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Mesoscopic modeling of random walk and reactions in crowded media
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We develop a mesoscopic modeling framework for diffusion in a crowded environment, particularly targeting
applications in the modeling of living cells. Through homogenization techniques we effectively coarse grain a
detailed microscopic description into a previously developed internal state diffusive framework. The observables
in the mesoscopic model correspond to solutions of macroscopic partial differential equations driven by
stochastically varying diffusion fields in space and time. Analytical solutions and numerical experiments
illustrate the framework.
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I. INTRODUCTION

Living cells are controlled by a complicated network of
reaction-diffusion events. An example is exogenous signals
triggering the cell’s response by reacting with the proteins
present in the cell or binding to the DNA to initiate tran-
scription of certain genes. An important task in computational
systems biology is to study these processes as accurately as
possible inside the complicated cell geometry. We specifically
target two special features in a model of the biochemical
processes in living cells in this article: the high percent-
age of occupied volume in the cytoplasm and the intrinsic
noise.

It is estimated that up to 40% of the available space in
the cytoplasm is occupied by macromolecules [1,2] and these
have been shown to alter the dynamics of the reaction network
[3] (see also Fig. 1). Due to the multiple steric repulsions
between the tracer molecules and the crowders, diffusion is
slowed down. This macromolecular crowding effect plays an
even more important role on the cell membrane [4], where
actin filaments create barriers for the motion of membrane
bound proteins [5–7].

New imaging techniques [8] have shown that the slowdown
happens gradually over time. The tracers initially diffuse
freely without encountering the crowding macromolecules.
Then, they start colliding with the crowders and go through
an anomalous phase of diffusion where their movement is
constantly slowed down and their mean-square displacement
(MSD) therefore grows sublinearly with time [9–12]. Let
〈·〉 denote the average over the sample trajectories of the
molecules and let ‖x‖2 be the Euclidean length of a coordinate
vector x. The MSD of a molecule at x(t ) at time t released at
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x(0) = 0 at t = 0 behaves as

〈∥∥x(t )
∥∥2

2

〉 ∝ tα, (1)

where α = 1 for ordinary diffusion and α ∈ (0, 1) in subdif-
fusion where, at least in a time interval shortly after t = 0,
the molecules diffuse anomalously (see [11]). On a long time
scale they can be observed to be diffusing normally again,
but at a reduced diffusion constant compared to the tracer
in a dilute medium. This change in diffusivity is a hydro-
dynamic consequence of the highly crowded space inside
cells. Moreover, the crowders also exhibit a thermodynamic
effect on the chemical reactions [13], which can be both
impeded (due to the longer time until collision) or facilitated
(due to the smaller effective reaction volume). In this paper,
we will only investigate inert crowders and their effect due
to steric repulsion with the reacting molecules. More com-
plicated interactions such as transient binding or interaction
potentials further impact the reaction-diffusion dynamics in a
crowded environment [14–17], but lie outside the scope of this
study.

The second feature we incorporate in our modeling frame-
work is stochasticity. Although the cytosol is densely packed
with molecules, the individual species is often present at low
copy numbers. A deterministic macroscopic model describing
the mean value of the concentrations of the chemical species
is therefore not applicable and stochastic models remain
as the computationally feasible alternative [18–22]. On a
mesoscopic or on-lattice level of modeling, the domain is
partitioned into voxels and diffusion is modeled as a random
jump process of the molecules between the voxels. Inside
each voxel, space is not resolved further and the molecules
are assumed to be well mixed and react randomly with other
molecules located within the same voxel. The time evolution
of this system is described by the reaction-diffusion master
equation [23]. We sample trajectories of the system using
stochastic simulation techniques as popularized by Gillespie
[24], originally developed for well stirred problems without
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FIG. 1. A snapshot from a molecular dynamics simulation: the
interior of an E. coli is a highly crowded environment. Picture
courtesy of David van der Spoel, Uppsala University.

spatial dependence. Discretizations of spatial domains were
first considered in [25–27] and later improved to allow for
unstructured meshes in [28,29]. Overviews of determinis-
tic, macroscopic and stochastic, mesoscopic and microscopic
levels of modeling of biochemical networks are found in, e.g.,
[30–33].

There have been several models combining the macro-
molecular crowding effects and the stochastic mesoscopic
level. In [34] the most highly crowded voxels are defined
as full and are made inaccessible for the tracer molecules
in order to model crowding. A more gradual approach is
to define the number of possible molecules per voxel and
then rescale the propensity to jump into this voxel by how
many spots are already occupied by other molecules [35–37].
But, by averaging the effect of the crowders over the whole
voxel, the transient anomalous phase is not captured and we
only observe the long-time slower diffusion. To resolve the
short-time microscopic information, the positions of station-
ary obstacles were homogenized (or coarse grained, upscaled)
to mesoscopic jump rates in [38]. The crowders can have
arbitrary shape, but the diffusing tracers are understood to be
circular in two space dimensions (2D) and spherical in three
dimensions (3D).

In Brownian dynamics (BD) each individual molecule is
tracked in a lattice-free (or off-lattice) microscopic model.
Here, all molecules are spherical, move in Brownian mo-
tion, and react with a certain probability when they touch
each other [39,40]. Crowding is automatically incorporated
in the model by the excluded volume of the stationary or
moving crowders. A stochastic, microscopic simulation is
in general more accurate than a mesoscopic simulation but
also much more computationally expensive. Microscopic sim-
ulation of crowding and diffusion at the particle level is
proposed in [41] and is evaluated in [12,42]. In [43] off-grid

microscopic simulations are compared to grid based micro-
scopic cellular automata simulations and the grid artifacts are
quantified.

