minimum case (the dashed line). In addition, the
averaged case of classical M/M/c with the parameter α is
found to semi-experimentally correspond to the case of k = 0.

B. Second approximation level

On the basis of an assumption that the site usage distribu-
tions obey the exponential function ke−kx , we correct Eq. (19)
by replacing the arithmetic mean by the weighted average
using the exponential function ke−kx . The number of busy
sites Nb is calculated as follows:

Nb = τs

τin
+ 1

τin

∑Ns

i=1(i�l + α)Ei∑Ns

i=1 Ei

, (22)

Ei = k × exp

(
−k

i

Ns

)
. (23)

The red circle line and blue square line in Fig. 6 show
the comparison of simulation results and the estimated values

FIG. 6. Comparison of the simulation results, the estimated
values obtained using Eq. (22), the maximum values by dividing
Eq. (13) by μmax, the minimum values by dividing Eq. (13) by μmin,
the averaged values obtained by using Eq. (19), for different values
of distribution parameter k between −10 and 10.

obtained using Eq. (22), respectively. It was confirmed that the
feature of S-shape curve is observed in both simulations and
approximations. However, the number of busy sites Nb calcu-
lated by Eq. (22) becomes overestimated or underestimated at
both sides of k < 0 and k > 0.

To clarify the reason for the deviation, the site usage distri-
butions were investigated. Figure 7 shows all the distributions
for different values of parameter k between −10 and 10.
Obviously, the shape of each distribution is different from that
of the exponential function. It should be noted that the reason
why the distribution gets slightly biased to the leftmost site in
the case of k = 0 is that the parking site, which is closer to the
leftmost site, has a higher turnover rate because of the shorter
walking distance.

C. Third approximation level

1. Birth-death process for walking direction

In this section, we describe the site usage distributions
by introducing the birth-death process for walking direction.
Namely, the particles in transport before stopping at a site on
the parking lane (hatched red particles in Fig. 1) are regarded

=10

= 5
= 4
= 3

= 1
= 0

= -10

= -1
= -2

***

***

= -3
= -4

1 48Index of parking sites

> 0
= 0
< 0

FIG. 7. All the distributions of the site usage for different values
of parameter k between −10 and 10.
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as “surviving.” On the contrary, an event in which a particle
stops at a site indicates the “death” of the particle.

We define a random variable X, which donates a position
on the traveling lane, f (x) is defined as the probability density
function of X. From these definitions, the cumulative density
function F (x) of f (x) can be expressed as follows:

F (x) := P (X � x) =
∫ x

0
f (t )dt. (24)

F (x) represents the probability of “death” at position x.
Conversely, we define S(x) as the probability of surviving at
position x, as follows:

S(x) := 1 − F (x) = P (X > x). (25)

In addition, a hazard function h(x) is defined as follows:

h(x) := lim
�→0

1

�
P (x < X < x + �|X > x). (26)

h(x) is the probability density that a particle stops at a site
at the position between x and x + �. Equation (26) can be
transformed as follows:

= lim
�→0

1

�
× P {(x < X < x + �) ∩ (X > x)}

P (X > x)
(27)

= lim
�→0

1

�
× P (x < X < x + �)

P (X > x)
. (28)

From Eqs. (24) and (25),

= 1

P (X > x)
lim
�→0

F (x + �) − F (x)

�
(29)

= F ′(x)

S(x)
(30)

= −S ′(x)

S(x)
= − d

dx
{log[S(x)]}. (31)

Here we impose an initial condition S(0) = 1 to Eq. (31) since
the probability that a particle survives at the position of zero
always becomes 1. Then the differential equation Eq. (31) can
be solved as follows:

S(x) = exp[−H (x)]. (32)

Here we introduce the H (x), as follows:

H (x) :=
∫ x

0
h(t )dt. (33)

We obtain F (x) and f (x) from Eq. (32) as follows:

F (x) = 1 − exp[−H (x)], (34)

f (x) = h(x) × exp[−H (x)], (35)

f (x) corresponds to the probability distribution of site usage
since F (x) is the probability of death at position x. We suc-
cessfully obtained a general formula for site usage distribution
in our system. We introduce extreme statistics in Sec. IV C 3
to determine the specific formula of H (x).

