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Elastoplastic description of sudden failure in athermal amorphous materials during
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The response of amorphous materials to an applied strain can be continuous or instead discontinuous if the
initial configuration is very stable. We study theoretically how such a stress drop emerges as the system’s initial
stability is increased. We show that this emergence is well reproduced by elastoplastic models and is predicted
by a mean field approximation, where it corresponds to a continuous transition. In the mean field, failure can
be forecasted from the avalanche statistics. We show that this is not the case for very stable materials in finite
dimensions due to rare weak regions where a shear band nucleates. To understand the nucleation, we build
an analogy with fracture mechanics predicting that the critical nucleation radius of a shear band follows ac ∼
(� − �b )−2, where � is the stress and �b is the stress that a shear band can carry.
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Introduction. How amorphous solids such as granular ma-
terials, bulk metallic glasses, colloidal suspensions, and foams
yield under an applied strain is a central question in fields as
diverse as geophysics [1], material science [2], and soft matter
[3]. At a macroscopic level, the stress versus strain curve
under quasistatic loading can (i) monotonically increase, (ii)
slightly overshoot as in foams and granular materials [4], or
(iii) even be discontinuous as in some metallic glasses [5].
The latter behavior can have catastrophic consequences and it
appears to depend on a variety of factors including composi-
tion [6], Poisson’s ratio [6], temperature [7], and preparation
[8,9]. Spatially, it corresponds to the emergence of a few-
nanometers-thick shear band [10] in which most of the strain
localizes while the material can remain cohesive. We seek to
understand what aspects of the material ultimately control this
discontinuous response and how shear bands nucleate.

At a microscopic level, plasticity takes place by discrete
events, the so-called shear transformations, where a few parti-
cles rearrange locally [11–14]. The stress change it induces is
anisotropic and long-range [14,15] and can in turn trigger new
plastic events, generating anisotropic avalanches of plasticity
[16,17]. It has been argued that amorphous solids are critical:
Plasticity in the solid phase occurs via avalanches that can be
system spanning [18–20]. Yet it is unclear if these avalanches
of plasticity are precursors of discontinuous failure [21,22].

Recently, novel algorithms have been able to generate
very stable glasses that show a discontinuous stress drop.
This previously impossible feat was achieved by obtaining
quench rates comparable to experiments [23,24] using swap
algorithms [25,26] or by shearing the system back and forth
many times [27]. These studies underline the critical role of
system preparation in controlling a discontinuity in the stress
response during loading. Theoretically, it was recently pro-
posed that the yielding transition is a spinodal decomposition
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[28,29], which occurs, for example, in a magnet if a field is
applied in the direction opposed to its magnetization. The
magnetization can evolve smoothly or very suddenly (dis-
continuously), depending on the amount of disorder [30,31].
This analogy explains why increasing the initial stability
of the glass can lead to a transition from a smooth to a
discontinuous stress versus strain curve [23]. Yet, it does not
incorporate the anisotropy of the interaction between shear
transformations that causes shear bands nor the criticality
of the solid phase. Other approaches based on shear trans-
formation zones emphasize the role of system preparation
in affecting yielding [32,33] but do not capture avalanches
nor the possibility to have discontinuous stress versus strain
curves. By contrast, a description based on plastic damage
accumulation [34] can generate a macroscopic failure [35] but
neglects the role of system preparation and anisotropic elastic
interactions.

In this article, we first show that the transition between
smooth and discontinuous stress versus strain curve is well
captured by elastoplastic models [14] by increasing the stabil-
ity of the initial configurations. We explain this observation
in a mean-field approximation where the transition is found
to be continuous, and failure can indeed be anticipated from
the distribution of avalanches. However, these results break
down for very stable glasses in finite dimensions due to rare
locations in the sample where a shear band nucleates. To
understand the physics of shear band nucleation, we then build
an analogy with fracture mechanics. We predict that failure
occurs if the spatial extension a of a weak region in the sample
exceeds ac ∼ (� − �b )−2, where � is the stress and �b is the
stress that a shear band can carry. We confirm these results
in an elastoplastic model, both by measuring the effect of
inserting a defect in the material and by studying finite-size
effects, which we argue are due to spontaneous occurrence
of such defects. Overall, the framework we propose for how
amorphous solids yield in quasistatic athermal conditions ties
together the onset of sudden failure, avalanche statistics, and
shear band nucleation in very stable materials.
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FIG. 1. An elastoplastic model can be continuous without (1) and
with (2) a stress overshoot or be discontinuous (3), depending on
the preparation. (a) Schematic of the initial distribution of stabilities,
P0(x ), representing the three system preparations. (b) Stress versus
strain curves for these three different P0(x ) together with snapshots
of the spatial distribution of plastic strain εp . (c) Snapshots of the
plastic strain taken at the positions indicated by red circles on the
stress versus strain curves. (1) If the system preparation is not very
stable, strain remains homogeneous and there is no stress overshoot.
(2) As the stability of the preparation is increased a shear band is
formed. (3) For a very stable preparation, a sharp shear band is
formed during the macroscopic stress drop.