On the deterministic, macroscopic level, anomalous diffu-
sion of the concentrations due to crowding can be modeled by
fractional partial differential equations (FPDEs) [11,44,45].
Internal states are introduced in [46] on the mesoscopic level
to model anomalous diffusion and in [47] for reactions. The
internal state of a molecule changes with a certain probability
and determines the molecule’s diffusion speed. The intensities
for these changes are given by the macroscopic FPDE for the
observed variables in [46,47]. Memory effects are included
without sacrificing the Markov property using these internal
states. Three physical interpretations of these internal states
are that the molecule is in different geometrical conforma-
tions, has different methylation or phosphorylation, or resides
in differently crowded environments, which are all affecting
the diffusion speed and reaction propensities. Hidden states
are also introduced in [48] to explain data from single cell
experiments.

In this paper, we will combine the internal states model
derived in [47] with the multiscale approach in [38] to effi-
ciently model diffusion of tracer particles among stationary or
moving crowder obstacles. The method

(1) is considerably faster than Brownian dynamics,
(2) allows more versatile modeling than mesoscopic meth-

ods where a limited number of molecules can occupy a lattice
node,

(3) defines a random diffusion field for a macroscopic
equation expressed in observables.

We first coarse grain the microscale to the mesoscale by de-
termining statistics for the variation in the diffusion coefficient
with the homogenization method in [38]. The parameters of
the internal states model in [47] can subsequently be deduced
from these data. Our mesoscopic method for crowding is
less heuristic than other methods and can be defined by
experimental data, e.g., from [48]. The mesoscale equations
are coarse grained to the macroscale analytically resulting in
partial differential equations (PDEs) for the observables.

In the next section, we first present the two mesoscopic
models from [47] and [38] in more detail. We couple the
statistics from the microlevel to the parameters in the internal
state model in Sec. III. The distributions of the molecules in
certain chemical systems with internal states and diffusion are
multinomial as shown by the analysis in Sec. IV. In Sec. V, we
test the resulting coarse-grained model in examples in 2D and
3D and a summarizing discussion is found in the final section.

II. TWO MESOSCOPIC MODELS

The effect of static crowding molecules is coarse grained
from the microscopic to the mesoscopic level of approxima-
tion according to [38]. Then, a discretized mesoscopic model
built from an internal states approximation is reviewed follow-
ing [46,47]. A differential equation for biochemical networks
with diffusion and reactions is discretized in time, space, and
the internal state space by the finite element method (FEM).
A relation is derived between a mesoscopic system with
internal states and a macroscopic equation for the observable
variables.
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FIG. 2. (a) The cell volume � discretized by a grid with size
h giving rise to the nonperforated subvolumes ω∗. (b) The circular,
perforated domain ω (pink) of radius ρ where the cutouts represent
the obstacles, and the outer ∂ωO and inner ∂ωI boundaries. (c) Solu-
tion to (2) on ω with crowders represented as holes with reflective
boundary conditions and with high values of E(x) in red (in the
middle) and low values in blue (along the outer boundary). (d) The
excluded volume consists of the volume occupied by the crowding
molecule enlarged by the radius r of the diffusing tracer molecule.

A. Microscopic to mesoscopic model via first exit times

Single tracer molecules move on the microscopic scale by
Brownian motion in a domain ω∗ with obstacles. The moving
molecules are assumed to be circular in 2D and spherical in
3D with radius r . The crowder obstacles are stationary in
space and chemically inert, such that the boundary condition
for the moving molecule is reflective at the surface of the
crowding objects, which are represented explicitly as holes in
ω∗. Similar models for crowded media are the Lorentz model
in [49] and the cherry-pit model in [50]. The properties of the
media are explored by Brownian dynamics in [49,50].

The volume of the interior of the cell is denoted by �

and is discretized into a Cartesian grid with size h. This grid
defines circular (2D) or spherical (3D) subvolumes ω∗ with
radius ρ = h covering the voxels in the mesoscopic model.
The subvolumes ω∗ overlap and are occupied by crowders
such that the free space remaining for the moving molecule
is ω and ω ⊆ ω∗ [see Figs. 2(a) and 2(b)].

Let γ0 be the diffusion coefficient for the Brownian motion.
In [38] we presented a multiscale approach to compute the
effective diffusion rate γ in the crowded environment ω∗ using
the mean value of the first exit time E(x) (see [51]) from ω

fulfilling

γ0�E(x) = −1, x ∈ ω (2)

E(x) = 0, x ∈ ∂ωO (3)

n · ∇E(x) = 0, x ∈ ∂ωI . (4)

The starting position of the diffusing molecule is x ∈ ω, ∂ωO

is the outer boundary of ω shared with ω∗, and ∂ωI is the inner
boundary of the obstacles with normal n [see Fig. 2(b)]. Since
(2) describes the expected exit time of a moving point particle,
the cutouts in the perforated domain are enlarged to account
for the radius r of the tracer [see Fig. 2(d)].

Equation (2) and boundary condition (3) also hold on
the nonperforated domain ω∗ without the boundary condition
on ∂ωI and resulting in the solution E∗(x). In dilute media
without any crowders, the first exit time can be used to
recover the jump rates on a Cartesian mesh [see Fig. 2(a)],
by evaluating E(x) in the center of the circle x0. Since
the first exit time approach for mesoscopic diffusion in a
crowded environment has to converge to the well defined
dilute rates on a Cartesian mesh for φ → 0, where φ ∈ [0, 1]
is the percentage of occupied volume, we evaluate E in the
center. The mean first exit time in (2) is inversely propor-
tional to the diffusion coefficient and we can compute the
effective diffusion rate γ in the crowded domain ω∗ accord-
ing to

γ = γ0
E∗(x0)

E(x0)
. (5)

In this way, all the details in ω are avoided and an effective (or
homogenized, upscaled, coarse-grained) diffusion coefficient
γ in ω∗ is determined. The effective diffusion rate γ depends
on φ ∈ [0, 1]. If φ = 0, then E∗(x) = E(x) and γ = γ0 in
(5) and if φ → 1, then there is no space left for molecular
motion, E(x) → ∞, and γ → 0. Depending on the shape of
the obstacles and the size of the moving molecule r , γ can be
0 for a small φ < 1.

