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In this paper, we target two basic issues residing in some modified lattice kinetic schemes for the Navier-Stokes
(NS) equations coupled with convection-diffusion equations (CDEs). First, a lattice Boltzmann (LB) model
motivated by the lattice kinetic scheme (LKS) is presented for the NS equations coupled with CDEs. Due to the
nonequilibrium schemes for the gradient terms contained in the equilibria as well as the discrete source term,
the collision process of the present model can be implemented locally in both time and space. The Chapman-
Enskog analysis shows that the macroscopic equations can be correctly recovered from the present model without
additional assumptions. Second, we prove that the present modified LKS model, though written in the Bhatnagar-
Gross-Krook (BGK) form, has two relaxation rates essentially. Based on this theoretical result, the modified
lattice kinetic schemes in the literature should not be grouped as the BGK model, and the better numerical
stability is intrinsically attributed to the adjustment of their two relaxation rates. Several benchmark thermal flow
problems are simulated to validate the present model and the local nonequilibrium schemes for the shear rate
and temperature gradient. The accuracy of the present model as well as its better numerical stability compared
with the BGK model are verified, which supports our theoretical results. In addition, we also demonstrate that
the regularized LB (RLB) model has two relaxation times as the present LKS model.
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I. INTRODUCTION

In many scientific and industrial areas, the Navier-Stokes
(NS) equations coupled with convection-diffusion equations
(CDEs) are generally used to prescribe hydrodynamic flows
accompanied with convection heat-mass transfer. Owing to
the strong nonlinearity of the governing equations and with
the development of computer science and computational tech-
nology, it has been extensive to model the solutions to these
equations with numerical methods. As an efficient and attrac-
tive numerical approach, the lattice Boltzmann method (LBM)
has been applied to simulate complex fluid flows and transfer
processes in fluids [1–3]. Compared with traditional numer-
ical methods based on the macroscopic continuum equa-
tions, the LBM is analytically evolved from the mesoscopic
Boltzmann equation and has many prominent merits, such
as simple algorithm, easy boundary treatment, and inherently
parallelizable computational property. In the past years, the
LBM has been also extended to solve various nonlinear partial
differential equations, including reaction-diffusion equations
[4], wave equations [5,6], etc.

There have been several collision models in the LBM,
including the Bhatnagar-Gross-Krook (BGK) (also called
single-relaxation-time, SRT) model [7,8], the two-relaxation-
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time (TRT) model [9–11], the entropic model [12,13], the
cascaded or central-moment-based model [14], the cumulant
model [15], and the multiple-relaxation-time (MRT) model
[16–18]. The difference between these models resides in the
collision operators adopted in the LBE. Among these collision
models, the BGK model, the TRT model, and the MRT model
have been extensively applied to solve the NS equations cou-
pled with convection-diffusion equations (CDEs) [9,11,19,20]
till now. The BGK model is the simplest in appearance and
thus is the most commonly used model. However, as pointed
out in previous literature, there are some inherent deficiencies
when using the BGK collision model [16,17,21]. The most
well-known defect is the numerical instability at relatively
small viscosity (high Reynolds number) and/or effective ther-
mal diffusivity. In recent years, there are some efforts to over-
come the shortcomings of BGK-based models by changing
the equilibrium distribution function and/or modifying the
BGK collision model [22]. For Darcy’s flow in porous media,
it is shown in Ref. [23] that the viscosity dependence of
permeability [24] can be remedied if the dependence from
the Knudsen number is additionally considered in the BGK
model. The MRT model is the most general form developed
from the generalized lattice Boltzmann equation (LBE) model
[25]—it includes the maximum number of multiple relax-
ations to optimize the LBE. It has been indicated that the MRT
models can provide significant improvements over their BGK
counterparts in terms of accuracy and stability [16,17,19,24].
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With the benefit from two most important relaxation rates
in the LBE, the TRT model shares some advantages of the
MRT model in terms of stability and accuracy, and remains
simplicity and computational efficiency as the BGK model.
From this point, the TRT model can be regarded as a bridge
between the MRT model and the BGK model.

To reduce computer memory in simulating incompressible
flows with heat transfer, a lattice kinetic scheme (LKS),
coalescing the kinetic scheme with the LBM, was proposed
in Ref. [26], where the relaxation time is set to be unity
and thus the velocity distribution function is not needed. By
incorporating the shear rate (or temperature gradient) into
the equilibrium distribution function, the fluid viscosity (or
thermal diffusivity) in the LKS can be determined by another
parameter different from the relaxation time. This idea was
subsequently extended to LB models for two-phase flows
[27,28], non-Newtonian fluid flows [29], and thermal flows
[30]. However, the mass conservation in the LKS is not strictly
ensured, and in some LKS models [26–29] the shear rate (or
temperature gradient) is computed by the finite difference
scheme, which not only spoils the localization of collision
process in the LBE but also brings about some difficulties
to treat complex boundary conditions by a local scheme.
Recently, this defect has been addressed in the modified LKS
model for fluid flows [31,32]. In the modified model, the local
mass conservation is guaranteed, and the nonequilibrium dis-
tribution function is employed to compute the shear rate rather
than by the nonlocal finite-difference scheme. For solving the
NS equations and CDE, similar modifications have also been
made within the BGK framework [32] and later generalized
to the MRT version [33]. It is shown in Refs. [26,31–33] that
the LKS and its modified versions can improve numerical
stability at low viscosity and thermal diffusivity. Realizing
this benefit, the LKS has been further modified and extended
from pure fluid flows to flow and heat transfer in porous
media at the representative elementary volume (REV) scale
[34], axisymmetric thermal flows [35], and flow and mass
transfer in porous media at the REV scale [36].

In all the above works on modifications of LKS as well
as some following cited papers [37–39], it was claimed that
the modified LKS model is a BGK model since the collision
operator is expressed in the BGK framework. The better nu-
merical stability than the standard BGK model is attributed to
an additional parameter introduced to make the dimensionless
relaxation time adjustable. However, Inamuro [26] pointed out
that the extra parameter in the LKS model may be regarded
as a relaxation parameter linked to the stress tensor. This
indicates that the LKS model could not be considered as
a BGK model. Thus, these two different perspectives bring
about an essential question whether the LKS and its modified
models are the BGK model. Recently, as for the NS equations,
we show in Ref. [40] that the modified LKS model [31] is a LB
model with two relaxation times. However, it is unresolved till
now whether the modified LKS model for the CDE coupled
with the NS equations also has two relaxation times.

Hence, the present work aims to fulfill a theoretical proof
that ascertains the essence of collision operators in the modi-
fied LKS model for the NS equations coupled with CDEs. For
the modified LKS models to solve the two equations, we note
that through the Chapman-Enskog analysis the CDE without

the source term can be recovered with a deviation term in
Ref. [32]. Although this deviation term can be neglected under
some assumptions (e.g., constant velocity or the low Mach
number assumption), it still has an influence on the accuracy
of the LB model [41]. The unwanted deviation term in the
recovered CDE disappears with the assumption of low Mach
number in Ref. [33], however, the included time-derivative
terms in the evolution equation spoil the locality of collision
process in time. Therefore, a new modified LKS model, which
cannot only satisfy the consistency of recovered equations
with the macroscopic equations with the source term but
also guarantee the localization of collision process in time
and space, is first presented for the NS equations coupled
with CDEs. Also, the shear rate and temperature gradient
are locally calculated by the nonequilibrium schemes. The
modified LKS provides two additional parameters besides the
relaxation time for the fluid viscosity and diffusion coefficient.
With the local scheme for the gradient term, the evolution
equation of the modified LKS model is then rewritten in
vector form to retract the collision matrix. To diagonalize the
collision matrices in the generalized LBEs, this work designs
a new transformation matrix different from that in Ref. [40].
According to the eigenvalues of the diagonalized collision
matrices, the modified LKS for the NS equations coupled with
CDEs is proved to have two relaxation rates, which accounts
for the better numerical stability of the modified LKS model
than the standard BGK model. Additionally, the diagonaliza-
tion process is also performed on the regularized LB (RLB)
model [42,43] to determine the relaxation rates in the collision
matrix. Finally, the presented LKS model and its better numer-
ical stability is validated by some numerical experiments.

The paper is organized as follows. In Sec. II, the modified
LKS model, as well as a local scheme for the gradient terms,
is presented for the NS equations and CDEs. Section III is
devoted to our theoretical proof that the modified LKS model
as well as the RLB model essentially has two relaxation
rates. In Sec. IV, some numerical examples are performed
to validate the modified LKS model and test its numerical
stability. The paper is closed by a brief conclusion in Sec. V.

II. LATTICE BOLTZMANN MODEL FOR THE NS
EQUATIONS COUPLED WITH CDES

In this section, a LB model based on the LKS is presented
for the NS equations coupled with CDEs. The model adopts
the double distribution function approach: the LBE of density
distribution function for the NS equations and the LBE of
scalar (temperature or concentration) distribution function for
the CDE. For the involved spatial gradient terms, a local
computing scheme, instead of the nonlocal finite-difference-
scheme, is provided.