Discontinuous stress response in elastoplastic models. In
elastoplastic models [14,36,37] the material is divided into N

elements, each characterized by its shear stress σi and yield
stress σY

i . The overall stress of the system is simply � =∑
i σi/N . When |σi | reaches σY

i , the element yields: After a
time τ = 1 its stress decreases by a value δσi , corresponding
to a plastic deformation δεp,i = δσi/μ0, where μ0 is the shear
modulus. New random variables σi and σY

i are then taken
from some distributions P (σ ) and PY (σY ). Such a plastic
event affects the stress everywhere in the material, according
to a propagator G(�r ) whose sign varies in space and which
decays in magnitude as a dipole [14,37,38]. The specific
parameters we use are described in the appendix. Such models
have a finite macroscopic yield stress �c, so that the material
is solid for |�| < �c and liquid for |�| > �c [14]. In the solid
case, these models predict how � depends on the accumulated
plastic strain εp = ∑

i εp,i/N .
As the stress � is increased, most elements yield by reach-

ing σi = +σY
i . Therefore, it is useful to characterize elements

by their stability xi = σY
i − σi . Depending on the initial dis-

tribution of stability P0(x), the stress was found to overshoot
or not [18,39]. However, a discontinuous macroscopic stress
drop has not been reported within these models.

We proceed by increasing the stability of the distribution
P0(x) as illustrated in Fig. 1(a). For weakly stable initial states
(case 1), the strain is homogeneous and the stress does not
overshoot. When the initial stability is increased (case 2 in
Fig. 1) the stress versus strain curve does display an overshoot.
Although there is no macroscopic drop of stress, avalanches

(a) (b) (c)

FIG. 2. (a) Stress versus plastic strain curve consists of alternat-
ing elastic stress increases �� and stress relaxations by an avalanche
of plastic events ��avalanche = −μ�εp . (b) When the slope of the
macroscopic stress versus plastic strain curve reaches −μ, an exten-
sive avalanche occurs. (c) Stress versus strain curve corresponding
to the stress versus plastic strain curve from panel (b) during a
strain-controlled loading.

tend to localize along a rather thin shear band [40], as justified
in Refs. [32,41].

A key observation is that for very stable systems, the
scenario changes: The stress versus strain curve becomes
discontinuous (case 3 in Fig. 1). A very narrow shear band
appears in one single avalanche and relaxes the stress by some
finite amount which persists in the thermodynamic limit; see
below. This result supports that macroscopic failure can occur
even in the absence of inertia and thermal feedback (in which
strain increases temperature locally, which in turn localizes
strain further), as these effects are absent in our model.

Avalanches and macroscopic failure. To explain this find-
ing, we first consider the relationship between the avalanche
size S ≡ N�εp, where �εp is the total plastic strain accumu-
lated during the avalanche, and the stress versus strain curve.
When elements in the system begin to fail and the system
deforms plastically, P (x) develops a pseudogap P (x) ∼ xθ

with θ > 0 [42–44]. This result implies in turn that the
minimal stability in the entire system [characterizing the size
of the elastic ramps in Fig. 2(a)] follows xmin ∼ N−1/(1+θ )

[44], which was shown to constrain avalanche statistics for
stress-controlled loading [18].