This approach is universal in the way that the stationary
crowding molecules can have any shape. If the crowders are
spherical with radius R, the radii have to satisfy r, R � ρ

for the upscaling to be accurate and not too sensitive to the
particular distribution of the obstacles. New γ values for other
shapes are determined in [38]. The typical size of a moving or
crowding molecule is 4–20 nm (globular protein-ribosome).
Then, a possible ρ is ρ ∼ 50 nm, which is sufficiently small to
discretize a prokaryote E. coli of size 1–3 μm or a eukaryotic
cell which is about 10 times larger.

B. Internal states model

The mesoscopic model for diffusion and chemical reac-
tions is extended such that each molecule can adopt several
internal states that may be unobservable. These extra internal
states are used to model subdiffusion in [46,47] and will
be used here to represent the varying density of the tracer’s
environment due to moving obstacles.

The differential equation for the concentration of one
chemical species is first derived without reactions. The dy-
namic change of internal state is achieved by adding an inte-
gral term. The equation is discretized by FEM in space and the
internal states. The computational mesh in space is structured
or unstructured and the internal state space is discretized by an
equidistant grid. The equations are then generalized to many
species and chemical reactions.
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1. Spatial internal states model

Let u(x, t, ξ ) be the concentration of a molecular species
at x ∈ � at time t � 0 in a continuous internal state
ξ ∈ � = [0, ξmax] ⊂ R+. The rate of change from internal
state η to state ξ is A(ξ, η). The rate of the chemical reactions
depends on the concentration and the internal state in f (u, ξ )
but is independent of time and space. At the boundary ∂� of
� the molecules are reflected and the scalar diffusion γ (ξ ) is
allowed to depend on the internal state. Then, u satisfies, for
t > 0,

ut (x, t, ξ ) = ∇ · (γ (ξ )∇u(x, t, ξ ))

+
∫

�

A(ξ, η)u(x, t, η) dη + f (u, ξ ) (6)

for x ∈ �, ξ ∈ �,

n · ∇u = 0 (7)

for x ∈ ∂�, ξ ∈ �. The subscript t denotes a time derivative.
Let us begin with the equation for the diffusion and change

of internal state and ignore the reactions in f . The total
amount of the species

∫
�

∫
�

u(x, t, ξ ) dξ dx should remain
constant for mass conservation. By integrating (6) over � and
� using the boundary condition on ∂�, we obtain the time
derivative

∂t

∫
�

∫
�

u(x, t, ξ ) dξ dx

=
∫

�

∫
�

∇ · (γ (ξ )∇u(x, t, ξ )) dx dξ

+
∫

�

∫
�

∫
�

A(ξ, η)u(x, t, η) dη dx dξ

=
∫

�

γ (ξ )
∫

∂�

n · ∇u(x, t, ξ ) ds dξ

+
∫

�

∫
�

u(x, t, η)
∫

�

A(ξ, η) dξ dη dx

=
∫

�

∫
�

u(x, t, η)
∫

�

A(ξ, η) dξ dη dx. (8)

The time derivative of the total amount must vanish for all u.
Thus, a sufficient condition on A for this to hold is∫

�

A(ξ, η) dξ = 0. (9)

The observable U (x, t ) denotes the concentration of the
molecule independent of its internal state and is defined by

U (x, t ) =
∫

�

u(x, t, ξ ) dξ. (10)

If A is chosen as in (9) then by (6), U in (10) satisfies

Ut (x, t ) = ∇ ·
∫

�

γ (ξ )∇u(x, t, ξ ) dξ. (11)

There is an ordinary diffusion equation for U only if γ is inde-
pendent of ξ . With a diffusion tensor γ̃i (x, t ), i = 1, . . . , d,

such that

γ̃i (x, t ) =
∫

�

γ (ξ )∂xi
u(x, t, ξ ) dξ/∂xi

∫
�

u(x, t, ξ ) dξ,

(11) can be written

Ut = ∇ · (γ̃ (x, t )∇U ), (12)

but in general γ̃ is not known explicitly.
A particular choice of A is

A(ξ, η) = [μ(ξ ) − δ(ξ − η)]T (η) (13)

with the Dirac measure δ. Then, (9) is fulfilled if μ is scaled
such that ∫

�

μ(ξ ) dξ = 1. (14)

In order to find the steady state solution of (6), we set
tentatively

u∞(ξ ) = μ(ξ )/T (ξ ). (15)

Clearly, ∫
�

A(ξ, η)u∞(η) dη = 0, (16)

and u∞ is indeed a steady state solution of (6). A natural
convention is to let μ(ξ ) � 0 and T (ξ ) > 0 for u∞ to be a
non-negative concentration.

