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Machine-learning quantum mechanics: Solving quantum mechanics
problems using radial basis function networks
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In this article, machine-learning methods are used to solve quantum mechanics problems. The radial basis
function network in a discrete basis is used as the variational wave function for the ground state of a quantum
system. Variational Monte Carlo (VMC) calculations are carried out for some simple Hamiltonians. The results
are in good agreement with theoretical values. The smallest eigenvalue of a Hermitian matrix can also be acquired
using VMC calculations. Results are provided to demonstrate that machine-learning techniques are capable of
solving quantum mechanical problems.
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I. INTRODUCTION

Machine-learning theory has been developing rapidly in
recent years. Machine-learning techniques have been success-
fully applied to solve a variety of problems, such as email
filtering, optical character recognition (OCR), and natural lan-
guage processing, and have become a part of everyday life. In
the physical sciences, researchers are also applying machine-
learning methods to explore new possibilities. For example,
machine-learning methods are used in molecular dynamics
[1,2], as a way to bypass the Kohn-Sham equation in density
functional theory [3], to assist in materials discovery [4], or
to identify phase transitions [5]. Considering the power of
machine learning, it is interesting to consider solving quantum
mechanics problems using machine-learning methods.

Artificial neural networks (ANNs) [6], which are inspired
by biological neural networks, are one of the most important
methods in machine-learning theory. An ANN consists of a
network of artificial neurons, and examples of ANNs include
feed-forward neural networks [7], radial basis function (RBF)
networks [8], and restricted Boltzmann machines [9]. As
a universal approximator [10,11], an ANN can be used to
represent functions, and it is possible to use an ANN as a
representation of the wave function in a quantum system.

Researchers have been trying to combine neural network
theory and quantum mechanics, for example, using a neural
network in the real space to solve differential equations, espe-
cially the Schrödinger equation with some specific potential
[12]. Another example is the quantum neural network [13],
where information in an ANN is processed quantum mechan-
ically. One of the most promising works was the recent re-
search by Carleo and Troyer in Ref. [14], where the restricted
Boltzmann machine was used as the variational Monte Carlo
(VMC) ground state wavefunction. In their work, the ground
state of a many-body system could be efficiently represented
by a neural network. Following their work, other possibilities
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were also explored. Most recently, in Ref. [15], a three-layer
feed-forward neural network was used to calculate the ground
state energy of the Bose-Hubbard model. Machine-learning
methods were shown to be able to distinguish between dif-
ferent phases, even for systems with the sign problem [16].
VMC methods do not suffer from the fermion sign problem;
therefore, using a neural network as a VMC ansatz is very
promising and has the potential to tackle the calculations that
are almost impossible in other Monte Carlo methods.

In this article, the possibility of using an RBF network to
represent the wave function of a quantum mechanical system
is discussed. Our work involves two major aspects. First,
the representation power of the RBF network is illustrated,
which has not been discussed in the physics literature. Second,
instead of a lattice system, where the dimension of the Hilbert
space of each site is finite, a general quantum mechanical
system with infinite or continuous degrees of freedom is
discussed. A binary restricted Boltzmann machine is not
sufficient for the simulations of such a system; therefore, it
is interesting to search for new ansatz. An RBF network is
one of the candidates.

In our work, a VMC procedure is formulated, where an
RBF network is used as the variational wave function. A
harmonic oscillator in a linear potential and a particle in a
box with a linear potential are then used as benchmarks.
Furthermore, we discuss the possibility of using the VMC
method to solve for the lowest eigenvalue of a matrix.

This article is organized as follows. In Sec. II, artificial
neural network theory and variational Monte Carlo theory are
reviewed. Section III contains major results, that is, quantum
mechanical problems are solved using the radial basis neural
network. In Sec. IV, we discuss some related questions.

