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Nonequilibrium kinetics of the transformation of liquids into physical gels
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A major stumbling block for statistical physics and materials science has been the lack of a universal principle
that allows us to understand and predict elementary structural, morphological, and dynamical properties of
nonequilibrium amorphous states of matter. The recently developed nonequilibrium self-consistent generalized
Langevin equation theory, however, has been shown to provide a fundamental tool for the understanding of the
most essential features of the transformation of liquids into amorphous solids, such as their aging kinetics or their
dependence on the protocol of fabrication. In this work we focus on the predicted kinetics of one of the main
fingerprints of the formation of gels by arrested spinodal decomposition of suddenly and deeply quenched simple
liquids, namely, the arrest of structural parameters associated with the morphological evolution from the initially
uniform fluid, to the dynamically arrested spongelike amorphous material. The comparison of the theoretical
predictions (based on a simple specific model system), with simulation and experimental data measured on
similar but more complex materials, suggests the universality of the predicted scenario.
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In spite of its relevance, there seems to be no universal prin-
ciple that explains how Boltzmann’s postulate S = kB ln W

operates for nonequilibrium conditions, such that it predicts,
for example, the transformation of liquids into nonequilibrium
amorphous solids such as glasses, gels, etc. [1,2], in terms
of molecular interactions. For instance, quenching a simple
liquid to inside its gas-liquid spinodal region, normally leads
to its full phase separation [3–7]. Under some conditions,
however, this process may be interrupted when the denser
phase solidifies as an amorphous spongelike nonequilibrium
bicontinuous structure with statistically well-defined spatial
heterogeneities, whose final mean size ξa depends on the
density and final temperature of the quench [8–16].

This process, referred to as arrested spinodal decom-
position, is revealed by the development of a peak at
small wave vectors in the nonequilibrium structure factor
S(k; t ) ≡ 〈δn(k, t )δn(−k, t )〉 of many real [8–14] and sim-
ulated [9,11,15,16] gel-forming liquids. Its most remarkable
kinetic fingerprint is the fact that the position kmax(t ) of this
nonequilibrium peak decreases with waiting time t until the
mean size ξ (t ) = 2π/kmax(t ) of these heterogeneities satu-
rates at the finite “arrested” value ξa .

Most of the previous experimental and simulation reports
[8–12,15,16] acknowledge the notable absence of a funda-
mental predictive theory that explains the universal and the
specific features of the evolution of nonequilibrium properties,
such as S(k; t ). It is not clear, for instance [17], how to
extend the classical theory of spinodal decomposition [3–7]
to include the possibility of dynamic arrest, or how to
incorporate the characteristic nonstationarity of spinodal
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decomposition in existing theories of glassy behavior [18,19].
Thus, for example, in spite of its impressive predictive power,
illustrated by the existence of attractive glasses in systems
with short-ranged attractions [20,21], mode-coupling theory
remains in essence an equilibrium theory, unable to describe
nonstationary processes such as aging.

The present work starts with the assumption that the man-
ner in which Boltzmann’s postulate explains nonequilibrium
states is provided by Onsager’s description of irreversible
processes and thermal fluctuations, adequately extended to
include spatial and temporal nonlocalities, as well as gen-
uine nonequilibrium conditions [22,23]. Its application as a
generic theory of irreversible processes in liquids, referred
to as the nonequilibrium self-consistent generalized Langevin
equation (NE-SCGLE) theory [23–25], seems to provide the
long-awaited fundamental framework to understand the phe-
nomenology of structural glasses and gels in terms of their
specific molecular constitution. Judging by its predictions
[26–28], this nonequilibrium theory represents a major op-
portunity for progress in the science and engineering of these
materials. The main purpose of this short communication
is to report that this theory provides, in particular, a vivid
description of the kinetics of the structural transformation
of simple liquids into physical gels by arrested spinodal
decomposition, a feature never before achieved by any other
theory. Here we also illustrate the universal nature of the
main qualitative features of these predictions, by comparing
them with observations in a wide variety of experimental
realizations.