A. Macroscopic equations

The standard macroscopic equations considered here are
expressed as follows:

∂tρ + ∇ · (ρu) = 0, (1a)

∂t (ρu) + ∇ · (ρuu) = −∇p + ∇ · τ + ρa, (1b)

∂tφ + ∇ · (uφ) = ∇ · (D∇φ) + Q, (2)
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where ρ , u, and p are the density, velocity, and pressure of
fluid, φ is a scalar variable (e.g., temperature, concentration,
etc.), a denotes the acceleration due to external forces, D is
the diffusion coefficient, and Q is the source term. Here, τ is
a second-order tensor standing for the shear stress and defined
by τ = ρνS, where ν is the kinematic viscosity of fluid, and
S is the shear rate defined as

S = ∇u + (∇u)T , (3)

where the superscript T denotes the transposition operator.

B. Model description

As noted in the Introduction, there are some improvements
needed in previous modified LKS models for Eqs. (1) and
(2) [32,33]. To this end and inspired by the idea of Chai and
Zhao [44], we base on some recent works about modified
LKS [31,32,34] to present a new LB model for Eqs. (1) and
(2). Same as the original LKS [26], our model is written in
the form of BGK model first. In the BGK framework, we
would note that the Chapman-Enskog analysis on the present
model to recover the macroscopic equations is like those in
Refs. [31,32,34] and thus is not presented in this subsection.

For the NS equations in Eq. (1), the evolution equation is
expressed as

fi (x + ciδt , t + δt ) − fi (x, t )

= − 1

τf

[
fi (x, t ) − f̃

(eq)
i (x, t )

]+ δtFi (x, t ), (4)

where fi (x, t ) is the distribution function corresponding to
the discrete velocity ci at time t and position x, δt is the time

increment, τf is the dimensionless relaxation time, f̃
(eq)
i (x, t )

is the equilibrium distribution function, and Fi is the external
force term.

On the basis of LKS model, the equilibrium distribution
function (EDF) is constructed by including the shear rate and
is defined by

f̃
(eq)
i (x, t ) = ωiρ

[
1 + ci · u

c2
s

+ uu :
(
ci ci − c2

s I
)

2c4
s

]
+ωiρ

Aδt S :
(
ci ci − c2

s I
)

2c2
s

, (5)

where ωi are the weight coefficients, cs is the sound speed, I is
the identity tensor, and A is an additional parameter combined
with τf to determine the fluid viscosity. To avoid the discrete
effect in the recovered macroscopic equations, the forcing
term is taken as [45]

Fi = ωiρ

(
1 − 1

2τf

)[
ci · a
c2
s

+ (ua + au) :
(
ci ci − c2

s I
)

2c4
s

]
.

(6)

The fluid density ρ and velocity u are computed by the
distribution function

ρ =
∑

i

fi, ρu =
∑

i

cifi + δt

2
ρa. (7)

For the two-dimensional dimension case, the discrete ve-
locity ci adopts the D2Q9 model, which is given by

ci =

⎧⎪⎨⎪⎩
c(0, 0), i = 0,

c(cos[(i − 1)π/2], sin[(i − 1)π/2]), i = 1 − 4,

2c(cos[(i − 1)π/2 + π/4], sin[(i − 1)π/2 + π/4]), i = 5 − 8,

(8)

where c = δx/δt is the lattice speed, and δx is the lattice spac-
ing. Correspondingly, the above sound speed cs = c/

√
3, and

the weight coefficients are given by ω0 = 4/9, ω1−4 = 1/9
and ω5−8 = 1/36. Through the Champan-Enskog analysis
(see Refs. [31,32,34] and reference therein), the NS Eqs. (1)
can be correctly recovered from the LBE (5) and the shear
viscosity is given by

ν = c2
s

(
τf − A − 1

2

)
δt . (9)

For the CDE (2) in which the velocity u obeys the NS
Eqs. (1), the evolution equation of the present model is written
as

gi (x + ciδt , t + δt ) − gi (x, t )

= − 1

τφ

[
gi (x, t ) − g̃

(eq)
i (x, t )

]+ δtGi (x, t ), (10)

where gi and g̃
(eq)
i are the distribution function and its equi-

librium associated with the scalar φ, τφ is the relaxation time,
and Gi is the source term. Similar to Eq. (5), the above g̃

(eq)
i

contains an additional parameter B with the spatial gradient

and is given by

g̃
(eq)
i = ωiφ

[
1 + ci · u

c2
s

+ uu :
(
ci ci − c2

s I
)

2c4
s

]
+
iφ + ωiBδt ci · ∇φ, (11)

and Gi is

Gi = ωi

(
1 − 1

2τφ

)[
ci · (φ a + c2

s ∇φ
)

c2
s

+
(

1 + ci · u
c2
s

)
Q

]
,

(12)

where the coefficient 
i is related with ωi as 
0 = ω0 − 1 =
−5/9, 
i = ωi (i �= 0).

The scalar variable φ is computed by

φ =
∑

i

gi + δt

2
Q. (13)

Following the multiscale expansion procedure presented in
Refs. [31,32,34], the CDE (2) can be recovered from the above

033308-3



LIANG WANG, WEIFENG ZHAO, AND XIAO-DONG WANG PHYSICAL REVIEW E 98, 033308 (2018)

model and the diffusion coefficient D is computed as

D = c2
s

(
τφ − B − 1

2

)
δt . (14)

Furthermore, to ensure the locality of collision process, the
appeared space derivatives in the present model, i.e., S and
∇φ should be calculated locally. Actually, these two terms
can be computed from the nonequilibrium part of the distribu-
tion function with second-order convergence rate [31,34,44],
which are given by

S =
∑

i ci ci

[
fi − f

(eq)
i

]+ δt

2 ρ(ua + au)

c2
s ρ(A − τf )δt

,

∇φ =
∑

i ci

[
gi − g

(eq)
i

]+ δt

2 (φa + uQ)

c2
s

(
B − τφ − 1

2

)
δt

, (15)

where f
(eq)
i and g

(eq)
i are parts of the EDF Eqs. (5) and (11)

and defined as

f
(eq)
i (x, t ) = ωiρ

[
1 + ci · u

c2
s

+ uu :
(
ci ci − c2

s I
)

2c4
s

]
,

g
(eq)
i = ωiφ

[
1 + ci · u

c2
s

+ uu :
(
ci ci − c2

s I
)

2c4
s

]
+ 
iφ.

(16)

As can be seen, the evolution equations of the present
modified LKS model can be implemented locally in time and
space. From the Chapman-Enskog analysis (as will shown in
Appendix B), the NS Eqs. (1) and the CDE (2) can be recov-
ered correctly from the present model without any approxi-
mations. Two additional parameters A and B are introduced
with the relaxation times to compute the fluid viscosity and
diffusion coefficient. As A = 0 and B = 0, one can see that
the present model will become the standard BGK version as
proposed in Ref. [44]. This indicates that the present modified
LKS model can possess superior numerical stability than the
BGK model. In the subsequent section, we will prove that
the better numerical stability of the present modified model
is essentially due to the essence that it has two relaxation
rates.

III. ESSENCE OF THE COLLISION OPERATOR

This section shows that the presented LKS model for the
NS Eqs. (1) and the CDE (2) actually have two relaxation rates

as the TRT model. To prove this, the key task is to determine
the eigenvalue of collision matrices in the generalized LBE
of the present model. In the following, the theoretical proof
is provided and some primary results are presented in the
Appendix.

As a first step, we substitute the terms of S and ∇φ given
by Eq. (16) into Eqs. (4) and (10), and the following vector
equations of post-collision distributions can be obtained

f post = f − 1

τf

[ f − f (eq)]

+ A

τf (A − τf )
D[ f − f (eq)] + δt F̂, (17)

gpost = g − 1

τφ

[g − g(eq)]

+ B + τφ − 1
2

τφ

(
B − τφ − 1

2

) R[g − g(eq)] + δt Ĝ, (18)

where f = (f0(x, t ), f1(x, t ), . . . , f8(x, t ))T and g=
(g0(x, t ), g1(x, t ), . . . , g8(x, t ))T are 9-dimensional vectors
of the discrete distribution functions fi (x, t ) and gi (x, t );
f (eq) and g(eq) are 9-dimensional vectors consist of f

(eq)
i and

g
(eq)
i defined by Eq. (16); F̂ and Ĝ are two column vectors of

some discrete terms which are respectively expressed as

F̂i = ωiρ

(
1 − 1

2τf

)
ci · a
c2
s

+ ωiρ

[
1 + 1

2(A − τf )

]
× (ua + au) :

(
ci ci − c2

s I
)

2c4
s

, (19)

Ĝi = ωi

(
1 − 1

2τφ

)[(
1 + ci · u

c2
s

)
Q + ci · a

c2
s

ρφ

]

+ωi

1

2τφ

B + τφ − 1
2

B − τφ − 1
2

ci · (ρaφ + uQ)

c2
s

, (20)

D and R are two 9×9 linear matrices and given by

Di,j = ωi

1

2c4
s

[
cj cj :

(
ci ci − c2

s I
)]

, Ri,j = ωi

1

c2
s

ci · cj .