2. Introduction of order statistics

The derivation of Eq. (34) lacks the information of order
statistics of the random variable X. We introduce the con-
cept of order statistics to our system in this section, as a
preliminary work for the approximation by extreme statistics
in Sec. IV C 3.

Let us consider the situation that a single particle is inserted
from the queue to the leftmost site at certain intervals of arrival
time during the total n time steps. We name the ith inserted
particle to the leftmost site simply as “ith particle”. We define
the random variables Xi , which indicates the position that
the ith particle stops at during its travel. As similarly in the
previous section, the ith particle is judged as “death” when
Xi � x. On the contrary, the particle is judged as “surviving”
when Xi > x.

An identical cumulative density function A(x) of
X1, X2, . . . , Xn is expressed, as follows:

A(x) := P (Xi � x), (i = 1, 2, . . . , n). (36)

The order statistics of X1, X2, . . . , Xn, which is obtained
by rearranging the X1, X2, . . . , Xn in an ascending order, is
represented as follows:

X(1:n) � X(2:n) � · · · � X(n:n). (37)

From the definition of the order statistics, it is obvious that the
ith order statistic X(i:n) corresponds to the ith largest original
independent variables. The relationship between the original
independent variables and the order statistics in case of n = 5
is depicted in Fig. 8.

A cumulative density function AX(m:n) (x) of the mth statistic
X(m:n) is defined as follows:

AX(m:n) (x) := P (X(m:n) � x). (38)

Considering the fact that X(i:n) corresponds to the ith
largest original independent variables, it can be said that
Eq. (38) indicates the probability that at least m variables of
X1, X2, . . . , Xn become equal or less than the position x (=
the state of “death”).

By using the probability Pj that exactly j variables of
X1, X2, . . . , Xn becomes equal or less than the position x, the
right-hand side of Eq. (38) is represented as follows:

P (X(m:n) � x) =
n∑

j=m

Pj . (39)

The probability Pi is further decomposed as follows;
there are nCj different combinations of j variables from
X1, X2, . . . , Xn. In each case, j variables become “death”
with the probability A(x) and that of n − j variables become
“survival” with the probability 1 − A(x); the cumulative den-
sity function AX(m:n) (x) is represented by using Eqs. (38) and
(39), as follows:

AX(m:n) (x) =
n∑

j=m

(
n

j

)
A(x)j [1 − A(x)]n−j . (40)

Now we obtain the precise expression of Eq. (38). Equa-
tion (40) includes all the possible patterns of particle arrivals
for the time direction during the total n time steps.
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space
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4

Order statistics

= 3, 5, 1, 4, 2

reordering 
by positions

(1:5), (2:5), (3:5), (4:5), (5:5)

FIG. 8. Relationship between the independent variables and the order statistics in case of n = 5.

Unfortunately, it is difficult to derive the probability distri-
bution of site usage directly from Eq. (40) because the cumu-
lative density function A(x) at each time step is unknown. To
solve this problem, we propose to approximate the site usage
distribution by the asymptotic distribution of the distribution
of extreme order statistics in the next section.

3. Approximation by extreme statistics

The maximum order statistics Zn and the minimum order
statistics Yn are defined, respectively, as follows:

Zn := X(n:n) = max{X1, X2, . . . , Xn} = max
1�i�n

Xi, (41)

Yn := X(1:n) = min{X1, X2, . . . , Xn} = min
1�i�n

Xi. (42)

In this paper, we propose to approximate the cumulative
probability distribution of site usage in Eq. (24) by the
distribution of extreme order statistics. Here we have two
candidates of P (Zn � x) and P (Yn � x).