Let us start by considering a generic (“Lennard-Jones–
like”) monocomponent simple liquid, with pairwise repulsive
core, plus weaker longer-ranged attractive interactions. As-
sume that we subject this system to an instantaneous isochoric
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cooling at waiting time t = 0, from an initial temperature Ti to
a final temperature Tf . We then let the system relax under iso-
choric and isothermal conditions and in the absence of applied
external fields. As explained in Refs. [23,28], the essence of
the NE-SCGLE theory are the time-evolution equations of
the mean value n(r, t ) and of the covariance σ (r, r + x; t )
of the fluctuations of the local density n(r, t ) of particles.
To zeroth order in the deviation �n(r, t ) ≡ n(r, t ) − n̄ from
uniformity (see the Appendix), the equation for the covariance
becomes the time-evolution equation of the nonequilibrium
static structure factor S(k; t ), which for t > 0 reads

∂S(k; t )

∂t
= −2k2D0b(t )nEf (k)[S(k; t ) − 1/nEf (k)], (1)

where D0 is the short-time self-diffusion coefficient [29,30].
In this equation Ef (k) ≡ E (k; n, Tf ) is the Fourier transform
of the thermodynamic functional derivative E[r, r′; n, T ] ≡
{δβμ[r; n, T ]/δn(r′)}, evaluated at the uniform density and
temperature profiles n(r) = n and T (r) = Tf , which can be
written as E[r, r′; n, T ] = E (|r − r′|; n, T ) = δ(r − r′)/n −
c(|r − r′|; n, T ) or, in Fourier space, as E (k; n, T ) = 1/n −
c(k; n, T ), where c(r; n, T ) is the so-called direct correlation
function.

The key ingredient in Eq. (1) is the t-dependent mobility
function b(t ), which is in reality a functional of the nonsta-
tionary structure factor S(k; t ). As explained in Ref. [24],
such functional dependence is determined by the set of NE-
SCGLE equations [summarized here as Eqs. (SM1)–(SM5)
of the Supplemental Material [31], complemented with Eq. (1)
itself]. This strongly nonlinear set of equations must be solved
self-consistently. As a result, besides the stationary solutions
limt→∞ S(k; t ) = Seq(k; n, Tf ) ≡ 1/nE (k; n, Tf ), represent-
ing ordinary thermodynamic equilibrium states, Eq. (1) also
predicts dynamically arrested stationary solutions Sa (k) when
limt→∞ b(t ) = 0. A systematic presentation of the predictions
of this theory and of their correspondence with the widely ob-
served experimental signatures of the glass transition, started
in Refs. [25] and [28] with the description of the transforma-
tion of equilibrium hard-sphere (and soft-sphere) liquids into
“repulsive” glasses.

A far more interesting prediction arises, however, when
Eq. (1) is applied to the description of the spinodal decom-
position of Lennard-Jones–like simple liquids [27], illustrated
here for analytical simplicity with the hard-sphere plus attrac-
tive Yukawa (HSAY) model, defined by the pair potential

u(r ) =
{∞, r < σ ;
−ε

exp[−z(r/σ−1)]
(r/σ ) , r > σ.

(2)

For given σ , ε, and z, the state space of this system is spanned
by the dimensionless number density [nσ 3] and temperature
[kBT /ε], denoted simply as n and T (i.e., we shall use σ as
the unit of length, and ε/kB as the unit of temperature); we
also refer to the hard-sphere volume fraction φ ≡ πn/6. The
dimensionless time [D0t/σ

2] will also be denoted simply as
t . The main findings of Ref. [27], which only analyzed the
asymptotic stationary solutions of Eq. (1), are summarized in
Fig. 1.

In contrast, the present work focuses on the detailed ki-
netics of S(k; t ) provided by the full solution of Eq. (1) for
the same model system subjected to instantaneous isochoric
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FIG. 1. Nonequilibrium phase diagram of the HSAY (z = 2)
liquid [27]. At high temperatures and densities, cooling this liquid
drives it through the transition (blue solid line) to nonequilibrium
repulsive glasses [25]. At intermediate and low densities and tem-
peratures the NE-SCGLE theory predicts that (i) the spinodal line
Ts (φ) (red doted line) is a frontier between equilibrium and noner-
godic states, (ii) the liquid-glass transition line penetrates inside the
spinodal region as a glass-glass transition line (dashed blue line), and
(iii) below the composed (solid and dashed) blue line there exists
a continuous region of porous repulsive glasses (shaded region).
The vertical arrow represents the instantaneous temperature quench
referred to in Fig. 2, from an initial high temperature Ti = 1.5, to a
final temperature Tf = 0.5 along the isochore φ = 0.08.

quenches illustrated by the vertical arrow in Fig. 1. For
this, we adopt a van der Waals (vdW) approximation for
the Helmholtz free energy (see Supplemental Material [31]
for details), which provides the approximate thermodynamic
input E (k; n, Tf ) needed in Eq. (1). This quench drives the
system well inside the spinodal region, where no solution
Seq(k; n, Tf ) exists that corresponds to spatially uniform equi-
librium states.