(21)
The explicit forms of matrices D and R are written as

D = 1

12

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −8 −8 −8 −8 −16 −16 −16 −16
0 4 −2 4 −2 2 2 2 2
0 −2 4 −2 4 2 2 2 2
0 4 −2 4 −2 2 2 2 2
0 −2 4 −2 4 2 2 2 2
0 1 1 1 1 5 −1 5 −1
0 1 1 1 1 −1 5 −1 5
0 1 1 1 1 5 −1 5 −1
0 1 1 1 1 −1 5 −1 5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (22)
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R = 1

12

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0
0 4 0 −4 0 4 −4 −4 4
0 0 4 0 −4 4 4 −4 −4
0 −4 0 4 0 −4 4 4 −4
0 0 −4 0 4 −4 −4 4 4
0 1 1 −1 −1 2 0 −2 0
0 −1 1 1 −1 0 2 0 −2
0 −1 −1 1 1 −2 0 2 0
0 1 −1 −1 1 0 −2 0 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (23)

From Eqs. (17) and (18), one can see that the collision matrices in the generalized LBEs of f and g are, respectively, as
follows:

�f = 1

τf

I − A

τf (A − τf )
D, �g = 1

τφ

I − B + τφ − 1
2

τφ

(
B − τφ − 1

2

) R. (24)

Through some mathematical manipulations, we can deduce that D2 = D and R2 = R together with the traces
tr( D) = 3, tr(R) = 2 (see Appendix A for details). Mathematically, these results indicate that the matrices D and R can be
diagonalized to a diagonal one with entries of 0 or 1, and there are three and two entries of 1 respectively in the diagonalized
matrix of D and R.

Next, special attention is paid to diagonalize D and R. In our previous paper focusing on the stability analysis of some lattice
kinetic schemes for NS equations [40], an invertible matrix, which is a variant of the transformation matrix M in the MRT
model [17], was provided to diagonalize the matrix D. However, we point out that this invertible matrix cannot diagonalize
the matrix R in the present modified LKS model for CDE. A different matrix should be searched to diagonalize R. Note that
the D2Q9 discrete velocity model is adopted for both the NS equatons and CDE in the present model. Therefore, to obtain the
common invertible matrix to simultaneously diagonalize D and R, we still refer to the widely used matrix M [17] to construct
an invertible matrix T as

T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1
0 3 3 3 3 6 6 6 6
0 −3 −3 −3 −3 3 3 3 3
0 1 0 −1 0 1 −1 −1 1
0 −1 0 1 0 2 −2 −2 2
0 0 1 0 −1 1 1 −1 −1
0 0 −1 0 1 2 2 −2 −2
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (25)

Here, T relates to the matrix M via the following elementary transformation:

T = U M, (26)

where

U =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (27)

With the matrix T , one can directly verify that

T DT−1 = SD = diag(0, 1, 0, 0, 0, 0, 0, 1, 1),

T RT−1 = SR = diag(0, 0, 0, 1, 0, 1, 0, 0, 0). (28)

Hence, the vector Eqs. (17) and (18) can be further rewritten as

f post = f − T−1 Sf T [ f − f (eq)] + δt F̂,

gpost = g − T−1 SgT [g − g(eq)] + δt Ĝ, (29)
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where Sf and Sg are given by

Sf = 1

τf

I − A

τf (A − τf )
SD = diag

(
1

τf

,
1

τf − A
,

1

τf

,
1

τf

,
1

τf

,
1

τf

,
1

τf

,
1

τf − A
,

1

τf − A

)
, (30)

Sg = 1

τφ

I − B + τφ − 1
2

τφ

(
B − τφ − 1

2

) SR = diag

(
1

τφ

,
1

τφ

,
1

τφ

,
2

τφ − B + 1
2

,
1

τφ

,
2

τφ − B + 1
2

,
1

τφ

,
1

τφ

,
1

τφ

)
. (31)

Clearly, there are two eigenvalues, that is, { 1
τf

, 1
τf −A

} and

{ 1
τφ

, 2
τφ−B+ 1

2
}, respectively, for the matrices Sf and Sg . These

results show us that the present modified model Eqs. (4) and
(10) essentially has two relaxation rates, respectively, given
by { 1

τf
, 1

τf −A
} and { 1

τφ
, 2

τφ−B+ 1
2
}.

The above proof definitely shows that the present LKS
model has two relaxation rates as the TRT model. However,
there are some principle differences between these two mod-
els. For the TRT model of Ginzburg et al. in Refs. [10,11], the
collisions of populations are decomposed into the symmetric
and antisymmetric parts, and the two relaxation parameters
correspond to and determine the evolution of the symmetric
and antisymmetric collision components. In this way, the
accuracy and stability can be improved by adjusting the
symmetric and antisymmetric relaxation parameters. While,
the two relaxation rates in the present LKS model are only
associated with the evolution of symmetrical collision part.
The numerical stability is improved by adjusting the addi-
tional parameter besides the relaxation time to compute the
viscosity. In addition, as revealed in Refs. [10,19], when
the eigenvalues, associated with the even- and odd-order
polynomial MRT-basis vectors, are set to the symmetric and
antisymmetric relaxation rates, the TRT model can be de-
rived from the MRT model. Via the transform matrix M,
the diagonalized collision matrix of the TRT model is Sf =
diag(sν, sν, sν, sq, sq, sq, sq, sν, sν ), where sν corresponds to
the even-order nonconserved moments, while sq corresponds
to the odd-order ones. For the present modified LKS, we
note that the matrix M cannot be used to diagonalize the
collision matrix, and additionally the corresponding Sf given
by Eq. (30) is different from that in the Ginzburg TRT model
even as sν = 1

τf −A
, sq = 1

τf
. This indicates that the relaxation

rates here do not strictly correspond to the even- and odd-order
nonconserved moments. Based on these reasons, the present
LKS model cannot be categorized into the TRT model.

It is shown in Refs. [46,47] that the so-called M10 model
has two relaxation rates corresponding to even-order noncon-
served moments but is essentially not a TRT model as the
present LKS model. However, there are several differences
between the LKS model and the M10 model. For the M10
model [46,47], two different relaxation rates, corresponding
to second-order nonconserved moments, are employed re-
spectively for the shear and bulk viscosities, and the other
relaxation rates for odd-order and fourth-order nonconserved
moments are all set to unity. However, the two viscosities
in the present LKS model have the same value, because
the corresponding relaxation rates are both 1

τf −A
, and the

remaining relaxation rates are taken to be 1
τf

but not unity.
In addition, the eigenvectors of collision operator for the M10

model form a matrix with weighted orthogonal rows, while
the transformation matrix in the present LKS model does not
satisfy the orthogonality property.

Since a LB model developed from the LKS is written in
the SRT form, it is usually regarded as a modified BGK model
in previous literature. As noted above, the better numerical
stability is attributed to the additional parameter introduced
with the relaxation time to determine the fluid viscosity and
diffusion coefficient. However, from the above proof in this
work, the better numerical stability of modified LKS models
for the NS equations coupled with CDEs should be due to an
enhanced degree of freedom from their two relaxation rates.
Now, some remarks from the above results are presented
below.

Remark 1. In diagonalizing D to the matrix SD , the
present invertible matrix T is different from that in Ref. [40]
(reference therein). This indicates that the transformation
matrix for the present LKS model is not unique, and other
transformation matrix can be also found by remoulding the
widely used matrix M in Ref. [17].

Remark 2. The computing schemes Eq. (15) for S and ∇φ

are derived from the Chapman-Enskog analysis on Eqs. (4)
and (10) within the framework of BGK model. While along
with the MRT framework, the Chapman-Enskog analysis on
the present LKS model provides the computations of S and
∇φ in moment space (see Appendix B for details)

∂xux + ∂yuy = −m1 − m
(0)
1 + 3δtρa · u

2ρ(τf − A)δt

,

∂xux − ∂yuy = −3
[
m7 − m

(0)
7 + δtρ(axux − ayuy )

]
2ρ(τf − A)δt

,

∂xuy + ∂yux = −3
[
m8 − m

(0)
8 + 1

2δtρ(ayux + axuy )
]

ρ(τf − A)δt

,

(32)

and

∂xφ = − 3

2δt

2
[
q3 − q

(0)
3

]+ δt (φax + uxQ)

τφ − B + 1
2

,

∂yφ = − 3

2δt

2
[
q5 − q

(0)
5

]+ δt (φay + uyQ)

τφ − B + 1
2

, (33)

where u = (ux, uy ) and a = (ax, ay ), m1,7,8 and q3,5 are cer-
tain elements of transformed moments respectively from f
and g by T , and m

(0)
1,7,8 and q

(0)
3,5 are the equilibrium moments

of m1,7,8 and q3,5 (refer to Appendix B for the expressions).
As compared with Eq. (15), the above calculations for S and
∇φ are also local but easier since the second-order moments
of distribution functions are avoid.
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FIG. 1. Schematic of the two-dimensional thermal Couette flow.