II. ARTIFICIAL NEURAL NETWORK THEORY AND
THE VARIATIONAL MONTE CARLO METHOD

In this section, two cornerstones of this work will be
introduced, which are the artificial neural network theory and
the variational Monte Carlo method.
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FIG. 1. An illustration of the artificial neural network. A typical
neural network consists of three layers of neurons: the input layer,
the hidden layer, and the output layer. Each neuron is represented by
a circle. The lines between layers are associated with the parameters
of the neural network.

A. Artificial neural network theory

Inspired by the biological neural network model, ANN
theory was proposed by McCulloch and Pitts in 1943 [6], in
an attempt to propose a mathematical description of the bio-
logical nervous system. Figure 1 illustrates a simple example
of a neural network which consists of three layers of artificial
neurons.

Neural networks are widely used tools in machine-learning
theory, for example, as a function approximation tool in super-
vised learning. The goal is to find the optimal parameters by
minimizing the cost function. This can be a highly nontrivial
problem when there are a large number of parameters. For
such algorithms such as the back-propagation, please see
Ref. [7].

In a typical machine-learning problem using neural net-
work methods, the input neuron can be a binary number. For
example, in a handwritten digit recognition problem, each
input neuron corresponds to a pixel in a figure and takes a
value of 0 or 1. The input values are processed through the
neural network using, for example, the rules mentioned above.
The output values of the neural network are compared with
the objective values, and the error is minimized by finding the
optimal parameters.

In this article, the radial basis function (RBF) network is
used as a variational wave-function ansatz. For example, for
a three-layer RBF network with one single output neuron, the
output function z(x) of the neural network can be written as

z(x) =
M∑
i=1

aiρi (||x − ci ||). (1)

In this output function, ai and ci are parameters of the
neural network. x is the input vector which has the same
dimension as ci . M is the number of neurons in the hidden
layer. ρ(|| . . . ||) is the radial basis function which can be a
Gaussian function with a Euclidean norm:

ρi (||x − ci ||) = e−|bi ||x−ci |2 , (2)

or an exponential absolute value function

ρi (||x − ci ||) = e−|bi ||x−ci |. (3)

Other activation functions, such as multiquadratics

ρi (||x − ci ||) =
√

|x − ci |2 − |bi |2, (4)

or inverse multiquadratics

ρi (||x − ci ||) = (|x − ci |2 − |bi |2)−
1
2 , (5)

are also commonly used in the machine-learning community.
These activation functions can also be understood as kernel
functions. In the activation functions, |bi | are parameters that
control the spread of the activation function. Other activation
functions are also possible; discussions about the activation
function can be found in Ref. [17].

In addition to the RBF network, many different types of
neural networks can be constructed, such as the restricted
Boltzmann machines or the autoencoders, which are widely
used in deep learning technology. The universal approxima-
tion theorem establishes the mathematical foundation of neu-
ral network theory, which states that neural network functions
are dense in the space of continuous functions defined on
a compact subset of Rn, under some assumptions about the
activation function and given enough hidden neurons [10,11].

In this paper, the RBF network is used as a variational wave
function represented in a discrete eigenbasis. Note that we use
|bi | as a variational parameter in our calculations instead of a
constant number as in a regular RBF network. The absolute
value of |bi | is for the stability of the optimization.

When neural network methods are applied to quantum
physics, the inputs of the neural network can take discrete
quantum numbers. After being processed through the neural
network, the outputs of the neural network represent the
amplitudes of the wave function on the basis vector labeled
by the input quantum numbers. The neural network is
then trained by minimizing the energy expectation value.
For example, for a three-dimensional quantum harmonic
oscillator in an orthogonal coordinate system, we can use a
neural network with three input neurons, where each input
can take integer values for 0 to ∞. The trained neural network
should represent the ground state of this system, in which,
after proper normalization, the output should be 1 given 000
as the input, and 0 for other inputs.

B. Variational Monte Carlo method (VMC)

The VMC method, first proposed by McMillan in 1965
[18], combines the variational method and the Monte Carlo
method in order to evaluate the ground state of a quantum
system.