2. Discretization in space and internal states

Let � be discretized by a triangular (2D) or tetrahedral
(3D) primal mesh with nodes at xi , i = 1, . . . , J . The dual
mesh consists of voxels Vi , i = 1, . . . , J , as in [29]. Each
node xi is associated with one voxel Vi . The solution u of (6) is
approximated by the finite element method using linear basis
functions ϕi (x) satisfying ϕi (xi ) = 1 and ϕi (xj ) = 0, j �= i.
The internal state space � is partitioned into K intervals
Ik = [ξk−1, ξk], k = 1, . . . , K, of length �ξ = ξmax/K . In
each interval k there is a basis function ψk such that
ψk (ξ ) = 1/

√
�ξ, ξ ∈ Ik , and ψk (ξ ) = 0 otherwise. Then,

uh approximating u is

uh(x, t, ξ ) =
J∑

j=1

K∑
l=1

ujl (t )ϕj (x)ψl (ξ ). (17)

Insert uh into (6), multiply by a test function ϕi (x)ψk (ξ ) in a
tensor product finite element space, and integrate over � × �

to derive an equation for the evolution of ujl . If ξ in (6) is in-
terpreted as a random variable determining the diffusion, then
(17) is the approximation suitable for a stochastic Galerkin
method to solve (6) [52].

Let Eα be a triangular element in 2D or a tetrahedral
element in 3D with area or volume |Eα| and Tij the set of
triangles or tetrahedra with a common edge ij between nodes
i and j . The Kronecker delta is denoted by δij . An element in
the stiffness tensor S is then

Sijkl = −
∑

Eα∈Tij

∫
Eα

∇ϕT
i |Eα

∇ϕj |Eα
dx

∫
�

γ (ξ )ψk (ξ )ψl (ξ ) dξ

= −
∑

Eα∈Tij

∇ϕT
i |Eα

∇ϕj |Eα
|Eα|γkδkl = γkSij δkl, (18)

where γk is the average of γ (ξ ) in Ik . In the diagonal element
with i = j , the integration domain in x is over all Eα with a
corner at xi . Choose γk to be γ0T (k) and let T be the matrix
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with T (k) in the diagonal. Hence, with a stiffness matrix S the
stiffness tensor in (18) can be written

S = γ0S ⊗ T, (19)

where ⊗ denotes the Kronecker product.
The mass tensor M̃ is defined by

M̃ijkl =
∑

Eα∈Tij

∫
Eα

ϕi (x)ϕj (x) dx
∫

�

ψk (ξ )ψl (ξ ) dξ

= M̃ij δkl . (20)

The first part of M̃ depends on the geometry and is lumped
and replaced by a diagonal matrix M such that

Mij = Miδij , Mi =
J∑

l=1

M̃il . (21)

Then, by (20)

M̃ijkl = Miδij δkl . (22)

An element in the tensor discretizing the operator A for
change of internal state is

Aijkl = −
∑

Eα∈Tij

∫
Eα

ϕi (x)ϕj (x) dx

×
∫

�×�

A(ξ, η)ψk (ξ )ψl (η) dξ dη = κ0M̃ijAkl, (23)

where Akl is an element in the matrix A and κ0 is a freely
choosable scaling of A that denotes how fast the molecules
change their internal state. Thus, A can be written as
A = κ0M ⊗ A after mass lumping of M̃ .

Let eJ be defined by eT
J = (1, 1, . . . , 1) ∈ RJ and

let μ(ξ ) be a piecewise constant function such that
μ(ξ ) = ∑K

k=1 μkψk (ξ ). Then, the matrix-vector forms of the
condition in (9), the special choice of A in (13), the scaling of
the components of μ = (μ1, . . . , μK )T in (14), and the null
vector ui∞ = (ui∞1, . . . , ui∞K )T of A in (15) are

eT
KA = 0, A = (

μeT
K − IK

)
T, eT

Kμ = 1,

ui∞ = T−1μ =⇒ Aui∞ = 0, (24)

where IJ is the identity matrix of dimension J × J . These
properties are shared by A in [46,47]. Since eT

KA = 0, there
is one eigenvalue of A equal to 0 with eigenvector ui∞.
The diagonal elements of A are negative and it follows from
Gerschgorin’s theorem that the real parts of the eigenvalues of
A are nonpositive.

The diffusion matrix D is defined by

D = γ0M−1S. (25)

With the expressions derived in (19) and (23) and multiplica-
tion by the inverse of the lumped mass matrix, the discretized
equation (6) for all concentrations u is

ut = γ0(D ⊗ T)u + κ0(IJ ⊗ A)u, (26)

or for the concentration ui in voxel i

uit = γ0T

⎛
⎝ ∑

j∈J (i)

Dij uj + Diiui

⎞
⎠ + κ0Aui , i = 1, . . . , J.

(27)
The index set J (i) consists of the indices j with an edge
connecting xi and xj implying that Dij �= 0. The vector
u ∈ RJK has components uik, i = 1, 2, . . . , J,

k = 1, 2, . . . , K, denoting the concentration in the internal
state k at node or voxel i and ui is a subset of u restricted to
all the internal states in voxel i.

The mean values ȳik of the copy numbers of the species
satisfy (27) with ui = |Vi |−1ȳi :

ȳit = γ0T

⎛
⎝ ∑

j∈J (i)

Sij

|Vj | ȳj + Sii

|Vi | ȳi

⎞
⎠ + κ0Aȳi

= γ0T

⎛
⎝ ∑

j∈J (i)

λji ȳj − λi ȳi

⎞
⎠+κ0Aȳi , i = 1, . . . , J (28)

where λji, Sij , and Dij in (27) and (28) are related by

λji = Sij

|Vj | , Dij = |Vj |
|Vi | λji,

λi = −Dii,
∑

j∈J (i)

|Vj |λji = |Vi |λi,
∑
i,i �=j

λji = λj (29)

(see [29]). The vector ȳ holds ȳi , i = 1, . . . , J, stored con-
secutively. With �ij = λji , the equation for ȳ is similar
to (26):

ȳt = γ0(� ⊗ T)ȳ + κ0(IJ ⊗ A)ȳ. (30)

The sum of the components in ȳ is

J∑
i=1

K∑
k=1

yik = (eJ ⊗ eK )T ȳ. (31)