Remark 3. As the parameters A and B equal to zero, one
can find that the shear rate S will disappear from the present
LKS model, while the scalar gradient ∇φ still exists in the
term of Gi [see Eq. (12)]. This intrinsic difference between
Eqs. (4) and (10) brings us a notable result from Eqs. (30) and
(31), that is, the present model for the NS equations reduces
to the standard BGK model with a single relaxation rate 1

τf
,

however, the model for CDE still retains two relaxation rates
of { 1

τφ
, 2

τφ+ 1
2
}.

Note that the shear rate S computed by Eq. (15) is de-
pendent on the nonequilibrium part of momentum flux tensor
defined by �

(neq)
f = ∑

j cj cj (fj − f
(eq)
j ). As a LB model

developed for the NS equations, the RLB model [42,43]
has some similarities with the present LKS model. That is,
the evolution equation is written as the BGK form, and the

nonequilibrium part of momentum flux tensor is included in
the evolution equation. Same as the LKS model, it has been
demonstrated that the RLB model can improve the accuracy
and numerical stability of the BGK model [42,43]. To as-
certain and compare the similarity between the present LKS
model and the RLB model, we next aim to diagonalize the
collision matrix in the generalized evolution equation of RLB
model. The RLB model has the following evolution equation
[42,43]

fi (x + ciδt , t + δt )

= f
(eq)
i (x, t ) +

(
1 − 1

τf

)
ωi

2c4
s

(
ci ci − c2

s I
)

: �
(neq)
f . (34)

Correspondingly, the post-collision distribution functions can
be derived

f post = f − [ f − f (eq)] +
(

1 − 1

τf

)
D[ f − f (eq)]. (35)

Recurring to the invertible matrix T presented in Eq. (25),
the above vector equation can be further expressed with
diagonalized collision matrix as follows:

f post = f − T−1 Srf T [ f − f (eq)], (36)

where Srf =I − (1 − 1
τf

)SD=diag(1, 1
τf

, 1, 1, 1, 1, 1, 1
τf

, 1
τf

).
Referring to the Chapman-Enskog analysis shown in
Appendix B, it can be naturally deduced that the shear
and bulk viscosity are computed by ν = c2

s (τf − 1
2 )δt ,
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FIG. 2. Comparisons of numerical results [(a) velocity; (b) temperature; (c) velocity gradient; and (d) temperature gradient] and analytical
solutions of the thermal Couette flow for different Ec at Pr = 0.71. Solid lines: analytical solutions; symbols: numerical results.
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TABLE I. Relative errors of velocity u, temperature T and their
gradients under different Eckert numbers at Pr = 0.71.

Ec E(u) E(T ) E(∂yux ) E(∂yT )

10 1.183×10−8 3.221×10−4 2.188×10−8 8.427×10−3

100 1.183×10−8 5.393×10−4 2.188×10−8 9.339×10−3

ξ = c2
s (τf − 1

2 )δt in the RLB model. To here, the conclusions
can be drawn about the similarity and difference between the
RLB model and the present LKS model. Same as the LKS
model in this work, the RLB model does not belong to the
BGK model since it has two relaxation rates of {1, 1

τf
}. This

is the essence responsible for its improvement over the BGK
model in terms of accuracy and stability. Additionally, it can
be found that the relaxation rates of the LKS model and the
REG model have the same configuration in the diagonalized
collision matrix. However, the shear and bulk viscosities in
the RLB model are related with the relaxation time τf , while
the two viscosities in the present LKS model are determined
by an additional parameter A as well as τf [see Eq. (9)].
This indicates that the present LKS model could possess
more degree of freedom to optimize the numerical stability.
In addition, one can find that the relaxation rates for other
nonconserved mode in the REG model are all taken to unity,
while the corresponding relaxation rates are 1

τf
in the present

LKS model.
Finally, we would like to note that although the proposed

LKS model is written as the BGK form in Sec. II B, it can be
also performed in the framework of MRT model. Correspond-
ingly, the evolution equations for the NS equations coupled
with CDEs are decomposed into two sbusteps, i.e., collision
in moment space and propagation in velocity space,

Collision: mpost
f = mf − Sf

[
mf − m(eq)

f

]+ δt F̃,

mpost
g = mg − Sg

[
mg − m(eq)

g

]+ δt G̃, (37)

Propagation: fi (x + ciδt , t + δt ) = f
post
i (x, t ),

gi (x + ciδt , t + δt ) = g
post
i (x, t ), (38)

where mf = T f , mg = T g are the moment vectors,
m(eq)

f = T f (eq), m(eq)
g = T g(eq) are the equilibria in mo-

ment space, mpost
f = T f post, mpost

g = T gpost are the post-

collision moment vectors, and F̃ = T F̂, G̃ = T Ĝ. The
expressions of m(eq)

f , m(eq)
g , F̃ and G̃ are definitely given by

Eqs. (B8)–(B11). Once the two processes are fulfilled at each
time step, the macroscopic variables can be computed as
Eqs. (7) and (13).

IV. NUMERICAL RESULTS AND DISCUSSIONS

In this section, the present LKS model with the computing
schemes for S and ∇φ will be validated for the NS equations
coupled with CDEs, which contains both the forcing term
and the source term. The comparisons between the analytical
solutions and present numerical results are made in terms of
three well-studied problems with driven external force and
heat dissipation, including the planar thermal Posieuille flow,
thermal Couette flow with thermal dissipation, and natural
convection in a square cavity. In addition, the numerical sta-
bility of the present LKS model is investigated and compared
with the BGK model.

Unless otherwise stated, the proposed model is imple-
mented in the MRT framework as described above in the sim-
ulations. The wall boundary conditions of the NS equations
and CDEs is realized by the nonequilibrium extrapolation
scheme (NEES) [34,48]. According to the stability conditions
of LKS-based models for the NS equations [40], the relaxation
times τf , also τφ , should be constrained as τf � 1

2 , τφ � 1
2 ,

and also for the positivity of viscosity and diffusivity, A �
τf − 1

2 , B � τφ − 1
2 . As the relaxation times are fixed, the

parameters A and B are then determined from Eqs. (9) and
(14),

A = τf − 1

2
− ν

c2
s δt

, B = τφ − 1

2
− D

c2
s δt

. (39)

Unless otherwise stated, the relaxation time τf and τφ are both
set to be unity.

A. Thermal Couette flow with viscous heat dissipation

Thermal Couette flow with heat dissipation is extensively
used as a good test to validate thermal lattice Boltzmann
models and thermal boundary conditions. The problem is
sketched in Fig. 1 where the top and bottom walls move with
different velocities u0 and 0 in the horizontal direction, and
keep at different temperatures T0 and T1, respectively. The
velocity and temperature fields of this problem are governed
by Eqs. (1) and (2), where the acceleration a = 0 and the
source term Q includes the effect of viscous heat dissipation,

Q = ν

2Cν

(S : S), (40)

TABLE II. Relative errors of velocity u, temperature T and their gradients with different values of A and Eckert numbers at Pr = 0.71.

108×E(u) 104×E(T ) 108×E(∂yux ) 103×E(∂yT )

A Ec = 10 Ec = 100 Ec = 10 Ec = 100 Ec = 10 Ec = 100 Ec = 10 Ec = 100

0.01 1.058 1.058 2.281 3.818 1.956 1.956 8.427 9.338
0.1 1.183 1.183 3.221 5.393 2.188 2.188 8.427 9.339
0.2 1.767 1.767 4.266 7.141 3.267 3.267 8.427 9.338
0.3 3.097 3.097 5.309 8.888 5.726 5.726 8.427 9.339
0.4 6.906 6.906 6.351 10.63 12.77 12.77 8.427 9.339
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FIG. 3. Comparisons of numerical results [(a) velocity; (b) temperature; (c) velocity gradient and (d) temperature gradient] and analytical
solutions of the thermal Poiseuille flow for different Ec at Pr = 0.71 and Re = 20. Solid lines: analytical solutions; symbols: numerical results.

where Cν is the specific heat at constant volume. For better
consistent description on this thermal problem, hereafter, the
variable φ in Eq. (2) is renewed as temperature T .