Start from a Hamiltonian Ĥ and a variational wave func-
tion |ψ (λ)〉, where λ is a set of variational parameters, the
energy expectation value can be written as

E(λ) = 〈ψ (λ)|Ĥ |ψ (λ)〉
〈ψ (λ)|ψ (λ)〉 . (6)

This energy expectation value can be computed using the
widely known Metropolis algorithm [19], which is one of
the most efficient algorithms in computational science. As
a Markov chain Monte Carlo method, it may currently be
the only efficient algorithm for evaluating a multidimensional
integral.
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The next step of the VMC method is to minimize the
energy in the parameter space. This can be a difficult problem
when there are many variational parameters. Two examples of
such algorithms are the linear method [20] and the stochas-
tic reconfiguration method [21]. The minimization algorithm
gives the minimum of the energy in the parameter space, and
it is reasonable to use this value as our approximation for
the ground state energy. For a detailed review of the VMC
method, please refer to Ref. [22].

Currently, physicists believe that the accuracy of the VMC
method depends, to a great extent, on a proper choice of the
variational wave function; therefore, it is important to choose
a wave function based on physical intuition or a physical
understanding of the system. This belief may not be true in
the age of machine learning. Neural network functions are
capable of approximating unknown functions by maximizing
or minimizing the objective function. It would be interesting
to further explore the possibility of using a neural network
function as the variational wave function of a quantum system.

III. SOLVING QUANTUM MECHANICS PROBLEMS
USING ARTIFICIAL NEURAL NETWORK

In the pioneering work of Carleo and Troyer [14], restricted
Boltzmann machine (RBM) was used as a variational wave
function for many-body systems. The transverse-field Ising
model and antiferromagnetic Heisenberg model were bench-
marked using the RBM wave function. Variational Monte
Carlo calculations were carried out. Their results demonstrate
that a neural network wave function is capable of capturing
the quantum entanglement of the ground states and giving an
accurate estimation of the ground state energy.

In this article, we continue developing this idea using arti-
ficial neural network functions as the ground state variational
wave function. In Ref. [14], the restricted Boltzmann machine
is only binary valued; we will demonstrate the representation
power of a neural network wave function without this con-
straint. In addition, we discuss the possibility of using a neural
network wave function to solve a generic quantum mechanics
problem. This VMC method behaves at least as accurate as
the perturbation theory.

A. Theoretical outline

Consider a quantum system which has countable number
of basis vectors, an arbitrary state |ψ〉 in the Hilbert space can
be represented by

|ψ〉 =
∑

n1,n2,...,np

ψ (n1, n2, . . . , np )|n1, n2, . . . , np〉, (7)

where |n1, n2, . . . , np〉 is a basis vector labeled by quantum
number ni , i = 1, 2 . . . p, and p is the number of sites in the
system. For example, for the Heisenberg model, p represents
the number of spins; for a three-dimensional harmonic oscilla-
tor in a Cartesian coordinate, we could use n1, n2, n3 to label
three quantum numbers. ψ (n1, n2, . . . , np ) is the amplitude
of |ψ〉 on basis vector |n1, n2, . . . , np〉. We can interpret this
amplitude as a function of n1, n2, . . . , np. A similar ansatz is
also used in Ref. [15].

This function can be represented by a neural network with
one output neuron. Using an RBF network, the amplitude
function can be written as

ψ (n1, n2, . . . , np; a, c) =
M∑
i

aiρi (||n − ci ||), (8)

with n representing an array of quantum numbers and

ρi (||x − ci ||) = e−|bi ||x−ci |2 . (9)

One reason to choose this neural network is that the Gaussian
activation function guarantees that the amplitude does not
diverge when n → ∞.

Practically, it is useful to truncate the quantum number ni

if its range is countably infinite. This is not necessary for a
spin-half lattice system since ni can only take two values. For
a harmonic oscillator, however, we may truncate the quantum
number at some finite value. The universal approximation
theorem is only valid for a closed space. This truncation will
also facilitate numerical simulations.