Thus, the only possible uniform stationary solution is the
nonequilibrium Sa (k), and in Fig. 2(a) we present the one
corresponding to the quench represented by the arrow in
Fig. 1, together with a sequence of snapshots describing the
transient S(k; t ), which starts from the chosen initial value
S(k; t = 0) = Si (k) ≡ Seq(k; φ, Ti ) and ends at Sa (k). The
first feature to notice in the structural kinetics illustrated by
these snapshots is the fast but moderate (and rather unevent-
ful) growth of the main peak of S(k; t ) at k ≈ 2π , compared
with the dramatic development of the nonequilibrium spinodal
decomposition peak at smaller wave vectors, whose height
Smax(t ) increases, and whose position kmax(t ) decreases, until
saturating at the finite values Sa

max and ka , corresponding to
Sa (k) (red dashed line).

This kinetic process is summarized in the insets of
Figs. 2(a) and 2(b) by the solid lines, which illustrates the
evolution of Smax(t ) and of the wavelength ξ (t ) = 2π/kmax(t )
associated with kmax(t ). The other (dashed) lines in both
insets correspond to additional processes that differ only in
the depth of the quench, i.e., in the final temperature T . The
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FIG. 2. Snapshots of (a) the theoretical prediction and (b) the
Brownian-dynamics simulation results, of the evolution of S(k; t )
from its initial state S(k; t = 0) toward its asymptotic arrested value
Sa (k) (from bottom to top) for (a) the quench indicated by the arrow
in Fig. 1, and (b) for the corresponding simulated quench (see text)
at the same waiting times. The dark dots in (a) illustrate the evolution
of the height Smax(t ) and position kmax(t ) of the small-k peak of
S(k; t ). The solid line of the insets shows the theoretical evolution
(a) of Smax(t ) and (b) of the wavelength ξ (t ) = 2π/kmax(t ) for this
quench, whereas the other lines correspond to similar quenches
differing only in the final temperature T of the quench. The stars are
the corresponding results of the simulation in the main panel of (b).
The solid squares are experimental results measured in the gelling
lysozyme solutions reported in Fig. 2(d) of Ref. [10]. The arrow in
the insets indicates increasing temperature T .

comparison of these illustrative results indicates, for example,
that deeper quenches lead to a faster increase (but also earlier
arrest) of Smax(t ). The nonequilibrium evolution of ξ (t ) bears
an important morphological and kinetic significance, since it
describes the growth and subsequent arrest of the mean size of
the spinodal heterogeneities. As illustrated in this inset, ξ (t )
is predicted to increase with waiting time t and to asymptot-
ically saturate at the finite arrested value ξa = 2π/ka . This
maximum size ξa (T ) depends on the depth T of the quench,
and as discussed in Ref. [27], it is finite for T smaller than
the spinodal temperature Ts , but diverges when T reaches
Ts from below. Thus, although for T < Ts the emergence of
dynamic arrest cancels the possibility of long-time asymptotic
divergence of ξ (t ), before its saturation ξ (t ) appears to follow
an apparent algebraic functional form ξ (t ) ∝ tα within a

limited time interval, with an exponent α that decreases with
the depth of the quench, attaining its maximum value when T

approaches Ts . We have verified that this predicted scenario
is qualitatively independent of φ, and even of the range z−1

of the attractive term of the pair potential. Furthermore, we
also checked its independence on the specific form of the
attractive potential, by repeating the same calculations for
the hard-sphere plus square-well model liquid (in which the
Yukawa tail is substituted by a square well).

To determine to what extent a quantitative comparison
can be established with the actual behavior of the HSAY
fluid, we performed nonequilibrium Brownian dynamics (BD)
simulations on this precise model system to simulate a quench
along the isochore φ = 0.1 from Ti = 2.0 to Tf = 0.7 (see
Supplemental Material [31] for details). As it happens, the
vdW approximation for E (k; n, Tf ) locates the critical point
(CP) of our system at the state point (φc, Tc ) = (0.13, 0.85),
and not at its actual (simulated) value (0.16,1.22). To scale
out these imprecisions, to each simulation state point we
assign a theoretical state point (φ, T ) in a linear proportion
as the simulation CP relates to the theoretical CP. Within
this correspondence, the simulated quench just defined is
analogous to the theoretical quench described in Fig. 2(a). The
corresponding simulation results for S(k; t ) are presented in
Fig. 2(b).