The problem has the following analytical solutions of
velocity u = (ux, uy ) and temperature T :

ux (y) = u0
y

H
, uy = 0, (41)

T − T1

T0 − T1
= y

H
+ PrEc

2

y

H

(
1 − y

H

)
, (42)

where Pr and Ec represent the Prandtl number and Eckert
number and are defined by

Pr = ν

D
, Ec = u2

0

Cν (T0 − T1)
. (43)

From Eqs. (41) and (42), we can also obtain the following
gradients of velocity and temperature:

∂ux

∂y
= u0

H
,

∂T

∂y
= T0 − T1

H

[
1 + PrEc

2

(
1 − 2y

H

)]
. (44)

In the simulations, the physical parameters are set as
H = 1, u0 = 0.05, T0 = 1, and T1 = 0. The periodic bound-
ary conditions are applied at the inlet and outlet, and the lattice
numbers in the vertical direction is first assigned as Ny = 64,
which is fine enough to obtain accurate results. For this steady
problem, the convergence criterion for numerical results to
reach the steady state is adopted,∑

x |T (x, t ) − T (x, t − 100δt )|∑
x |T (x, t )| < 1.0×10−8. (45)

TABLE III. Relative errors of velocity u, temperature T and their gradients with different Reynolds numbers and Eckert numbers at
Pr = 0.71.

Error Re = 20, Ec = 10 Re = 20, Ec = 100 Re = 100, Ec = 10 Re = 100, Ec = 100

E(u) 8.173×10−4 8.173×10−4 8.173×10−4 8.173×10−4

E(T ) 2.920×10−3 3.563×10−3 2.919×10−3 3.561×10−3

E(∂yux ) 9.349×10−3 9.349×10−3 9.349×10−3 9.349×10−3

E(∂yT ) 3.972×10−2 4.007×10−2 3.972×10−2 4.007×10−2
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TABLE IV. Relative errors of velocity u, temperature T , and their gradients with different A and Eckert numbers at Pr = 0.71.

104×E(u) 103×E(T ) 103×E(∂yux ) 102×E(∂yT )

Re A Ec = 10 Ec = 100 Ec = 10 Ec = 100 Ec = 10 Ec = 100 Ec = 10 Ec = 100

0.01 0.2654 0.2654 1.622 1.931 9.349 9.349 3.972 4.005
0.1 2.653 2.653 2.035 2.483 9.349 9.349 3.972 4.007

20 0.2 5.307 5.307 2.523 3.078 9.349 9.349 3.972 4.007
0.3 7.960 7.960 3.036 3.704 9.349 9.349 3.972 4.007
0.4 10.61 10.61 3.575 4.361 9.349 9.349 3.972 4.007

The numerical results against the analytical solutions with
different Eckert numbers at Pr = 0.71 are presented in Fig. 2.
As shown in the figure, the numerical results associated with
velocity, temperature, and their gradients agree well with the
corresponding analytical solutions.

Furthermore, a quantitative comparison between numer-
ical results and analytical solutions is performed. To this
end, the global relative error (GRE) is used, which is
defined as

E(�) =
√∑

x |�a (x) − �n(x)|2∑
x |�a (x)|2 , (46)

where �a and �n denote the analytical and numerical results,
and the summations cover the entire gird points. The viscosity
is kept at the same value in the computations on a grid reso-
lution of Ny = 64. Table I lists the GREs at different Eckert
numbers. As shown, one can find that the Eckert number has
little effect on the GREs of velocity and its gradient, while the
GREs associated with temperature and its gradient increase
with an increase in Eckert number. This difference can be
explained by the following reasons: First, the Eckert number
is related with the source term Q [Eq. (40)] through Cν

[Eq. (43)], and as a consequence it affects the solutions of tem-
perature fields rather than velocity fields. Second, the effect
of viscous heat dissipation is more significant at a larger Ec,
which brings a stronger nonlinear distribution of temperature.
Another observation in the table is that the GREs of velocity
fields are smaller than those of temperature fields. It would
be noted that the temperature, based on Eq. (2) and the above
discussions, is recognized as a passive scalar influenced by the

velocity. The effects of A and B on the GREs of velocity and
temperature are also investigated. For simplicity but without
loss of generality, the relaxation time τf is fixed at 1.0, A and
B are set to be identical (A � τf − 0.5 as noted before) in
the simulations. The computed GREs with different values of
A and Eckert numbers are presented in Table II. As excepted
again, the GREs related with velocity are not influenced by
the increase of Eckert number at each A, while the GREs
related with temperature become larger. More importantly,
it is found that the GREs except for the unchanged E(∂yT )
increases with the increase of A, which indicates that to derive
more accurate results, A (and B) cannot be far larger than
zero.

B. Planar thermal Poiseuille flow

The planar thermal Poiseuille flow with heat dissipation
is next simulated by the present model. The temperatures on
the top and bottom walls are kept at T0 and T1, respectively.
The viscous heat dissipation expressed by Eq. (40) is also
considered here as the source term Q, while the fluid of this
problem in a planar channel is driven by a constant force
F = ρ(ax, 0).

For the considered problem, the exact solutions of velocity
and temperature, and thus their gradients are, respectively,
described as

ux (y) = 4Umax
y

H

(
1 − y

H

)
, uy = 0, (47)

T − T1

T0 − T1
= y

H
+ PrEc

3

[
1 −

(
1 − 2y

H

)4]
, (48)
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FIG. 4. The relative differences between errors of present model and (a) the previous model [32]; (b) the previous model [33].

033308-10



LATTICE KINETIC SCHEME FOR THE NAVIER- … PHYSICAL REVIEW E 98, 033308 (2018)

TABLE V. The relative differences between errors of the present LKS model and the TRT model.

τf δx = 1/16 δx = 1/32 δx = 1/64 δx = 1/80 δx = 1/100

0.51 0.0001 0.0005 0.0020 −0.0575 0.0048
0.6 −0.0168 −0.0118 0.0037 0.0149 0.0323
0.8 −0.4921 −0.4411 −0.3838 −0.3511 −0.3008

∂ux

∂y
= 4

Umax

H

(
1 − 2

y

H

)
, (49)

∂T

∂y
= T0 − T1

H

[
1 + 8PrEc

3

(
1 − 2y

H

)3]
, (50)

where Umax = axH
2/(8ν) is the maximum velocity, and Pr =

ν/D is the Prandtl number, and Ec = U 2
max/[Cν (T0 − T1)]

is the Eckert number. It is noted that besides Ec and Pr,
the Reynolds number, which is defined by Re = UmaxH/ν,
is usually another characterized parameter for the thermal
Poiseuille flow. We conducted a set of simulations with differ-
ent values of Ec at Pr = 0, 71, Re = 20, T0 = 1 and T1 = 0.
In the computations, an 8×64 lattice is used, and the boundary
treatment is identical to that employed in the Couette flow. In
Fig. 3, the profiles of velocity, temperature and their gradients
are presented together with the analytical solutions. From this
figure, one can observe an excellent agreement between the
numerical results and the analytical solutions. Furthermore, a
quantitative evaluation on the difference between the numer-
ical results and the analytical solutions is performed, and the
GREs at different Reynolds numbers and Eckert numbers are
calculated. Here, the Reynolds numbers are obtained by fixing
the viscosity while changing the acceleration ax , and the
Eckert numbers are obtained by changing the corresponding
Cν . As seen in Table III, increasing the Eckert number does
not alter the GREs of velocity while increases the GREs of
temperature, which is consistent with the thermal Couette
flow. In addition, the GREs of velocity and temperature
both keep unchanged as the Reynolds number increases. The
influence of A and B on the deviation of numerical results
from analytical solutions is also investigated. Note that the
relative errors are not affected by the Reynolds number.
The case as Re = 20 is only considered in the simulations.
The four GREs of velocity and temperature are shown in
Table IV. The relaxation time τf is set as τf = 1.0, and
the parameters of A and B take the same value as adopted
previously. The numerical outcome in the Table indicates that
as the value of A increases, the GREs of velocity and tem-
perature increase, while the GREs of their gradients are kept
unchanged.

In addition to the locality of numerical implementation in
time and space, the present LKS model satisfies the consis-
tency accurately with the NS equations coupled with CDEs
via the Chapman-Enskog analysis presented in Appendix B.
From this point of view, the present LKS model could be
considered as a modified version of existing LKS models.
In the following, we will compare the present LKS model
and previous ones [32,33] in terms of relative difference.
For a quantitative comparison, the relative difference (RD)
between errors of the present model and the existing models

is employed, which is defined as follows

RD = E(�̃) − E(�)

E(�)
, (51)

where E(�) and E(�̃) denote the GREs of the present model
and the existing model. In the simulations here, the com-
pared models are implemented in the BGK framework, and
the dimensionless parameters are used as Pr = 0.71, Re =
20, Ec = 100. Note that the evolution equation for flow fields
are identical in the three models. Figure 4 only presents the
relative differences from temperature at different relaxation
times and grid sizes. As seen from the figure, the relative
differences are both larger than zero, as expected, since the
present model is theoretically not less accurate than previous
LKS models. And additionally, it is also found that there is
no much difference between the results obtained from the
present model and the previous models in Refs. [32,33]. This
conforms the fact that the present local model can ensure
deriving the macroscopic equations correctly. Furthermore,
we computed the RDs shown in Table V to compare the
present LKS model with the TRT model which was verified
against the analytical solutions. From this Table, one can find
that the relative differences between the present model and the
TRT model are relatively small, which indicates the overall
consistency between these two models.