Using this variational wave function, the energy expecta-
tion value is

E(λ) = 〈ψ (λ)|H |ψ (λ)〉
〈ψ (λ)|ψ (λ)〉 =

∫ |ψ (n; λ)|2Elocal(n; λ)dn∫ |ψ (n; λ)|2dn
,

(10)

with

Elocal(n; λ) = 〈n|H |ψ (λ)〉
〈n|ψ (λ)〉 =

∑
n′ 〈n|H |n′〉〈n′|ψ (λ)〉

〈n|ψ (λ)〉 , (11)

Here, λ represents all the variational parameters, for example,
ai , bi , and ci .

The energy expectation can be evaluated using the
Metropolis algorithm. After initialization and thermalization,
repeat these two steps until equilibrium: (1) generate a
move from configuration n to n′′. (2) Using proper transi-
tion probability, accept or reject the move with probability
min(1, | 〈n′′|ψ (λ)〉

〈n|ψ (λ)〉 |2). The expectation value of other operators
can be evaluated similarly.

Compared with exact diagonalization, one advantage of
this formalism is that the matrix element 〈n|H |n′〉 is never
stored explicitly. Only the nonzero matrix elements are needed
to be valued and summed during the sampling process.

The energy as a function of parameters λ can be, for ex-
ample, minimized using the stochastic reconfiguration method
[21]. In the stochastic reconfiguration method, an operator

Oi (n) = ∂λi
ψλ(n)

ψλ(n)
(12)

can be defined for each parameter in the variational wave
function.

For a radial basis neural network with the Gaussian basis
function

Oai
(n) = ρi

ψ
, (13)

Obi
(n) = −aibi |n − ci |2ρi

|bi |ψ , (14)

Ocij
(n) = 2ai |bi |(nj − cij )ρi

ψ
, (15)
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where cij is the j th component of of ci . The covariance matrix
and forces are defined as

Sij = 〈O∗
i Oj 〉 − 〈O∗

i 〉〈Oj 〉, (16)

Fi = 〈ElocalO
∗
i 〉 − 〈Elocal〉〈O∗

i 〉. (17)

The parameters can be updated by

λ′
j = λj + αS−1

ij Fi . (18)

Here, 〈. . . 〉 is the expectation value of an operator. α can be
understood as the learning rate of the optimization algorithm.
A regularization S ′

ii = Sii + r (k)Sii is applied to the diagonal
elements of matrix S in all our calculation, where r (k) =
max(100 × 0.9k, 10−4) [14]. This process iterates until the
optimization converges, and we treat the converged energy as
our best approximation of the ground state energy.

In this article, the method mentioned above is used for the
optimization. We notice that the recent work of Saito [15],
in which feed-forward neural network was successfully used
to represent the ground state of the Bose-Hubbard model.
In their work, an exponential function was written based
on the output of the feed-forward neural network. It is an
interesting question whether an exponential of feed-forward
neural network output function can be used to represent a
quantum mechanical wave function.

B. One-dimensional quantum harmonic
oscillator in electric field

To start with, we would like to benchmark the quantum
harmonic oscillator. Since we use a set of discrete quantum
numbers to describe the variational wave function, it is natural
to use the energy eigenbasis of an unperturbed harmonic
oscillator to calculate the matrix element.

Consider the one-dimensional (1D) Hamiltonian

H = p̂2

2
+ x̂2

2
+ Ex̂ = H0 + Ex̂, (19)

where E is a parameter that can be understood as the electric
field.

Using natural units, it is easy to see that the ground state
energy of H0 is 0.5. Assuming the eigenstates of H0 are
labeled by |n〉, the variational ansatz for the ground state of
H can be approximated by

|ψ〉 =
nmax−1∑
n=0

ψ (n)|n〉, (20)

with ψ (n) represented by an RBF network with one input
neuron, and we truncate the quantum number to nmax − 1.
In this notation, the RBF network represents the function
ψ (n). The variable n can take different values, for example,
if n = 1, the output of the neural network is the coefficient
on the basis vector |1〉, which is ψ (1). The neural network
represents the function ψ , and the coefficient on basis vector
|n〉 is represented by ψ (n).