By (29) we have eT
J � = 0. Hence,

((eJ ⊗ eK )T ȳ)t = (eJ ⊗ eK )T ȳt

= γ0
(
eT
J � ⊗ eT

KT
)
ȳ

+ κ0
(
eT
J IJ ⊗ eT

KA
)
ȳ = 0, (32)

since eT
KA = 0 in (24). Consequently, the sum in (31) is

constant in time:
J∑

i=1

K∑
k=1

yik (t ) =
J∑

i=1

K∑
k=1

yik (0), t > 0. (33)

The jump coefficients λji � 0 are proportional to the prob-
ability of a molecule in voxel Vj to jump to Vi in a stochastic
simulation of the system [29]. A non-negative λji is required
for an interpretation of it as a probability. In a mesh of poor
quality, λji may be negative due to an Sij < 0 in the finite
element discretization but corrections are derived in [53,54]
such that λji � 0 on any mesh.

It follows from the properties of λji in (29) and A
in (24) that there is a stationary solution ȳi∞ = viT−1μ,
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i = 1, . . . , J, with vi = |Vi | to (28) such that

ȳi∞t = γ0T

⎛
⎝ ∑

j∈J (i)

λji ȳj∞ − λi ȳi∞

⎞
⎠ + κ0Aȳi∞ = 0. (34)

Hence, with ȳ∞ = ȳv ⊗ T−1μ in (30)

ȳ∞t = γ0ȳ�v ⊗ μ + κ0ȳv ⊗ AT−1μ = 0. (35)

The equation for the concentration observable Ui = eT
Kui

in Vi [cf. (10)] is, by (26) and (24),

Uit = γ0

⎛
⎝ ∑

j∈J (i)

Dij eT
KTuj + DiieT

KTui

⎞
⎠. (36)

An explicit equation for Ui is obtained if we knew the diffu-
sion coefficient

γ̂j (t ) = γ0eT
KTuj /Uj (37)

in Vj . Then, by (25), (36) is rewritten

Uit =
∑

j∈J (i)

γ̂j (t )
Sij

|Vi |Uj + γ̂i (t )
Sii

|Vi |Ui. (38)

The stiffness matrix with a variable diffusion in space and
time in (12) is

S̃ij (t ) = −
∑

Eα∈Tij

∫
Eα

∇ϕT
i |Eα

γ̃ (x, t )∇ϕj |Eα
dx

= −
∑

Eα∈Tij

∇ϕT
i |Eα

∇ϕj |Eα
γ̃α (t )|Eα| = γ̃ij (t )Sij , (39)

where γ̃α is the spatial average of γ (x, t ) in element Eα and
the last equality defines γ̃ij as in (18). Then, using S̃ij in (39),
the discretization of (12) is

Uit =
∑

j∈I(i)

S̃ij

|Vi |Uj + S̃ii

|Vi |Ui

=
∑

j∈I(i)

γ̃ij (t )
Sij

|Vi |Uj + γ̃ii (t )
Sii

|Vi |Ui. (40)

Thus, (38) is a discretization of (12) with a time varying γ̂j .
The diffusion coefficient γ̃ij along the edges in the direct
discretization of (12) in (40) is approximated by γ̂j at the
nodes in (38).

The partitioning of the internal state space � into intervals
Ik = [ξk−1, ξk] is generalized somewhat by allowing intervals
of different length �ξk = ξk − ξk−1 where the ξk’s no longer
are equidistant. Let δT = (�ξ1, . . . ,�ξK ) and let � be a
diagonal matrix with �ξk on the diagonal. Then, the discrete
relations corresponding to (9), (13), and (14) are

δT A = 0, A = (μδT − IK )T, δT μ = 1 (41)

[cf. (24)]. The null vector ui∞ of A satisfies the same equation
as in (24). The relation between the concentration in voxel i

and internal state k and the copy number in the same voxel
and state is uik = |Vi |−1�ξ−1

k ȳik . Multiply the equation for ui

[Eq. (27)] by |Vi | and � to obtain an equation for ȳi as in (28).

Then, the new T� and the new A� in (27) will be

T� = �T�−1 = T,

A� = �A�−1 = �μδT T�−1 − T

= (
�μeT

K − IK

)
T (42)

since T is diagonal. This A� replaces A in Eqs. (28), (30),
(34), and (35) for ȳi . By allowing variable �ξk , better reso-
lution of parts of � can be achieved, but in order to simplify
the notation, we assume henceforth that the interval length is
constant �ξk = �ξ .

3. Several species and reactions

Assume that the diffusion coefficient γ0 and that the tran-
sition matrix A are the same for all species in the system.
The components of the copy number vector ȳ in (28) are
ȳik� where � = 1, 2, . . . , L, denotes the molecular species.
The reactions are assumed to be the same in every voxel
independent of space, depending only on the copy number in
the voxel as in (6). They are also assumed to be the same in
each internal state except for a scaling with G. In model I for
the reactions in [47], G = T, and in model II, G = I. Then,
the reaction-diffusion equation is derived by adding a reaction
term eJ ⊗ g ⊗ f with g = GeK to (26), thus extending the
solution ȳ in (28) by the number of molecules of the different
species. In the reaction term, f in the eigkf element of eJ ⊗
g ⊗ f in voxel Vi and internal state k depends on ȳik ∈ RL, the
state vector of copy numbers of the L different species in Vi

in internal state k. Including reactions, Eq. (35) then becomes

ȳt = γ0(� ⊗ T ⊗ IL)ȳ

+ κ0(IJ ⊗ A ⊗ IL)ȳ + eJ ⊗ g ⊗ f . (43)

Unless f is affine in ȳ, the solution of this macroscopic
reaction-diffusion equation only approximates the mean val-
ues of the number of molecules in the mesoscopic model (see,
e.g., [55]). If T = IK in (43), then the diffusion is the same for
the molecules in all internal states but the reaction rates in f
may still be dependent on the internal states.