We are able to say that the selection of P (Yn � x) is
appropriate for the approximation of Eq. (24) considering the
physical meaning of these extreme order statistics. P (Zn � x)
describes the probability that not a single Xi becomes larger
than the position x during the time step n, as shown in
Fig. 9(a). Because the situation depicted in Fig. 9(a) seldom
occurs in our system, replacing the random variables X in
Eq. (24) by the maximum order statistics of Zn is not ap-
propriate. On the contrary, as shown in Fig. 9(b), P (Yn � x)
describes the probability that at least one of Xi becomes
smaller than the position x during time step n; therefore, the
asymptotic distribution of minimum order statistics of Yn is
suitable for describing the behaviors of our system, compared
to the former case.

We approximate the cumulative density distribution of
site usage in Eq. (24) by the distribution of minimum order

statistics Yn, as follows:

F (x) ≈ P (Yn � x). (43)

For adequate large n, it is known that the distribution of min-
imum order statistics Yn asymptotic to the following extreme
value distribution M (x) in case that the random variables of
X1, X2, . . . , Xn follow exponential distributions [26,27]:

P (Yn � x) → M

(
x − c̃

b̃

)
(44)

= 1 − exp

[
−exp

(
kx − c

b

)]
. (45)

Here (c̃, b̃) are normalizing constants, which are selected
to convert the location and scale so that the extreme value
distribution M does not diverge and degenerate. The (c, b)
is (kc̃, kb̃), respectively. For a detailed description on the
derivation of Eq. (45), see the Appendix. Now we obtain the
distribution F (x) of our system, as follows:

F (x) = 1 − exp

[
−exp

(
kx − c

b

)]
. (46)

FIG. 9. Schematic view of the distributions of two different
extreme order statistics.
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FIG. 10. All the distributions of the site usage fitted by Eq. (49)
for different values of parameter k between −10 and 10.

The probability density function f (x) is obtained as follows:

f (x) = k

b
× exp

(
kx − c

b

)
×exp

[
−exp

(
kx − c

b

)]
. (47)

From Eq. (47), the cumulative hazard function H (x) is found
to become an exponential function:

H (x) = exp

(
kx − c

b

)
. (48)

The selection of Yn is validated from the point of math-
ematical derivation. If we select Zn, the right-hand side of
Eq. (46) becomes exp[−e−(kx−f )/g]. This description contra-
dicts with the formula obtained in Eq. (34). In this case, the
relationship between Eq. (34) and Eq. (35) is not satisfied.

It is not easy to mathematically derive the constant param-
eters of (c, b) of minimum order statistics Yn, we determine
these parameters by fitting the simulation results in the next
section.

4. Corrections of the M/M/c queueing model

Let us get back to the subject of queueing theory. We
attempt to correct the weighted calculation in Eq. (22) by
replacing the exponential function by the fitting function
of the simulation results. We adopt Eq. (47) as the fitting
function, admitting the transformation of the scale of Eq. (47)
by using constant parameter a, as follows:

fFIT(x) = a
k

b
× exp

(
kx − c

b

)
×exp

[
−exp

(
kx − c

b

)]
.

(49)

Figure 10 shows all the cases of exponential distributions
fitted by Eq. (49) for different values of parameter k between
−10 and 10. The dashed red colored lines indicate fitting
results by the least-squares method. Figure 11 shows the
dependence of the chi-square of fitting results in Fig. 10 on
the different values of parameter k. Obviously, in Fig. 11, it
was observed that the accuracy of curve fitting deteriorates as
the bias to the right or left side increases. The reason for this
is interpreted as follows. As the bias to the right or left side
increases, congestion occurs in the neighboring area of the
rightmost or leftmost site. Because the effect of congestion is

FIG. 11. Dependence of the chi-square of fitting results in Fig. 10
on the different values of parameter k.

not considered in the deviation of Eq. (49), the difference at
both sides of the edges emerges.

We correct the weighted calculations of our queueing
model in Eq. (22) by replacing the weighted function with the
function in Eq. (49), as follows:

Nb = τs

τin
+ 1

τin

∑Ns

i=1(i�l + α)Ei∑Ns

i=1 Ei

, (50)

Ei := fFIT

(
i

Ns

)
. (51)

Figure 12 shows a comparison of (a) the simulation results
in Fig. 6 to (b) the estimated values obtained using Eq. (22)
and (c) the estimated values obtained using Eq. (50). It was
confirmed that our proposed model shows a good agreement
with the simulation results compared to the model exhibited
in Eq. (22). This result indicates that our method, which
estimates the service rate μs by using weighted calculations
of the site usage distributions, is an effective approach under
certain conditions.