We use the VMC procedure described in Sec. III A to
conduct the calculation. The parameters are initialized ran-
domly. Our codes are written in C++, where the ma-
trix solving library Eigen [23] is used for the stochas-
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FIG. 2. Minimization of the ground state energy of H at E =
0, using Gaussian radial basis network. m is the number of hidden
layers in the neural network.

tic reconfiguration. Sample codes will be available at
https://github.com/peiyuanteng.

A neural network with random parameters is first created.
Then, the ground state energy under one set of parameters are
calculated using the Monte Carlo method. The state space of
the Monte Carlo sampling is a truncated discrete space de-
noted by n. Specifically, our quantum number is the quantum
number of the unperturbed Hamiltonian H0, and the basis is
the eigenbasis of H0. We are trying to solve for the ground
state of the perturbed one. A random plus or minus move is
generated for each sample and accepted using the Metropo-
lis algorithm. In this work, when a random move yields a
quantum number that is below zero or above nmax − 1 at the
boundary of state space, the quantum number is reflected back
in order to satisfy the detailed balance condition. For each
specific n, we can plug it into the neural network and get its
amplitude. During the Monte Carlo process, 50000 samples
are used. Being able to calculate the energy, we can then
use the stochastic reconfiguration method to find the minimal
energy, and we treat this energy as our best approximation of
the ground state energy.

In Fig. 2, we illustrate the minimization of ground state
energy during the iteration process using the Gaussian basis
function [see Eq. (2)]. The learning rate is set at 0.1. m denotes
the number of neurons in the hidden layer.

Alternatively, we can use the exponential absolute value
function as the RBF [see Eq. (3)]. Under the same learn-
ing rates, this RBF network also converges to the correct
eigenvalue (see Fig. 3). It is easy to see that the Gaussian
RBF network behaves better than the others. Based on our
experience, the Gaussian network also performs better in
other cases, therefore, we use the Gaussian network in later
examples.

Remarks. We use n as our variable for the variational wave
function. The output of ψ (n) is discrete. It should not be
confused with the method that uses a Gaussian function in
the coordinate representation as the variational wave function,
which is trivial. One reason that we compare Eqs. (2) and (3) is
to demonstrate that this method is capable of giving the correct
coefficients regardless of the radial basis function.
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FIG. 3. Minimization of the ground state energy of H at E = 0,
using Eq. (3) as the radial basis function. m is the number of hidden
layers in the neural network.

Figure 4 illustrates the behavior of VMC under different
electric field. In our simulation, a separate neural network is
trained for each E. The theoretical value of the ground state
energy eg is eg = 0.5(1 − E2). The VMC results converge
at 0.375 ± 0.000, 0.000 ± 0.000,−1.446 ± 0.003 when E =
0.5, 1.0, 2.0, while the exact value is at 0.375, 0.000, −1.5,
respectively. Notice that the error increase with E under
certain nmax. In this section nmax = 20. Expectation value
and errors in this article are calculated when optimization is
saturated.

Notice that during the optimization process, the sampled
ground state energy may have some spikes. The author be-
lieves that this phenomenon is a result of the stochastic
nature of the optimization algorithm. Random fluctuations
of the expectation value of the operator and the complicated
structure of the energy function may lead to drastic changes
in the ground state energy during the optimization process.

Figure 5 shows ψ (n) as a function of n under different E.
ψ (n) is normalized and its value means the overlap between
new ground state of H and the energy eigenstate |n〉 of Ho.
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FIG. 4. Minimization of the ground state energy of H at E =
0.5, 1.0, 2.0, using Gaussian radial basis function.
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FIG. 5. ψ (n) as a function of n at E = 0.0, 0.5, 1.0, 2.0, using
Gaussian radial basis function. Circles represent theoretical values
and asterisk represents the values with RBF network.

Theoretically, one can calculate that

ψ (n) =
∫ ∞

−∞

1√
2nn!