The comparison between the sequence of simulated snap-
shots of S(k; t ) with the corresponding theoretical sequence
illustrates the qualitative agreement between both descriptions
of this nonequilibrium kinetic process. The same comparison
also exhibits the quantitative inaccuracies of the approximate
theoretical predictions in the early and intermediate stages
described by the simulations. Thus, the visual comparison of
pairs of snapshots with the same evolution time t , indicates
a slower evolution of the theoretical S(k; t ) compared with
the exact evolution represented by the simulations. Also, the
position kmax(t ) of the theoretical small wave-vector peak
moves more slowly to the left than in the simulations, so
that the predicted growth of ξ (t ) is noticeably slower. These
features are also illustrated in the insets of Fig. 2.

In spite of this quantitative mismatch between the sim-
ulation and the theoretical clocks, we can pair each simu-
lated snapshot with the theoretical snapshot having the same
height Smax(t ) (but, obviously, different evolution time t). As
illustrated in the Supplemental Material [31], this strongly
emphasizes the remarkable qualitative similarity between both
sequences of snapshots of S(k; t ). Let us mention that we
observed essentially the same semiquantitative agreement
when comparing our theoretical predictions for the HSAY
model with z = 2 with the BD simulation results for the actual
Lennard-Jones system by Lodge and Heyes [15], thus verify-
ing that the main qualitative features of these nonequilibrium
structural and morphological processes are independent of the
details of the interaction potential.

This prompted us to investigate the extent to which the
main qualitative features of this scenario can be recognized in
experimental observations where the kinetics of S(k; t ) during
the arrested spinodal decomposition of colloidal systems with
attractive interactions had been recorded. The result is a
general qualitative agreement between the predicted scenario
and the experimental observations. This is illustrated already
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FIG. 3. (a) Theoretical evolution (lines) of the size ξ (t ) for a
sequence of quenches for several final temperatures. The symbols
are the experimental result measured in the gelling BSA solutions
reported in Fig. 7 of Ref. [13], scaled by arbitrary factors to illustrate
their qualitative similarity with the predicted theoretical scenario.
(b) Same as (a), but here the experimental results correspond to the
measurements in the gelling colloid-polymer mixture with colloid-
to-polymer size ratio ≈2 reported in Fig. 5(a) of Ref. [14]. The arrow
in the figures indicates increasing temperature T .

in the inset of Fig. 2(a), which demonstrates that one can
superimpose the experimental data of the evolution of ξ (t ) of
the full gel-forming process of the globular protein lysozyme
in solution reported by Gibaud and Schurtenberger [10], on
one of the theoretical curves for ξ (t ) for our HSAY model,
even though the attractive forces in this experimental system
are surely much shorter-ranged than our Yukawa attraction
with z = 2, and in spite of the difference in the volume
fraction of the respective isochores (theory φ = 0.08; exper-
iment φ = 0.15). For the details of this and the following
semiquantitative comparison, please see the Supplemental
Material [31]. In Fig. 3(a) we expand this comparison, now
using similar experimental measurements, this time involving
a different globular protein [bovine serum albumin (BSA)]
in solution, for which the evolution of ξ (t ) was reported by
Da Vela et al. [13] for a sequence of quench processes with
varying quench depths. Here again the qualitative similarity is
remarkable.

The range of the attractive interactions between proteins in
the previous two examples is much shorter than the HSAY
model with z = 2, but at least both protein solutions can
be regarded as truly monodisperse one-component Brown-
ian liquids. The scenario predicted for this model system,
however, can also be recognized in systems with still more
complex effective attractions, such as in the colloid-polymer
mixture studied by Zhang et al. [14], in which the colloids
attract each other due to polymer-mediated effective depletion
forces. This is illustrated in Fig. 3(b), which corresponds to
a colloid-polymer mixture with a ratio of the colloid’s radius
σ/2 to the polymer’s radius of gyration Rg of σ/2Rg ≈ z = 2,
and to a sequence of polymer-concentration quenches at fixed
colloid volume fraction φ = 0.2. Once again we observe a
remarkable qualitative agreement.

A similar agreement is observed in Fig. 4 between the
predicted and the experimental evolution of the colloid-
colloid structure factor S(k; t ) measured by Lu et al. [8] in
a colloid-polymer mixture, this time with a larger colloid
to polymer size ratio, σ/2Rg ≈ z = 17, and along a more
dilute isochore, φ = 0.045 (see Supplemental Material [31]
for details). Figure 4(a) directly compares snapshots of the

FIG. 4. (a) Snapshots of the theoretical evolution (lines) and of
the experimental measurements (symbols) of S(k; t ) in the colloid-
polymer mixture reported in Figs. 4(b) and 4(c) of Ref. [8]; the initial
and final temperatures of the theoretical quench are Ti = 5.0 and
T = 0.5. (b) Evolution of the first moment k1(t ) of the experimental
(symbols) and theoretical (red solid line) S(k; t ) of the quench in (a);
the dashed lines correspond to other final temperatures. The arrow in
the figures indicates increasing time t (a) and temperature T (b).

structure factor itself and Fig. 4(b) compares the evolution of
its first moment, k1(t ) ≡ ∫ kc

0 kS(k; t )dk/
∫ kc

0 S(k; t )dk, where
kc locates the minimum of S(k; t ) after the low-k peak. The
wave vector k1(t ) bears qualitatively the same morphological
information as kmax(t ). Here, too, the qualitative agreement is
quite apparent.