FIG. 12. (a) Simulation results in Fig. 6, (b) second-order pro-
posed model exhibited in Eq. (22), and (c) third-order proposed
model exhibited in Eq. (50).
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20, 255
20, 150
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15, 300

8, 300

9, 300

6, 300

FIG. 13. Dependence of the number of busy sites Nb compared
to the number of sites Ns for each case of the parametric investigation
in Fig. 14.

To investigate the effective range of our model, we per-
formed the same comparison as the one performed for Fig. 12
with different values of input parameters. We set the pairs
of (τ̄in, τ̄s ) and (σ̄in, σ̄s ) to obtain resulting CVs σin/τin and
σs/τs having a constant value; in this case, the system can
be identified as the function of (Ns, τ̄in, τ̄s ). Figure 13 shows
the results of the dependence of the number of busy sites Nb

compared to the number of sites Ns , for each case of this
investigation. The brackets represent a pair of (τ̄in, τ̄s ). The
result in the case of (20,300) corresponds to the blue circle line
in Fig. 5 . The solid red lines in Fig. 13 represent the results
when setting the parameter τ̄in, whereas the dashed blue lines
illustrate the results when setting the parameter τ̄s .

We performed three kinds of simulations, as shown in
Fig. 14: (a) the simulations with the settings (Ns, τ̄in ) being
(48, 20) with different values of τ̄s between 1 and 300,
(b) the simulations with the settings (Ns, τ̄s ) being (48, 300)
with different values of τ̄in between 1 and 20, and (c) the simu-
lations with the settings (τ̄in, τ̄s ) being (20, 300) with different
values of Ns between 48 and 1536. For (a), the simulations

and models showed good agreement for all the cases. In the
case of (b), a slight deviation between simulations and models
was observed, increasing as the parameter τ̄in decreases. As
we simply approximate the volume exclusion effect using a
constant parameter, as mentioned in Sec. IV A, the accuracy
of our model deteriorates when the traveling lane becomes
denser and the nonlinearity of the congestion phenomena
becomes nonnegligible; this is the main cause of the deviation
of (b). Additionally, a very slight deviation was observed as
Ns increases when performing (c). This is due to the influence
of the increasing number of reentering particles coming from
the parking lane since the traveling time until they stop at the
parking site increases, especially for a distribution parameter
k < 0. Another important feature is that the dependence of Nb

on the parameter k was not observed in the first place when
τ̄in < 8 as all the parking sites are in use or reserved.

Our model was further validated within the scope of this
investigation. In this paper, we focused on the case of CV
values kept constant to control the stochastic dispersion of the
system. There is still room for further investigation for CVs
comprised in a wider range, which is expected to be studied
in the future.

V. CONCLUSION

We introduce a totally asymmetric simple exclusion pro-
cess on a traveling lane equipped with a queueing system
and functions of site assignments along the parking lane.
In this study, we investigate the relationship between the
utilization of parking sites and the effect of site assignments
in the proposed system. The contributions of this study are as
follows.

We propose an approximation model to describe the site
usage distributions of the proposed system on the basis of
birth-death process for the spatial direction and extreme statis-
tics for the time direction. The specific formula in the case
where the random variables follow exponential distributions
are described. In addition, our proposed M/M/c queueing
model, whose service rate is determined by the weighted
calculation of site usage distributions, shows good agreement
with the simulation results.