(
1

π

) 1
2

e−(x−E)2/2e−x2/2Hn(x)dx, (21)

where Hn(x) are the Hermite polynomials. Simplifying this
expression, we will get

ψ (n) = 1√
2nn!

Ene−E2/4. (22)

It can be seen that VMC values agree very well with the exact
value when E is small. Errors begin to increase when E gets
larger.

Based on these results, we claim that the radial basis neural
network clearly captures the behavior of the 1D quantum
harmonic oscillator.

C. Two-dimensional quantum harmonic
oscillator in electric field

Similarly, we can consider a radial basis neural network
with many input neurons. For example, with two input neu-
rons, we can consider a two-dimensional (2D) quantum har-
monic oscillator in an electric field.

Consider a Hamiltonian

H = p̂x
2

2
+ x̂2

2
+ p̂y

2

2
+ ŷ2

2
+ Exx̂ + Eyŷ

= H0 + Exx̂ + Eyŷ. (23)

It is easy to see that the eigenvalue of H0 is 1.0. We will treat
Ex and Ey as our parameters.

Our neural network wave function can be written as

|ψ〉 =
nmax−1∑
nx,ny=0

ψ (nx, ny )|nx, ny〉. (24)

We can use the same VMC procedure as the previous part to
perform the calculation. The learning rate, in this case, is set
at 0.2; our neural network has 10 hidden neurons and 2 input
neurons. The algorithm used for this 2D example is similar to
the 1D harmonic oscillator.
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FIG. 6. ψ (nx, ny ) as a function of nx + 1, ny + 1 at Ex =
1.0, Ey = 1.0, using Gaussian radial basis function. In this figure,
ψ (nx, ny ) is not normalized.

Figures 6 and 7 illustrate the behavior of the trained neural
network at different electric fields. From the shape of the
surface, we can see that a proper choice of nmax is important
to the accuracy of this method. The reason is that, in this
example, when Ex and Ey get larger, the bump in the function
ψ (n) will shift away from the origin. The states out of nmax
are not considered, therefore, the accuracy will be affected
if the overlaps out of nmax are large. In these figures, we
choose nmax = 10 to illustrate the influence of nmax on the
accuracy.

The exact value of ψ (nx, ny ) can be solved as

ψ (nx, ny ) = 1√
2n

xnx!

1√
2n

yny!
Enx

x E
ny

y e−E2
x /4e−E2

y /4. (25)

Table I lists a sample of the relation between nmax and
the VMC energy at Ex = 4.0, Ey = 2.0. We can see that in
this example the accuracy of the results improve with nmax.
Figure 8 shows ψ (nx, ny ) as a function of nx and nx under
different E = (1.0, 1.0). We can see that numerical results
agree well with exact results.
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FIG. 7. ψ (nx, ny ) as a function of nx + 1, ny + 1 at Ex =
4.0, Ey = 2.0, using Gaussian radial basis function. In this figure,
ψ (nx, ny ) is not normalized.

TABLE I. The relation between nmax and the VMC energy
at Ex = 4.0, Ey = 2.0. VMC energy converges at −8.99571 ±
0.00627. Exact value is 9.

nmax VMC energy

3 −6.28397
4 −7.80747
5 −8.02855
10 −8.71073
20 −8.90894
40 −8.99571

D. Particle in a box

Another example that is benchmarked is a particle in a box
with perturbation. Consider the Hamiltonian

H = p̂2

2
+ V (x) + ax̂ = H0 + ax̂, (26)

with V (x) = 0 when 0 < x < 1 and V (x) = ∞ when x takes
other values. ax̂ is a linear potential defined on 0 < x < 1
with a as a parameter.