C. Natural convection in a square cavity

Natural convection flow in a square cavity is further con-
sidered to investigate the numerical stability of present model
for the NS equations coupled with CDEs. The schematic
of the problem is shown in Fig. 5, where the upper and
lower walls of the cavity are insulated, while the left and
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FIG. 5. Schematic of natural convection in a fluid-saturated
porous cavity.
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TABLE VI. Comparisons of the numerical results by the present LKS model with the benchmark solutions [49,50] and the reported LB
data [32,51] (Pr = 0.71, and grid sizes: 100×100 for Ra = 103, 150×150 for Ra = 104, and 200×200 for Ra = 105, Ra = 106).

Ra(Nx × Ny ) umax ymax vmax xmax Numax yNu Nu

103 Ref. [49] 3.649 0.813 3.697 0.178 – – –
(100×100) Ref. [51] 3.6554 0.8125 3.6985 0.1797 1.5004 0.90625 1.1168

Ref. [32] 3.652 – 3.703 – 1.508 – 1.115
Present 3.6353 0.8100 3.7019 0.1800 1.5089 0.9100 1.1182

104 Ref. [50] 16.1802 0.8265 19.6295 0.1193 3.5309 0.8531 2.2448
(150×150) Ref. [51] 16.0761 0.8203 19.6368 0.1172 3.5715 0.8594 2.2477

Ref. [32] 16.171 – 19.622 – 3.543 – 2.247
Present 16.1672 0.8267 19.6251 0.1200 3.5410 0.8600 2.2469

105 Ref. [50] 34.7399 0.8558 68.6396 0.0657 7.7201 0.9180 4.5216
(200×200) Ref. [51] 34.8343 0.8594 68.2671 0.0625 7.7951 0.9219 4.5345

Ref. [32] 34.813 – 68.550 – 7.762 – 4.544
Present 34.9921 0.8550 68.4594 0.0650 7.7561 0.9250 4.5197

106 Ref. [50] 64.8367 0.8505 220.461 0.0390 17.5360 0.9608 8.8251
(200×200) Ref. [51] 65.3606 0.8516 216.415 0.0391 17.4836 0.9688 8.7775

Ref. [32] 64.675 – 220.135 – 17.640 – 8.813
Present 65.1668 0.8500 218.6811 0.0400 17.5728 0.9650 8.770

right walls are maintained at different temperatures Th and Tc

(Th > Tc), respectively. The zero velocity boundary condition
is satisfied at the walls of the cavity. The height and width
of the cavity are H and L, and the temperature difference
and the reference temperature are �T = Th − Tc and T0 =
(Th + Tc )/2 respectively. With the Boussinesq approximation,
the fluid properties are considered as constant except that
the fluid density is linearly dependent with temperature in the
buoyancy force. Thus, the acceleration vector a in Eq. (1b)
may be rewritten as a = gβ(T − T0) j , where g is the gravity
acceleration, β is the coefficient of thermal expansion, and j
is the unit vector in the opposite direction of gravity. Besides
the Prandtl number, another main dimensionless parameter to
character this problem is the Rayleigh number Ra defined by
Ra = gβ�T H 3/(νD). The average Nusselt number Nu on

the left (or right) vertical wall is defined as

Nu = 1

H

∫ H

0
Nu(y)dy, (52)

where Nu(y) = −L(∂T /∂x)wall/�T is the local Nusselt
number. Some simulations are first carried out to validate
the present model. For quantitative comparisons with previ-
ous benchmark solutions, the maximum horizontal velocity
component umax at the mid-width (x = L/2) and its location
ymax, the maximum vertical velocity component vmax at the
mid-height (y = H/2) and its location xmax, the maximum
Nusselt number Numax and the corresponding location yNu,
and the average Nusselt number Nu along the cold wall are
computed and listed in Table VI. In the simulations, Pr is set
to be 0.71, and the lattice sizes are chosen differently with Ra:

x/L

y
/
H
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0
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(a) (b)

FIG. 6. Isotherms of the natural convection in a cavity. The results are obtained by (a) the standard BGK model at t = 200δt , and (b) the
present model at t = 2000δt .
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100×100 for Ra = 103, 150×150 for Ra = 104, 105, and
200×200 for 106. As shown in the table, the present computed
results are in good agreement with the benchmark data for all
the considered values of Ra.

The numerical stability of the present modified LKS model
is next examined and compared with the BGK model. Con-
sidering that the present model can correctly recover the
macroscopic equations, the BGK model which is reduced
from our model by taking A = 0 and B = 0 is adopted for
comparison. It is well known that the numerical instability
will occur for the BGK model when the relaxation times
are close to 0.5. By contrast, the present model, as noted
in previous section, can possess superior stability due to the
essence that it has two relaxation times. To see this more
clearly, a set of simulations as τf approaches to 0.5 are
then performed on a 200×200 lattice at Ra = 106, and the
other computational conditions are the same as above. It is
found that for the standard BGK model at ν = 1.3333×10−4

(τf = 0.58), the numerical oscillation occurs when t = 200δt

[see Fig. 6(a)], and eventually the computation blows up as
t = 300δt . While the isotherm of the present LKS model at
the same viscosity (τf = 0.75) is stable and smooth even
at t = 2000δt [see Fig. 6(b)], and finally evolves to the
steady state. Moreover, the computed values of umax, ymax,

vmax, xmax, Numax, yNu, Nu are 66.2989, 0.8550, 219.9009,

0.0400, 17.4653, 0.9650, 8.6928, respectively, which depar-
ture less than 2.25% from the benchmark data. This in-
dicates that the present model is more stable than the
standard BGK model. To reinforce this point, the capac-
ity of the present model are further tested at smaller fluid
viscosities. We found that the present model is still ac-
curate and stable even as ν = 8.3333×10−6 (corresponds
to τf = 0.505 in the BGK model). The respective val-
ues of umax, ymax, vmax, xmax, Numax, yNu, Nu are 67.4338,

0.8550, 222.4333, 0.0400, 16.9509, 0.9650, 8.4646, which
deviate within 5% from the benchmark results. Additionally,
in view of the fixed Prandtl number in the simulations, we
would like to point out that better numerical stability of the
present model for CDE is actually verified as τφ approaches
to 0.5. The above results clearly demonstrate the superior
stability of the present model over the BGK model, which is
attributed to the larger degree of freedom from two relaxation
times.

V. CONCLUSIONS

The LKS has been incorporated in the LB models to
improve the numerical stability in simulations of the NS
equations coupled with CDEs. However, there are two basic
issues within the modified LKS models in the literature. One is
that the NS equations coupled with CDEs with the source term
in Cartesian coordinate are not accurately derived from the
models which can be implemented locally in time and space.
The other is that whether the modified LKS models should
be grouped to the BGK model is still unresolved. Targeting
these two issues, a LB model based on the LKS is presented
for the NS equations coupled with CDEs. The shear rate and
scalar gradient contained in the model are computed by the
local nonequilibrium scheme, which ensures the locality of
collision process of the present model. The Chapman-Enskog

analysis demonstrates that the NS equations coupled with
CDEs can be correctly recovered from the present model
without any additional assumptions. Subsequently, a trans-
formation matrix is carefully designed to diagonalize the
two collision matrices extracted in the generalized LBE. It
is hence found that the diagonal matrices have only two
groups of eigenvalues. This definitely proves that the present
modified LKS model for the NS equations coupled with CDEs
is actually not a BGK model but has two relaxation rates,
which clarifies the essence of better numerical stability from
modified LKS models.