III. CONNECTING THE MULTISCALE
AND THE INTERNAL STATES MODELS

A constructive procedure to incorporate the coarse-grained
diffusion coefficients into the internal state framework is pro-
posed in this section. Briefly, the computed statistical distri-
bution of the effective diffusion rates due to different possible
crowder distributions is used to determine the parameters in
the internal state model. The crowding model induces errors
caused by the discretization, the statistics, and the coarse
graining. These inaccuracies are analyzed and alternative
ways to obtain the necessary data are discussed.

A. Coarse graining the diffusion coefficient

If the obstacles are stationary and their shapes and po-
sitions are known, then the effect of the crowding can be
computed directly as in Sec. II A and there is no need for
internal states.
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FIG. 3. Histogram counts of γ /γ0 for different fractions of oc-
cupied volume φ. (a) Detailed resolution in φ with K = 10 bins
for Q = 100 different circular crowder distributions in 2D, where
R/ρ = 0.1 and r/ρ = 0.1. (b), (c) Less resolution in φ and finer
resolution in the internal states with K = 15 bins for Q = 500
different crowder distributions with circular obstacles (b) and a mix
of circular and rectangular obstacles (c).

If the obstacles are mobile, it would be too expensive
computationally to determine a γ (t ) in every time step of
a discretized equation (40) and also all details of how the
obstacles are moving are likely not known. Instead, γ is
sampled from a stationary distribution. This distribution is
computed with a circle or sphere of radius ρ circumscribing
a voxel of a typical size in the mesh as in Fig. 2. The tracer

is a circle with radius r and the obstacles are either circles
with radius R or rectangles with the same area. The obstacles
are randomly distributed inside ω∗ for a given percentage of
occupied volume φ. Then, we compute γ by evaluating (5)
at the center x0 and collect statistics. These distributions ef-
fectively approximate the probability density function (PDF)
pγ (γ, φ) (see Fig. 3), and the joint distribution for γ and φ can
be determined if the PDF pφ (φ) of φ is known. In Fig. 3(c),
the tracer is circular and half of the crowders are circular and
the other half are rectangles with the same area and a side ratio
of about 1 : 5. When 0.1 < φ < 0.25 the γ distributions are
close to normal. When φ > 0.3 the molecule will not reach
∂ω∗ for many obstacle configurations implying that E(x) →
∞ and γ /γ0 → 0 in (5). Since elongated obstacles impede
the diffusion of tracer molecules more effectively [38], the
distributions with mixed crowder distributions in Fig. 3(c)
are shifted towards 0 compared to those with only circular
crowders in Fig. 3(b) leading to a slower effective diffusion γ .

The effects of a deterministic φ(x) variable in space are
studied in [56]. Sampling a new γ for the moving molecule
after �t accounts in [56] for the movement of the crowder
molecules during that time step. This γ sampling corresponds
to the molecules switching their internal states, and we will
couple the statistics in Fig. 3 to A and T in (30) in the next
section.

B. Diffusion coefficients in internal states

A molecule in different internal states k in Sec. II B has dif-
ferent diffusion coefficients γk and switches its state according
to κ0A. We sample these γk from the stationary distributions
in Sec. III A for a given φ and the frequency of the state k

being fk . The elements of A are computed using γk and fk .
Let τ be the overall time scale for the speed of switching

of the internal states and let κ0 = 1/τ . A large τ with κ0 � γ0

implies that the timescale of switching the internal states is
slower than the scale of diffusion. A physical interpretation is
that the crowding obstacles move slowly and the tracer hence
diffuses with the same γk for a long time. If instead τ is small,
then the motion of the obstacles is fast compared to the tracer
molecules.

The quotient between the diffusion coefficient with crowd-
ing γk in internal state k obtained by coarse graining and the
coefficient γ0 in free space is denoted by θk = γk/γ0 ∈ [0, 1].
The diffusion in the kth internal state in (26), (27), and (28) is

γk = γ0θk = γ0Tkk. (44)

Hence, Tkk = θk . Let the ordering of the internal states be such
that γk � γk+1.

The stationary distribution in the internal states is
μk/Tkk = μk/θk, k = 1, . . . , K, in (15) and (24). We now set
this stationary distribution proportional to the frequency fk of
the state k computed by the homogenization in Sec. III A:

μk

θk

∝ fk,

and after normalizing with
∑K

j=1 μj = 1 we obtain

μk = fkθk∑K
j=1 fjθj

. (45)

033304-7



STEFAN ENGBLOM, PER LÖTSTEDT, AND LINA MEINECKE PHYSICAL REVIEW E 98, 033304 (2018)

The transfer matrix in (13) and (24) is defined by

Aij = μiθj , i �= j, Aii = (μi − 1)θi, (46)

as in [47]. The stationary probability pk = p(γk|φ) to be in
internal state k is proportional to fk and μk/θk . With a scaling
such that

∑K
j=1 pj = 1, we have

pk = fk∑K
j=1 fj

= μk/θk∑K
j=1 μj/θj

. (47)

Using (44) and (47), the expected diffusion rate for a molecule
in the stationary state is

γ̄ =
K∑

j=1

γjpj = γ0

∑K
j=1 fjθj∑K
j=1 fj

� γ0, (48)

and the variance scaled by the square of the mean is

var[γ ]

γ̄ 2
= γ̄ −2

K∑
j=1

(γj − γ̄ )2pj =
K∑

j=1

μj

θj

K∑
j=1

μjθj − 1.