In natural units, the ground state energy of H0 is π2

2 =
4.9348. The first order perturbation theory correction for the
ground state energy is a/2. The second order perturbation
will give a correction of −0.002194a2. A radial basis neural
network VMC simulation can be similarly carried out. As
always, we choose the basis to be the eigenbasis of H0. 50 000
samples are used. Ten hidden neurons (m = 10) are chosen in
our calculation. nmax is set at 20. The learning rates are set at
0.01. The matrix element in the local energy can be calculated
as

〈n1|ax|n2〉 = a
4[(−1)n1+n2 − 1]n1n2

(n1 − n2)2(n1 + n2)2π2
, (27)

when n1 	= n2. And,

〈n1|ax|n2〉 = 0.5a, (28)

when n1 = n2.
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FIG. 8. ψ (nx, ny ) as a function of ny at different nx with Ex =
1.0, Ey = 1.0. Circles represent theoretical values and asterisk rep-
resents the values with RBF network. In this figure, ψ (nx, ny ) is
normalized.
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FIG. 9. Minimization of the ground state energy of H at a =
0.0, 2.0, 4.0, 8.0, −8.0.

In Fig. 9, the convergence VMC ground state at different
parameters is illustrated. Intermediate points that have a value
which is larger than 20 are set at 20 to maintain the scale of
this graph. Notice that we get more spikes during the iteration
when a is small. The heights of the spikes decrease if smaller
learning rates are used.

Table II compares the result using an RBF network VMC,
theoretical results up to second-order perturbation theory, and
exact results. The exact ground state energy values are cal-
culated using Mathematica. We can see that VMC performs
much better than first-order perturbation theory and converge
to the ground state energy that is very close to the theoretical
ground state energy.

E. Neural network as a Hermitian matrix
lowest eigenvalue solver

So far, the examples that are benchmarked can all be solved
by perturbation theory. Can neural network VMC method
have a wider application than the perturbation theory? In
this part, we will illustrate the possibility of using an RBF
network VMC method to solve for the smallest eigenvalue of a
Hermitian matrix. This problem is nonperturbative and purely
mathematical, and our result implies that neural network
VMC can have much broader scope than perturbation method.

Consider an n × n Hermitian matrix H . The eigenvector
that corresponds to the lowest energy is an n-dimensional

TABLE II. Comparison between exact values, perturbation re-
sults, and numerical VMC energy at different a.

a First order Second order VMC energy Exact value

0.0 4.9348 4.9348 4.9348 ± 0.0001 4.93481
2.0 5.9348 5.9260 5.9260 ± 0.0001 5.92603
4.0 6.9348 6.8997 6.8998 ± 0.0001 6.89974
8.0 8.9348 8.7944 8.7960 ± 0.0003 8.79508
−8.0 0.9348 0.7944 0.7950 ± 0.0003 0.795078

TABLE III. VMC results of the lowest eigenvalue of H (d ).

d Exact value VMC result

2 −0.0811 −0.0811 ± 0.0000
3 −0.1874 −0.1873 ± 0.0002
5 −0.4219 −0.4220 ± 0.0008
10 −1.008 −1.008 ± 0.0008

vector. We can write this eigenvector as


x =
n∑

i=1

ψ (i)î, (29)

and any vector in this finite vector space can be written in this
form.

Define the objective function to be

E = 
x∗H 
x. (30)

Then, the smallest value of E corresponds to the lowest
eigenvalue of H . Our goal is to find a set of parameters in
neural network ψ that minimize E.

We can convert the matrix multiplication in E into a
discrete sum, which can be evaluated using the Metropolis
algorithm. Instead of the energy eigenbasis, in this situation,
we can choose our configuration space to be n points, where n

is the dimension of vector 
x, and the trial move would be from
basis î to î ′. Therefore, we can use the same VMC technique
to minimize E. Our previous examples can be essentially
understood in this way since our Hamiltonians are truncated
to a finite-dimensional matrix.

To give a concrete implementation of this idea, we consider
a matrix

H (d )pq = 1/p + 1/q. (31)

Here, H (d ) is a (d × d)-dimensional matrix. p, q are the
labels for H (d ). The matrix element on the pth row and qth
column equals 1/p + 1/q.

We use the RBF network ansatz to calculate the lowest
eigenvalue of H (d ). Hidden neuron numbers are set at 20.
50 000 samples are chosen. Iteration undergoes 300 steps and
learning rate is 0.01. Table III shows the result of our VMC
simulation.