Several benchmark tests are simulated to validate the
present model and the local scheme for the gradient terms.
For the planar thermal Poiseuille flow, the present LKS model
is compared with previous LKS models, and we found that
the present model is not less accurate than previous ones. For
the natural convection in a cavity, the present LKS model is
found to be much more stable than the BGK model. These
results are consistent with and confirm our theoretical results.
Additionally, following the theoretical proof shown in this
work, it was definitely proved that the RLB model [42,43]
is not a BGK model but has two relaxation times as the
present LKS model. Based on this, we would like to note
that the regularized LB model and its variants should be
of the same kind with the modified local LKS model. In
addition, according to the diagonalized collision matrix of
the RLB model, we would like to note that the present LKS
model could possess more degree of freedom to optimize the
numerical stability.
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APPENDIX A: BASIC RESULTS
ON THE MATRICES D AND R

In this Appendix, we will prove the matrices D and R
satisfy D2 = D and R2 = R. Mathematically, it can be turned
to prove

∑
k Di,kDk,j = Dij and

∑
k Ri,kRk,j = Rij . Before

proceeding further, the following facts accompanied with the
D2Q9 lattice model should be cleared:∑

i

ωici,αci,β = c2
s δαβ,

∑
i

ωici,αci,βci,γ ci,θ = c4
s �αβγ θ ,

(A1)

where �αβγ θ = δαβδγ θ + δαγ δβθ + δαθ δβγ , where ck,s (s =
α, β, γ , or θ ) is the component of ck along the s direction,
and δαβ is the Kronecker δ with two indices of α and β.
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We then base the above results with Eq. (21) to deduce∑
k

Di,kDk,j =
∑

k

ωi

1

2c4
s

[
ckck :

(
ci ci − c2

s I
)]× ωk

1

2c4
s

[
cj cj :

(
ckck − c2

s I
)]

= ωi

1

4c8
s

∑
k

ωkck,αck,β

(
ci,βci,α − c2

s δβα

)
cj,γ cj,θ

(
ck,θ ck,γ − c2

s δθγ

)
= ωi

1

4c4
s

[
cj,γ cj,θ

(
ci,βci,α − c2

s δβα

)
δαγ δβθ + cj,γ cj,θ

(
ci,βci,α − c2

s δβα

)
δαθ δβγ

]
= ωi

1

2c4
s

cj,αcj,β

(
ci,βci,α − c2

s δβα

) = ωi

1

2c4
s

[
cj cj :

(
ci ci − c2

s I
)] = Di,j . (A2)

This clearly indicates to us that D2 = D.
Similarly, for the matrix R with Eq. (21), one can obtain that∑
k

Ri,kRk,j =
∑

k

ωi

1

c2
s

ci · ck × ωk

1

c2
s

ck · cj = ωi

1

c4
s

∑
k

ωkci,αck,αck,βcj,β = ωi

1

c2
s

ci,αcj,βδβα = ωi

1

c2
s

ci · cj = Ri,j , (A3)

which proves R2 = R.
Finally, we come to determine the traces of D and R, which equal to the summation of the diagonal entries. Still with Eq. (21),

we have

tr( D) =
∑

i

Dii =
∑

i

ωi

1

2c4
s

[
ci ci :

(
ci ci − c2

s I
)] =

∑
i

ωi

1

2c4
s

ci,αci,β

(
ci,βci,α − c2

s δβα

) = 1

2
(δαβδβα + δααδββ ) = 3, (A4)

and

tr(E) =
∑

i

Eii =
∑

i

ωi

1

c2
s

ci · ci = 1

c2
s

∑
i

ωici,αci,α = δαα = 2, (A5)

where the Einstein summation convention is employed for the subscripts α and β.

APPENDIX B: CHAPMAN-ENSKOG ANALYSIS OF THE PRESENT LKS MODEL

The Chapman-Enskog analysis is now performed on the generalized LBE of the present model to demonstrate its consistency
with Eqs. (4) and (10). Referencing to Eqs. (17) and (18), the evolution equations of the present model is written
as the following general form

f (x + cδt , t + δt ) − f (x, t ) = − 1

τf

[ f − f (eq)] + A

τf (A − τf )
D[ f − f (eq)] + δt F̂, (B1)

g(x + cδt , t + δt ) − g(x, t ) = − 1

τφ

[g − g(eq)] + B + τφ − 1
2

τφ

(
B − τφ − 1

2

) R[g − g(eq)] + δt Ĝ, (B2)

where two nine-dimensional column vectors are introduced

f (x + cδt , t + δt ) : = (f0(x, t ), f1(x + c1δt , t ), . . . , f8(x + c8δt , t ))T ,

g(x + cδt , t + δt ) : = (g0(x, t ), g1(x + c1δt , t ), . . . , g8(x + c8δt , t ))T .

Then, applying the Taylor expansion to the first two terms of each above equations and employing Eqs. (29)–(31), we can obtain

D f + δt

2
D2 f = −T−1 S′

f T [ f − f (eq)] + F̂, (B3)

Dg + δt

2
D2 g = −T−1 S′

gT [g − g(eq)] + Ĝ, (B4)

where D = ∂t I + Cα∂α, Cα = diag(c0,α, c1,α, . . . , c8,α ), S′
f = Sf /δt and S′

g = Sg/δt . As usually done in the MRT model
[52], multiplying the transformation matrix T on both sides of Eqs. (B3) and (B4), one can easily obtain the corresponding
equations in moment space,

D̃mf + δt

2
D̃

2
mf = −S′

f

[
mf − m(eq)

f

]+ F̃, (B5)

D̃mg + δt

2
D̃

2
mg = −S′

g

[
mg − m(eq)

g

]+ G̃, (B6)
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where D̃ = T DT−1 = ∂t I + C̃α∂α and C̃α = T CαT−1, and mf , mg, m(eq)
f , m(eq)

g together with F̃ and G̃ are several moment
vectors mapped from the corresponding vectors in velocity space by the matrix T , which are, respectively, given by

mf = T f = (mf 0,mf 1, . . . , mf 8)T , mg = T g = (mg0,mg1, . . . , mg8)T , (B7)

m(eq)
f = T f (eq) = (

ρ, ρ(2 + 3u2),−ρ, ρux, 0, ρuy, 0, ρ
(
u2

x − u2
y

)
, ρuxuy

)T
, (B8)

m(eq)
g = T g(eq) = (

φ, φ(4 + 3u2),−2φ, φux, 0, φuy, 0, φ
(
u2

x − u2
y

)
, φuxuy

)T
, (B9)

F̃ = T F̂ =
{

0, 6

[
1 + 1

2(A − τf )

]
ρa · u, 0,

(
1 − 1

2τf

)
ρax, 0,

(
1 − 1

2τf

)
ρay, 0,

2

[
1 + 1

2(A − τf )

]
ρ(axux − ayuy ),

[
1 + 1

2(A − τf )

]
ρ(axuy + ayux )

}T

, (B10)

G̃ = T Ĝ =
{(

1 − 1

2τg

)
Q, 2

(
1 − 1

2τφ

)
Q, −

(
1 − 1

2τφ

)
Q,

[
1 − 1

τφ − B + 1
2

]
(φax + Qux ),

0,

[
1 − 1

τφ − B + 1
2

]
(φay + Quy )

}T

. (B11)

To here, the involved multiscale expansions are introduced

mf =
∞∑

n=0

ε(n)m(n)
f , mg =

∞∑
n=0

ε(n)m(n)
g , (B12a)

∂t = ε∂t0 + ε2∂t1 , ∂α = ε∂0α, (B12b)

a = εa1, Q = εQ1, (B12c)

where ε is a small parameter and a1 = (a1x, a1y ). Applying
(B12c) to Eqs. (B10) and (B11), it can also assume that F̃ =
ε F̃1 and G̃ = εG̃1.

Substituting Eqs. (B12) into Eqs. (B5) and (B6), we can
obtain the consecutive orders of Eqs. (B5) and (B6) in terms
of ε

ε0 : m(0)
f = m(eq)

f , (B13a)

ε1 : D̃0m(0)
f = −S′

f m(1)
f + F̃1, (B13b)

ε2 : ∂t1 m(0)
f + D̃0m(1)

f + δt

2
D̃

2
0m(0)

f = −S′
f m(2)

f , (B13c)

ε0 : m(0)
g = m(eq)

g , (B13d)

ε1 : D̃0m(0)
g = −S′

gm(1)
g + G̃1, (B13e)

ε2 : ∂t1 m(0)
g + D̃0m(1)

g + δt

2
D̃

2
0m(0)

g = −S′
gm(2)

g , (B13f)

where D̃0 = ∂t0 I + C̃α∂0α . Further, rewriting the third terms
of Eqs. (B13c) and (B13f), respectively, by Eqs. (B13b) and
(B13e) yields

∂t1 m(0)
f + D̃0

(
I − Sf

2

)
m(1)

f + δt

2
D̃0 F̃1 = −S′

f m(2)
f ,

(B14a)

∂t1 m(0)
g + D̃0

(
I − Sg

2

)
m(1)

g + δt

2
D̃0G̃1 = −S′

gm(2)
g .