(49)

The mean diffusion coefficient γ̄ in (48) is reduced compared
to diffusion in free space γ0 if at least one θk < 1. Both A
in (46) and γ̄ in (48) are determined uniquely by γk and the
corresponding fk .

The statistics in Fig. 3 can be used to introduce more
internal states to represent also different crowding densities
φj . Both γi and φj are then sampled from the joint distribution
by changing the internal states.

C. Uncertainty quantification

The dynamics of the internal state model in A and the
stationary solution μk/θk are determined by θk and μk . The
data fk, pk, and γk may be contaminated by errors �f, �p,

and �γ which propagate to θk and μk and the stationary
solution. Three types of errors are considered here: a statistical
error, an approximation error, and a model error. The space
� = [0, 1] is partitioned into K bins of size �ξ = 1/K with
γk/γ0 as the midpoint in the kth interval in Sec. III A and
Fig. 3.

In the figures, Q random distributions of obstacles are first
generated and then the viscosity γ /γ0 is computed by (5).
The random variable Fk counts the number of samples with
γ /γ0 in the kth bin. The probability to be in bin k is πk

with
∑

k πk = 1. The distribution of Fk is multinomial with
mean Qπk and variance Qπk (1 − πk ). We take the standard
deviation

√
Qπk (1 − πk ) as an estimate of the statistical error

�fk in fk . Since
∑

k fk = Q it follows from (47) that pk

estimates πk and as the error in pk we take the sample standard
deviation �pk = √

pk (1 − pk )/Q. This error is reduced by
increasing the number of samples Q. The statistical error at
φ = 0.2 and θ5 = 0.45 in Fig. 3 is estimated to be �p5 ≈√

0.4 × 0.6/100 ≈ 0.05.
Recalling that θ equals γ scaled by γ0 in (44), a smooth

PDF π (θ ) is approximated by a step function
∑

k pkψk (θ ) in
Fig. 3 where ψk is defined in the beginning of Sec. II B 2. The
difference between π and the sum has a leading term in the

time
10 0 10 1

M
S

D

10 -2

10 -1

(a) 

time
10 0 10 1

M
S

D

10 -2

10 -1

(b) 

FIG. 4. Simulation of coarse-grained subdiffusion in 2D. (a) The
mean-square displacement as a function of time (top solid red).
The dashed curves are obtained with the initial and the steady state
diffusion, γ0 and γ̄ , and the slope of the comparison curve tα is
α = 0.7 (bottom solid blue). (b) As above, but with a four times
faster diffusion of obstacles and hence faster scaling of time for the
switching between internal states, κ0 → 4κ0, resulting in a faster
approach to the steady state diffusion (but still such that α = 0.7
for the comparison slope). These plots are computed with data for
φ = 0.35 in Fig. 3(a).

interval Ik which is

π (θ ) − pk = π ′(θk )(θ − θk ).

Thus, the error in the PDF in Ik is bounded by �pk �
maxθ∈Ik

|π ′
k||θ − θk| � |π ′

k|/2K. This error is reduced by in-
creasing K . A bound on the approximation error at φ = 0.2
and θ6 = 0.55 in Fig. 3 is �p6 � 1.5/2 × 10 = 0.075 since
π ′

6 ≈ 1.5.
In [38, Fig. 4(e)], the θ values determined by (5) are

compared to θBD obtained by BD simulations with the same
obstacle distribution using Smoldyn [39]. The BD model is
considered to be more accurate and the comparison is a test
that the procedure behind (5) is accurate. This is expected
since the solution to (2) is the analytical mean first exit
time for a particle moving with Brownian diffusion in �.
Possible causes of bias in (5) are the numerical solution of
(2), the release of the molecule in the center of the circle,
and the restriction to distributions where there is no obstacle
in the center. The sources of error in θBD are the number
of BD trajectories and the finite length of the time steps
in the simulation. The θ from (5) is in the middle of the
interval [θBD − �θ, θBD + �θ ] where �θ ≈ 0.05 for φ = 0.1
and �θ ≈ 0.1 for φ = 0.3 in [38]. This deviation is likely to
decrease with more BD simulation samples.

The errors in pk and θk will cause an error �μk in μk and
the stationary solution ui∞k = μk/θk . It follows from (45),
(47), and (48) that μk = pkγk/γ̄ and the dominant term in
the perturbation due to the statistical or approximation error
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�pk is

�μk = �pk

γk

γ̄
. (50)

Thus, the stationary solution is perturbed by �μk/θk =
�pkγ0/γ̄ . Since ui∞k = pkγ0/γ̄ , a perturbation �θj in θj

will introduce a relative error �ui∞k/ui∞k in the stationary
solution which is

�ui∞k

ui∞k

=
(

pkγ0

γ̄ + pj�γj

− pkγ0

γ̄

)/
ui∞k

= −pj

�γj

γ̄
= −pj

γ0

γ̄
�θj . (51)

In Fig. 3, γ0/γ̄ ≈ 1.3 for φ = 0.1 and with |�θj | � 0.05 the
relative error is |�ui∞k/ui∞k| � 0.065pj independent of k.
To conclude, all pieces of the numerical model are subject to
uncertainties which can be controlled by employing a more
accurate but also more costly numerical setup.

D. Alternatives

The coefficients μk and θk and the probability mass func-
tion pk, k = 1, . . . , K, are determined from collected coarse-
grained data for the diffusion in crowded environments in
Sec. III A. It is sufficient to know fk or pk for γk or γk/γ0

where γ0 = maxk γk to derive μk and θk in (44) and (47).
These parameters can be obtained from other sources than in
Secs. II A and III A.