We generalise this result by noting that controlling stress
is a special case of a more general loading protocol in
which a spring of elasticity μS is placed between the system
and a strain controlled loading apparatus. Stress controlled
loading then corresponds to μS → 0 and strain controlled
loading to μS → ∞. The overall shear elastic constant of
this combined system is μ = μ0μS/(μ0 + μS ), equivalent to
a serial connection of two springs with elastic constants μ0

and μS . In experiments μS has a finite value, which places
them between these limit cases. Consider an increment of
stress �� = xmin followed by an avalanche where the stress
drops by ��avalanche = −μ�εp, which appears as a kink
highlighted by the three black points in Fig. 2(a). Requiring
that on average this kink has an overall slope ∂�/∂εp ≈
〈�� − ��avalanche〉/〈�εp〉, and using the definition of S as
well as the scaling for 〈xmin〉, it follows that

〈S〉 ∼ N
θ

θ+1

1 + 1
μ

∂�
∂εp

. (1)

There are two key consequences that emerge from Eq. (1).
(i) ∂�/∂εp = −μ is a sufficient condition for macroscopic
failure (not always necessary, see below). Thus, if the spring
μS is stiff, macroscopic failure is less likely: In particular,
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if minεp
∂�/∂εp > −μ, we predict no macroscopic failure.

(ii) The mean avalanche size generically diverges with N ,
signaling crackling noise and system-spanning avalanches
even away from failure. This result is qualitatively different
from disordered magnets [30], where the approach to failure
is required for crackling to occur. However, the denomina-
tor in Eq. (1) diverges as the criterion ∂�/∂εp → −μ is
approached, suggesting that failure may be anticipated by
monitoring avalanches.

Henceforth, we shall focus on the strain-controlled proto-
col, where Eq. (1) becomes

〈S〉 ∼ N
θ

θ+1

(
1 − 1

μ

∂�

∂ε

)
, (2)

where ε is the total strain dε = dεp + d�/μ. Then a suf-
ficient condition for failure is that the stress versus strain
curve develops an infinite slope, as illustrated in Fig. 2(c).
Interestingly, it is still possible to probe this curve when it
overhangs, if we allow the setup to have a negative stiffness
μS < 0, as is the case in the formalism we now develop.

Mean-field approximation. Following the previous para-
graph, a discontinuous stress drop can be predicted by com-
puting ∂�/∂εp. This is very hard in general because the
mechanical noise generated by shear transformations is highly
correlated in space. Mean-field approximations neglect these
correlations [45]. In its simplest form, the mechanical noise is
assumed to be white, corresponding to the Hebraud-Lequeux
model [45]. In more realistic mean-field models, the noise is
much broader, which leads to better values for the pseudogap
exponent θ [43]. For our present purpose, however, we expect,
and have checked numerically, that the two models lead to
qualitatively similar behavior. We thus consider the simpler
Hebraud-Lequeux model.

For simplicity, we assume yield stresses to be identical for
all elements. We thus set σY = 1. We further assume that
locally the material is fully plastic, so that σi → 0 and xi → 1
once element i yields. Thus xi = 0 and xi = 2 corresponds
to the limit of stability of elements and elements that have
yielded are reintroduced at xi = 1. With this notation, the total
stress is

� = 1 −
∫ 2

0
xP (x)dx. (3)

The dynamical equation for the stability distribution P (x) is a
diffusion equation [45]

∂γ P (x, γ ) = D∂2
xP (x, γ ) + v∂xP (x, γ ) + δ(x − 1). (4)

Here, γ ≡ εpμ/σY is number of plastic events per element, D
characterizes the amplitude of the mechanical noise, and the
source term describes the reinsertion of elements that have
yielded. The drift v is a Lagrange multiplier that allows us to
impose quasistatic loading. It is prescribed as follows: During
quasistatic loading, no elements are unstable in the ther-
modynamic limit, implying the boundary conditions P (0) =
P (2) = 0. This condition precludes failure, which will instead
be signaled by an overhanging stress versus strain curve. By
integrating Eq. (4), we find that ∂xP (2, γ ) − ∂xP (0, γ ) =
−1/D. In practice, the first term becomes very small as soon
as the stress rises [43] because almost no sites yield in the
“wrong” direction at x = 2. Therefore, we can neglect the first

(a)
failure

(b)

FIG. 3. (a) Initial stability distributions P0(x ) ∼ (1 − α)
exp[−(x − 1)2/(2s2

P )] + αx(2 − x ) with sP = 0.05 we use to find
(b) stress versus strain curves in the Hebraud-Lequeux model,
showing the onset of macroscopic stress drop as the initial stability
distribution P0(x ) is narrowed.

term so that ∂xP (0, γ ) = 1/D. Taking the derivative of the
stress, we now find

∂γ � = −1 + v = −1 − D2∂2
xP (0, γ ), (5)

where we evaluated Eq. (4) at x = 0 to find v =
−D∂2

xP (0, γ )/∂xP (0, γ ). Using Eqs. (4) and (5), P (x) can
be computed for any given P0(x), allowing us to compute
�(γ ) from Eq. (5).