Our optimized neural network also yields the eigenvector
that corresponds to the lowest eigenvalue. The components
can be acquired by plugging in i into ψ (i). For example,
when n = 10, VMC gives a eigenvector

−→
V , which is (0.6851,

0.1174, −0.0711, −0.1646, −0.2200, −0.2562,−0.2813,
−0.2994, −0.3127, −0.3226), while the exact vector

−→
V0

is (0.6807, 0.1194, −0.0677, −0.1613, −0.2174, −0.2548,
−0.2816, −0.3016, −0.3172, −0.3297). The Euclidean norm
of the error d = |−→V − −→

V0 | = 1.1 × 10−2.
We also calculate the relation between the accuracy and m

(the number of neurons in the hidden layer). For d = 10, the
variational energy is −0.0811,−0.0811,−0.9943,−1.0002
for m = 5, 10, 15, 20, respectively.

Caveat. The learning rate depends on the number of hidden
neurons, and it has to be set by trial and error. We also have to
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point out that when d > 10, the VMC optimization procedure
may converge slowly or fail to converge. The stability also
depends on forms of H . For some large ill-conditioned ma-
trices, it is expected that the random sampling process will
not capture all the matrix elements and lead to inaccurate
results.

IV. DISCUSSION

Is it possible to use an RBF network with continuous
variables as the variational wave function? This is possible for
some certain Hamiltonians. For example, we can use an RBF
network with a Gaussian basis as the variation wave function
for the ground state of a harmonic oscillator. Based on our
test, although this ansatz works perfectly for the harmonic
oscillator, the iteration may not converge to the correct ground
state when applied to other models. This test is trivial for
the harmonic oscillator since its ground state is intrinsically
a Gaussian function. For wave functions with continuous
variables, the Kato’s cusp condition [24] poses strong con-
straints on the mathematical form of the wave function. A
wave function that does not satisfy this condition will result
in strong numerical instability in the VMC calculation.

How is this approach useful? This approach provides a
way to find the ground state energy of a quantum system.
Compared with traditional variational Monte Carlo simula-
tion, this method does not require choosing a specific wave
function from our intuition. Does this method depend on
a specific basis? The example on the diagonalization of a
Hermitian matrix illustrates that it does not depend on it as
well, although a good basis may improve the accuracy and
stability.

One advantage of ANN-based VMC is that the code is
easy to modularize. When programming, we can write the
modules for a neural network, Hamiltonian, and optimization
separately. For the same Hamiltonian, we can also compare
the representation power of different neural networks and
different optimization methods. This greatly reduces program-
ming difficulties and improves accuracy.

A potential issue with the neural network VMC method
is that the optimization algorithm may fail to find the global
minimum of the objective function. This is a common issue
in machine-learning methods. We see that the stochastic re-
configuration may not work well enough that it could find the
smallest eigenvalue of a matrix of arbitrarily large dimension.
Therefore, finding a stable algorithm or stable neural network
mathematical form for the VMC optimization should be a
crucial task. If successful, the neural network VMC method
may give numerical conclusions to many unsolved problems
in quantum physics.

Based on the above points, one important research direc-
tion is to develop more efficient VMC optimization algo-
rithms. Another interesting direction is to discuss the rep-
resentation power of different neural networks since there
are a variety of neural networks developed by the machine-
learning community. For example, one interesting problem is
the representation power of a continuous restricted Boltzmann
machine [25]. With a Gaussian activation function, a con-
tinuous restricted Boltzmann machine has some similarities
with the RBF network ansatz discussed in this paper. It is
promising to provide more accurate results due to the elegant
mathematical structure of the restricted Boltzmann machine.

V. CONCLUSION

In this article, RBF networks are used as the variational
wave function for quantum systems, and VMC calculations
are carried out. For the examples that are examined, the VMC
results agree well with theoretical predictions. Furthermore,
it is possible to use the VMC method to calculate the lowest
eigenvalue of a Hermitian matrix.
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