This and the other comparisons discussed above illustrate
the experimental fact that the arrest of the growth process
severely limits the power-law growth regime and makes it
strongly dependent on the depth of the quench. This is in
contrast with the universality expected from the perspective of
theories that do not consider the emergence of dynamic arrest
conditions [5]. Instead, what seems to be universal for the
class of systems studied here is the nonequilibrium evolution
of the full structure factor and of the main morphological
parameter [kmax(t ) or k1(t )] describing the growth and arrest
of the spinodal decomposition heterogeneities, the main fea-
ture captured by our theory. Let us emphasize, however, that
the solution of the NE-SCGLE equations renders much more
detailed information on the spatiotemporal nonequilibrium
evolution of the structure and dynamics of arresting systems,
than those specific features in which we have focused in this
Rapid Communication. Other highly remarkable and coun-
terintuitive kinetic features are concomitant to the previously
discussed growth and arrest of the spinodal heterogeneities.
Their adequate discussion, however, deserves more detailed
reports that will be communicated separately.

The authors acknowledge Dr. Fajun Zhang and Stefano da
Vela for kindly providing the experimental data of Fig. 3(a)
and Professor David A. Weitz and Dr. Peter Lu for kindly pro-
viding the experimental data of Figs. 4(a) and 4(b). This work
was supported by the Consejo Nacional de Ciencia y Tec-
nología (CONACYT, México), through Grants No. 242364,
No. FC-2015-2-1155, and No. LANIMFE-294155.

APPENDIX: THE MAIN APPROXIMATIONS
OF THE NE-SCGLE THEORY

According to Ref. [23], the fundamental NE-SCGLE equa-
tions are the time-evolution equations of the mean value,
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n(r, t ),

∂n(r, t )

∂t
= D0∇ · b(r, t )n(r, t )∇βμ[r; n(t )], (A1)

and of the Fourier transform (FT) σ (k; r, t ) of the covariance
σ (r, r + x; t ),

∂σ (k; r, t )

∂t
= −2k2D0n(r, t )b(r, t )E[k; n(r, t )]σ (k; r, t )

+ 2k2D0n(r, t )b(r, t ), (A2)

of the fluctuations of the local density n(r, t ) of parti-
cles, where D0 is the particles’ short-time self-diffusion
coefficient and b(r, t ) their local reduced mobility. The
main external input of these equations is the Helmholtz
free energy density-functional F[n, T ], or, more precisely,
its first and second functional derivatives: the chemi-
cal potential μ[r; n, T ] ≡ [δF[n, T ]/δn(r′)] and the ther-
modynamic function E[r, r′; n, T ] ≡ [δβμ[r; n, T ]/δn(r′)].
In Eq. (A2), E[k; n(r, t )] is the FT of E[r, r + x; n] ≡
[δβμ[r; n]/δn(r + x)]n=n(r,t ).

In principle, these two equations describe the isochoric
nonequilibrium morphological and structural evolution of a
simple liquid of N particles in a volume V after being
instantaneously quenched at time t = 0 to a final temperature
Tf , in the absence of applied external fields. This description,
cast in terms of the one- and two-particle distribution func-
tions n(r, t ) and σ (k; r, t ), involves the local mobility b(r, t ),
which is in reality a functional of n(r, t ) and σ (k; r, t ), and
this introduces strong nonlinearities.

To appreciate the essential physics, however, the best is
to provide explicit examples. To do this at the lowest math-
ematical and numerical cost, let us write n(r, t ) as the sum
of its bulk value n ≡ N/V plus the deviations �n(r, t ) ≡
n(r, t ) − n̄ from homogeneity, and in a zeroth-order approx-
imation let us neglect �n(r, t ). This approximation converts
σ (k; r, t ) and b(r, t ) in the spatially uniform functions σ (k; t )
and b(t ), thus allowing us to write the covariance in terms
of the nonequilibrium structure factor S(k; t ) as σ (k; r, t ) =
nS(k; t ). As a result, the previous Eq. (A2) becomes Eq. (1)
of the Rapid Communication.
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