We demonstrate the existence of a transition be-
tween smooth and discontinuous stress versus strain
curves using as initial stability distribution P0(x) ∼ (1 −
α) exp [−(x − 1)2/(2s2

P )] + αx(2 − x), where sP = 0.05 is
kept constant and the distribution is normalized to 1 on the
interval x ∈ [0, 2], as shown in Fig. 3(a). For α = 0.4 the
stress does not overshoot, while for α = 0.02 the system
shows a sudden drop in stress. At an intermediate value α =
0.08, the system is still smooth but the stress overshoots, as
shown in Fig. 3(b). Since P0(x) changes smoothly with α,
there has to be an αc at which the macroscopic stress drop
occurs. This transition is continuous and of the usual saddle-
node type, so that the magnitude of the stress jump scales as
�� ∼ (αc − α)1/2. The same exponents are found in mean-
field disordered magnets [23,31]. However, avalanches behave
differently than in magnets: From Eq. (1) and the smoothness
of the �(ε) curve, we get 〈S〉 ∼ √

N/
√

εc − ε, where εc is the
strain at which the stress drop occurs. Avalanche statistics can
thus be used to forecast εc.

Our results have an interesting microscopic interpretation
in terms of avalanches: From Eqs. (1) and (5), we obtain
that 〈S〉 ∼ −√

N/∂2
xP (0) for ∂2

xP (0) < 0 and it diverges
otherwise. The avalanche size is thus controlled by the cur-
vature of P (x) at x = 0, whereby the failure occurs when
this curvature vanishes. This result can be rationalized by
a simple scaling argument following ideas from Ref. [46].
When an avalanche is initiated, the instantaneous number of
unstable elements nu evolves at each plastic event, and the
avalanche ends when nu returns to 0. If P (x) = x/D, during
each plastic event one element is stabilized and on average one
element becomes unstable. Therefore, nu performs a simple
random walk and there is no cutoff Sc in the avalanche size
distribution. However, if the quadratic term is finite, P (x) =
x/D + ∂2

xP (0)x2/2 and a drift appears in the evolution of
nu. When ∂2

xP (0) < 0, on average less than one element
becomes unstable per plastic event and the drift is negative.
Sc corresponds to the avalanche size where the integrated
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(a) (b) (c)

FIG. 4. (a) Stress versus strain curve in an elastoplastic model with N = 7062 in which a defect of varying size as (as indicated in color)
was inserted. (b) Maximal stress reached �max as a function of the defect length as . (c) When no defects are inserted, �max decreases very
slowly with N , consistent with our prediction �max − �b ∼ 1/

√
ln N .

drift −N
∫ xc

0 ∂2
xP (0)x2dx is of the order of fluctuations S

1/2
c .

Here, xc ∼ √
2DSc/N is the characteristic value of the initial

stability of elements that became unstable in the avalanche.
We thus obtain Sc ∼ −N1/2/∂2

xP (0): The negative curvature
of P (x) at x = 0 determines the avalanche size by depleting
the pool of elements that can become unstable.

Nucleation of shear band. We now argue that for initially
very stable systems at least, macroscopic failure can occur
without the apparent divergence of avalanche size described
by Eq. (1) and thus cannot be easily anticipated by a growing
crackling noise. Instead, a shear band can nucleate in a region
which, by chance, is weaker than the rest of the material.
Consider a region of dimension d − 1, where d is the spatial
dimension, and of linear extension a that has already yielded
and thus has smaller yield stresses than the rest of the material.
We denote by �b the shear stress such a narrow shear band
can sustain in the limit of large a (�b can in general depend
on system preparation). If � > �b, the stress will be distorted
by this weak region. This is a classical calculation of fracture
mechanics [47], leading to a stress at a distance r to the tip of
the shear band of order

�(r ) ∼ (� − �b )
√

a√
r

≡ K√
r
, (6)

where K is known as the stress intensity factor. In analogy
with fracture mechanics, we expect the shear band to propa-
gate if K is larger than some critical value Kc, leading to a
critical nucleus size ac triggering failure:

ac ∼ 1

(� − �b )2
. (7)