FIG. 14. (a) Simulations with the settings (Ns, τ̄in ) being (48, 20) with different values of τ̄s between 1 and 300, (b) the simulations with
the settings (Ns, τ̄s ) being (48, 300) with different values of τ̄in between 1 and 20, and (c) the simulations with the settings (τ̄in, τ̄s ) being
(20, 300) with different values of Ns between 48 and 1536.
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As mentioned in the Introduction, the major scope of the
current research is to describe the relationship between the
utilization of parking sites and the effect of site assignments in
the proposed system. Accordingly, we obtain insightful results
from the findings of this study.
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APPENDIX A: ASYMPTOTIC DISTRIBUTIONS
OF THE DISTRIBUTIONS OF EXTREME

ORDER STATISTICS

The distributions of maximum order statistics Zn and min-
imum order statistics Yn are represented as follows:

P (Zn � x) = P (X(n:n) � x) = AX(n:n) (x), (A1)

P (Yn � x) = P (X(1:n) � x) = AX(1:n) (x). (A2)

For adequate large n, the distributions of these two extreme
order statistics are assumed to asymptotic to the extreme value
distributions, respectively, as follows:

P (Zn � x) → G

(
x − an

bn

)
, (A3)

P (Yn � x) → M

(
x − cn

dn

)
. (A4)

Here (an, bn) are normalizing constants, which are selected to
convert the location and scale of G so that the extreme value
distribution G does not diverge and degenerate. The same is
true of (cn, dn). The assumption of the existence of G and
Eq. (A3) are validated on the condition that Eq. (B1) is satis-
fied [26,27]. If they are validated, the asymptotic distribution
M (x) of minimum order statistics Yn is obtained from the
following relationship:

M (x) = 1 − G(−x). (A5)

APPENDIX B: TRINITY THEOREM

A population distribution F is assumed to belong to a
domain of attraction of an extreme value distribution G; this
assumption is denoted as F ∈ D(G). Fisher and Tippett [28]
mathematically proved the following relationship for maxi-
mum order statistics Zn:

F ∈ D(G)

⇔ lim
n→∞ Fn(anx + bn) = G(x), an > 0, bn ∈ R. (B1)

After considerable efforts, mathematicians Fréchet [29],
Fisher and Tippett [28], and Gnedenko [30] proved a notable

fact that only three types of extreme distributions exist, which
are as follows:

Gumbel : G(x) = exp[−exp(−x)], x ∈ R, (B2)

Fréchet : G(x) = exp(−x−α ), x � 0, α > 0, (B3)

Weibull : G(x) = exp[−(−x)α], x � 0, α � 0. (B4)

The series of equations from Eq. (B2) to Eq. (B4) is called
the Trinity Theorem, which indicates that any population
distribution F is asymptotic to one of the three kinds of
extreme distributions listed from Eq. (B2) to Eq. (B4), on the
condition that the relation F ∈ D(G) is satisfied.

APPENDIX C: EXTREME VALUE DISTRIBUTIONS OF AN
EXPONENTIAL DISTRIBUTION

The asymptotic distribution for the case in which the
random variables of X1, X2, . . . , Xn follow exponential dis-
tributions is obtained, as follows. A cumulative exponential
function is written as follows:

F (x) := 1 − exp(−kx). (C1)

Here we use the following identity equation:

Fn(anx + bn) =
{

1 + −n[1 − F (anx + bn)]

n

}n

. (C2)

By selecting an = 1 and bn = k−1log(n),

−n[1 − F (anx + bn)] = −exp(−kx), x � 0. (C3)

By substituting Eq. (C3) into Eq. (C2),

lim
n→∞ Fn(anx + bn) = lim

n→∞

(
1 + −e−kx

n

)n

(C4)

= exp[−exp(−kx)]. (C5)

From Eq. (B1), we obtain the expression of G(x), as follows:

G(x) = exp[−exp(−kx)]. (C6)

Equation (C5) indicates that the asymptotic distribution G(x)
of maximum order statistics Zn, when the random variables
X1, X2, . . . , Xn follow an exponential distribution, belongs to
the family of Eq. (B2) in the Trinity Theorem.

From the relationship in Eq. (A5), we obtain the expression
of M (x), as follows:

M (x) = 1 − exp[−exp(kx)]. (C7)

By substituting Eq. (C7) into Eq. (A4), we obtain the follow-
ing:

P (Yn � x) → M

(
x − cn

dn

)
(C8)

= 1 − exp

[
−exp

(
kx − c̃n

d̃n

)]
. (C9)

Here c̃n and d̃n are kcn and kdn, respectively.
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