(B14b)

Based on Eq. (B12a) and combining Eqs. (7) and (13) with
Eqs. (B13a) and (B13d), we can derive

m
(k)
f 0 = 0(k > 0), m

(k)
f 3 = m

(k)
f 5 = 0(k > 1), (B15a)

m
(1)
f 3 = −δt

2
ρa1x, m

(1)
f 5 = −δt

2
ρa1y, (B15b)

m
(k)
g0 = 0(k > 1), m

(1)
g0 = −δt

2
Q1. (B15c)

1. Derivation of the Navier-Stokes equations

At the t0 timescale, the moment equation, Eq. (B13b), can
be explicitly rewritten as

∂t0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ

ρ(2 + 3u2)
−ρ

ρux

0
ρuy

0
ρ
(
u2

x − u2
y

)
ρuxuy

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+∂0x

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρux

4ρux

−ρux
1
3ρ + ρu2

x

ρu2
y

ρuxuy

2ρuxuy
2
3ρux
1
3ρuy

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ ∂0y

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρuy

4ρuy

−ρuy

ρuxuy

2ρuxuy

1
3ρ + ρu2

y

ρu2
x

− 2
3ρuy

1
3ρux

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

− 1
(τf −A)δt

m
(1)
f 1

− 1
τf δt

m
(1)
f 2

1
2τf

ρa1x

− 1
τf δt

m
(1)
f 4

1
2τf

ρa1y

− 1
τf δt

m
(1)
f 6

− 1
(τf −A)δt

m
(1)
f 7

− 1
(τf −A)δt

m
(1)
f 8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
6
[
1 − 1

2(τf −A)

]
ρa1 · u

0(
1 − 1

2τf

)
ρa1x

0(
1 − 1

2τf

)
ρa1y

0[
1 − 1

2(τf −A)

]
ρ(a1xux − a1yuy )[

1 − 1
2(τf −A)

]
ρ(a1xuy + a1yux )

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (B16)

033308-15



LIANG WANG, WEIFENG ZHAO, AND XIAO-DONG WANG PHYSICAL REVIEW E 98, 033308 (2018)

Similarly, we can rewrite Eq. (B14a) concretely at the t1 timescale and only present the equations corresponding to the conserved
moments ρ and ρu:

∂t1ρ = 0, (B17a)

∂t1 (ρux ) + ∂0x

[
1

6

(
1 − 1

2(τf − A)

)
m

(1)
f 1 + 1

2

(
1 − 1

2(τf − A)

)
m

(1)
f 7

]
+ ∂0y

[(
1 − 1

2(τf − A)

)
m

(1)
f 8

]
+ δt∂0x

[
1 − 1

2(τf − A)

]
ρuxa1x + δt

2
∂0y

[
1 − 1

2(τf − A)

]
ρ(uxa1y + uya1x ) = 0, (B17b)

∂t1 (ρuy ) + ∂0x

[(
1 − 1

2(τf − A)

)
m

(1)
f 8

]
+ ∂0y

[
1

6

(
1 − 1

2(τf − A)

)
m

(1)
f 1 + 1

2

(
1 − 1

2(τf − A)

)
m

(1)
f 7

]
+ δt

2
∂0x

[
1 − 1

2(τf − A)

]
ρ(uxa1y + uya1x ) + δt∂0y

[
1 − 1

2(τf − A)

]
ρuya1y = 0, (B17c)

where Eq. (B15) has been used to derive Eq. (B17).
From the macroscopic equations in terms of ρ and ρu in Eq. (B16), one can obtain the following expression under the

assumption of low Mach number:

∂t0 (ρuαuβ ) = −uα∂0βp − uβ∂0αp + ρuαa1β + ρuβa1α, (B18)

where p = c2
s ρ = 1

3ρ. And then, we can derive the equations for m
(1)
f 1, m

(1)
f 7, and m

(1)
f 8:

− 1

(τf − A)δt

m
(1)
f 1 = 2ρ(∂0xux + ∂0yuy ) + 3

1

τf − A
ρa1 · u, (B19a)

− 1

(τf − A)δt

m
(1)
f 7 = 2ρ

3
(∂0xux − ∂0yuy ) + 1

τf − A
ρ(a1xux − a1yuy ), (B19b)

− 1

(τf − A)δt

m
(1)
f 8 = ρ

3
(∂0xuy + ∂0yux ) + 1

2(τf − A)
ρ(a1xuy + a1yux ). (B19c)

Rewriting Eq. (B17) by the results of Eq. (B19) yields the hydrodynamic equations at the t1 scale

∂t1ρ = 0, (B20a)

∂t1 (ρux ) = ∂0x[ρν(∂0xux − ∂0yuy ) + ρξ (∂0xux + ∂0yuy )] + ∂0y[ρν(∂0xuy + ∂0yux )], (B20b)

∂t1 (ρuy ) = ∂0x[ρν(∂0xuy + ∂0yux )] + ∂0y[ρν(∂0yuy − ∂0xux ) + ρξ (∂0xux + ∂0yuy )], (B20c)

where ν and ξ are the kinematic and bulk viscosities and given by

ν = c2
s

(
τf − A − 1

2

)
δt , ξ = c2

s

(
τf − A − 1

2

)
δt . (B21)

Coupling the equations at the t0 and t1 scales, i.e., Eqs. (B16) and (B20), the Navier-Stokes equations can be obtained:

∂tρ + ∇ · (ρu) = 0, (B22a)

∂t (ρu) + ∇ · (ρuu) = −∇p + ∇ · τ + ρa, (B22b)

where τ is the shear stress and defined by τ = 2ρν
o

S + ρξ (∇ · u)I , in which
o

S = S − [ 1
D

tr(S)]I and D is the dimension of the
considered flow system. For incompressible flows, the shear stress is simplified to be τ = 2ρνS, and Eq. (B22) is reduced to
Eq. (1).

2. Derivation of the CDE

From the explicit expression of Eq. (B13e), the following three equations at the t0 timescale can be obtained:

∂t0φ + ∂0x (φux ) + ∂0y (φuy ) = Q1, (B23a)

∂t0 (φux ) + ∂0x

[
φ

(
2

3
+ u2

x

)]
+ ∂0y (φuxuy ) = − 2(

τφ − B + 1
2

)
δt

m
(1)
g3 +

[
1 − 1

τφ − B + 1
2

]
(φa1x + Q1ux ), (B23b)

∂t0 (φuy ) + ∂0x (φuxuy ) + ∂0y

[
φ

(
2

3
+ u2

y

)]
= − 2(

τφ − B + 1
2

)
δt

m
(1)
g5 +

[
1 − 1

τφ − B + 1
2

]
(φa1y + Q1uy ), (B23c)
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where Eq. (B15) is adopted to derive Eq. (B23a). Similarly, the equation of conservative variable φ at the t1 timescale can be
extracted from Eq. (B14b):

∂t1φ + ∂0x

{(
1 − 1

τφ − B + 1
2

)[
m

(1)
g3 + δt

2
(ρφa1x + Q1ux )

]}
+ ∂0y

{(
1 − 1

τφ − B + 1
2

)[
m

(1)
g5 + δt

2
(ρφa1y + Q1uy )

]}
= 0.

(B24)

With the help of Eqs. (B16) and (B23a) at the t0 timescale, we can deduce that

∂t0 (φuα ) + ∂0α

(
φu2

α

)+ ∂0β (φuαuβ ) = uαQ1 + ρφa1α, (B25)

where ∇ρ/ρ = O(Ma2) is adopted. Then, we can get the following expressions for m
(1)
g3 and m

(1)
g5 from Eqs. (B23b) and (B23c):

− 2(
τφ − B + 1

2

)
δt

m
(1)
g3 = 2

3
∂0xφ + 1

τφ − B + 1
2

(ρφa1x + Q1ux ), (B26a)

− 2(
τφ − B + 1

2

)
δt

m
(1)
g5 = 2

3
∂0yφ + 1

τφ − B + 1
2

(ρφa1y + Q1uy ). (B26b)

Substituting Eq. (B26) into Eq. (B24), it leads to

∂t1φ = ∂0x

[
c2
s

(
τφ − B − 1

2

)
δt∂0xφ

]
+ ∂0y

[
c2
s

(
τφ − B − 1

2

)
δt∂0yφ

]
. (B27)

Combining (B23a) at the t0 timescale and Eq. (B27) at the t1 timescale, the final CDE are derived:

∂tφ + ∇ · (uφ) = ∇ · (D∇φ) + Q, (B28)

where the diffusion coefficient D is determined by D = c2
s (τφ − B − 1

2 )δt .

3. Derivations of S and ∇φ

Previous studies have reported that the shear rate S and gradient term ∇φ can be computed locally by the nonequilibrium part
of the distribution function, as indicated in Eq. (15). Noteworthily, from the above multiscale analysis, the two gradient terms
can also be calculated locally by the nonequilibrium part of some moment vectors while with second-order accuracy in space.

Multiplying ε on both sides of Eq. (B19) and assuming that εm
(1)
f i = mf i − m

(eq)
f i + O(ε2), the local computation of S can be

obtained as follows:

∂xux + ∂yuy = −m1 − m
(0)
1 + 3δtρa · u

2ρ(τf − A)δt

,

∂xux − ∂yuy = −3
[
m7 − m

(0)
7 + δtρ(axux − ayuy )

]
2ρ(τf − A)δt

, (B29)

∂xuy + ∂yux = −3
[
m8 − m

(0)
8 + 1

2δtρ(ayux + axuy )
]

ρ(τf − A)δt

.

Similarly, multiplying Eq. (B26) by ε and following εm
(1)
gi = mgi − m

(eq)
gi + O(ε2), we have

∂xφ = − 3

2δt

2
[
q3 − q

(0)
3

]+ δt (φax + uxQ)

τφ − B + 1
2

,

∂yφ = − 3

2δt

2
[
q5 − q

(0)
5

]+ δt

(
φay + uyQ

)
τφ − B + 1

2

. (B30)
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