Equation (7) is easily tested in the elastoplastic model by
inserting a defect, i.e., a region with unusually small yield
stresses of extension as . This procedure is analogous to the
introduction of a void in a material, as is often used to
measure its fracture toughness [47]. From Eq. (7), we expect
a discontinuous stress drop to occur for some �max satis-
fying �max − �b ∼ 1/

√
as . This prediction is confirmed in

Figs. 4(a) and 4(b).
In a large, homogeneously prepared system, spontaneous

shear bands will occur. The probability to find a weak re-
gion of spatial extension a follows p(a) ∼ N exp(−ad−1),
the largest weak region formed by chance follows a ∼
(ln N )1/(d−1). Together with Eq. (7), this leads to �max −
�b ∼ 1/(ln N )1/(2(d−1)). This decay is so weak that even for N

of the order of the Avogadro number, we expect the overshoot
to be significant. It is hard to test this asymptotic result
numerically. However we find that for the elastoplastic model,
the dependence of �max with N is consistent with the slow
decay predicted, as shown in Fig. 4(c). The data exclude the
more rapid decay 1/

√
N expected from a naive central limit

theorem argument.
Conclusion. The response of a material to loading is one

of its most practically important properties. We have shown
that elastoplastic models can reproduce a transition between
a smooth and discontinuous stress response in amorphous
solids as their initial stability is increased, in agreement with
experimental and recent numerical observations. We have
explained this result in a mean-field approximation, in which
macroscopic failure can always be predicted by a growing
crackling noise. We have argued, however, that for very stable
materials, failure is induced by rare events in which a shear
band nucleates, which cannot be forecasted, and we have
provided a theoretical description of this nucleation.

Our work suggests interesting venues for further theoret-
ical and experimental studies. As illustrated in Fig. 1(c)(2),
shear bands formed during the continuous overshoot of stress
are broader than the ones formed during the discontinuous
stress change. It is unclear if their formation can be described
in terms of fracture mechanics or if it is instead associated
with crackling noise as in mean field. This point could be
investigated systematically in terms of relevant parameters,
including system preparation, loading apparatus, as well as
strain rate and temperature.
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APPENDIX: IMPLEMENTATION OF THE
ELASTOPLASTIC MODEL

We implement a two-dimensional elastoplastic model on a
periodic lattice of sizes L = 64, 142, 316, 706. The propaga-

040901-4



ELASTOPLASTIC DESCRIPTION OF SUDDEN FAILURE … PHYSICAL REVIEW E 98, 040901(R) (2018)

tor G(r, φ) is a periodic version of an infinite system propaga-
tor G0(r, φ) ∼ cos 4φ/r2 and it is normalized so that G(�r =
0) = −1. This propagator preserves the sum of stresses along
each row and column of elements.

To keep the sum of stresses in all rows and columns the
same during the initialization of the stress distribution P (σ ),
we proceed as follows. We start with 0 stress in each element.
Then, for each element i, we draw a random stress δσ from a
normal distribution N (0, s2

0 ) and we draw two random integer
numbers δx and δy between 1 and the system’s length L.
Then we add the stress δσ to element i and the element at
coordinates (xi − δx, yi − δy) and we subtract δσ from the
stresses of elements at positions (xi − δx, yi ) and (xi, yi −
δy). Periodicity is imposed when needed. Finally, since on
average each element has received a stress update four times
by a random number drawn from a normal distribution of

variance s2
0 , we divide the stress of all elements by 2 to keep

the variance of the initial stress distribution equal to s2
0 . We

use s0 = 0.45 in Fig. 1 and s0 = 0.3 in Fig. 4.
The initial distribution of yield stresses P (σY ) is a normal

distribution N (m, 0.01). In cases 1, 2 and 3 in Fig. 1 we use
m = 1.3, 1.5, 1.8. In Fig. 4, m = 3.0 except in defect, where
m = 1.0.

After a plastic failure, the yield stress of the element is
updated with a random number from a normal distribution
N (1, 0.01), and the stress of the element is set to a random
value drawn from a normal distribution N (0, 0.01).

Timescale τ represents a mean time it takes for an
unstable element to yield and the probability density to
yield is uniform in time. Note that an unstable element
can be stabilized if its stress becomes |σi | < σY before it
yields.
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