In [46] and [47, Sec. 4.1], α in (1) is given. Then, μk, θk,

and pk are computed for this α in an approximation of the
waiting time for the next diffusive jump to take place. If a
distribution for α is known as in [57,58] from observations of
trajectories, then since p(γ ) = ∫ 1

0 p(γ |α)p(α) dα a quadra-
ture rule for pk is pk = ∑L

l=1 p(γk|αl )p(αl )/L with αl chosen
equidistantly in [0, 1].

The concept of diffusing diffusivity is introduced in [59].
The purpose is to be able to reproduce the observed behavior
that the MSD is linear in t , yet the distribution of the dis-
placement is non-Gaussian for a short time. Then, there is a
crossover in time and after that the distribution is Gaussian.
The diffusion coefficient varies randomly in time with a
stationary distribution of γ , pk ∼ exp(−γk/γ∗) where γ∗ is
a scaling factor of the diffusion. Such a distribution is close
to the ones for φ � 0.35 in Fig. 3. This model is analyzed in
[59,60].

In general, pk can be determined by Bayesian methods
using data on the motion of molecules. Suppose that tra-
jectories of molecules are available, either from experiments
or simulations with BD, then a Markov chain Monte Carlo
(MCMC) algorithm [61] computes the PDF of the distribution
of γ .

IV. ANALYTICAL DISTRIBUTIONS

Consider an open chemical system with the monomolec-
ular reactions degradation, conversion, and production from
a source and include diffusion between voxels i and j and a
switch of internal states between k and l. Then, the transfor-

mations of the species are

Aik �Ajk, Aik �Ail, Aik −→ Bik,

Aik −→ ∅, ∅ −→ Aik. (52)

In order from left to right, the reactions in (52) are as follows:
change of voxel by diffusion, change of internal state in
a voxel, conversion from A to B in the same voxel and
internal state, degradation of A, and production of A. When
the reaction propensities are independent of, or linear in, the
copy numbers, the expression for the probability distribution
of molecules solving the reaction-diffusion master equation
is known explicitly at the stochastic, mesoscopic level of
modeling (see [55,62]).

The analytical solutions of the PDFs of the chemical net-
works in (52) are in this section used to derive the macroscopic
diffusion coefficient in (37) and the statistical properties of the
random molecular numbers of the species in the steady state. It
is shown that the copy numbers of the molecules in the voxels
are multinomially distributed where the parameters satisfy a
system of ordinary differential equations of the same type as
in Sec. II B 2. This system has a solution in agreement with
the solutions in Sec. III B and can be solved explicitly in the
steady state.

A random vector Y with entries Yik� is the state vector
for the copy number of species � in internal state k in voxel
i. The mean value of Y is denoted by ȳ in Sec. II B 2. We
determine the probability distribution of Y analytically for the
transformations in (52).

If the chemical system has the monomolecular reactions
conversion and degradation as in (52) except for the produc-
tion of A, then the system is closed and f in (43) in voxel i in
internal state k is

f (ȳik ) = Rȳik, (53)

where R is constant and R ∈ RL×L. For such an f we have the
stationary solution ȳik∞ satisfying

Rȳik∞ = 0. (54)

Initially, there are N molecules in the system. If ∅ is regarded
as a special species, then the number of molecules N is con-
stant. No molecules are created and no molecules disappear. If
there is degradation, the system may end up with all molecules
in ∅.

The PDF of the multinomial distribution M(N, p) for y
with M = JKL states is

pM(y, p) = N !

y1! · y2! . . . yM !
p

y1
1 p

y2
2 . . . p

yM

M ,

M∑
m=1

ym = N.

(55)

Here, m is the global index m = 1 + (j − 1) + (k − 1)J +
(l − 1)JK for the state jkl to simplify the notation. The
probability for a molecule to be in state m at t is pm(t )
and hence

∑M
m=1 pm = 1, pm � 0. Assume that the initial

distribution of Y at t = 0 in the chemical system is M(N, p0).
Then, it is proved in [62] that the joint distribution of Y for all
molecules for t > 0 is multinomial M(N, p(t )) where p(t )
solves

pt = Bp, B = γ0� ⊗ T ⊗ IL

+ κ0IJ ⊗ A ⊗ IL + IJ ⊗ G ⊗ R, (56)
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with initial data p(0) = p0. The system matrix B is identical
to the one in (43) where

eJ ⊗ g ⊗ f = IJ ⊗ G ⊗ Rp

for our monomolecular reactions.
Let Ww, w = 1, . . . ,W, be subsets of IM =

{1, 2, . . . , M} such that
⋃W

w=1 Ww = IM and introduce

Zw =
∑

m∈Ww

Ym, qw =
∑

m∈Ww

pm, z ∈ RW . (57)

Then, by the properties of the multinomial distribution, the
PDF of Z is

P (t, z) = pM(z, q(t )). (58)

In particular, if z ∈ N2, i.e., W = 2 and zw is integer and non-
negative, then the distribution is binomial.

The stationary distribution when t → ∞ is

lim
t→∞ P (t, y) = pM(y, p∞), (59)

where p∞ is the solution of

Bp∞ = 0. (60)

The vectors v with vi = |Vi | and T−1μ satisfy �v = 0 and
AT−1μ = 0 as in (35). Let p�∞, pA∞, and pR∞ satisfy

p�∞ = η�v, pA∞ = ηAT−1μ, RpR∞ = 0, (61)

with pR∞ and scalings η� and ηR chosen to fulfill
‖p�∞‖1 = ‖pA∞‖1 = ‖pR∞‖1 = 1. The stationary distribu-
tions p�∞, pA∞, and pR∞ are all independent of γ0 and κ0.
If the reaction matrix R is irreducible such that the chemical
network cannot be decomposed into two or more independent
networks, then there is a pR∞ with non-negative components
pR∞,i in (61) [55,62]. It follows from (60), (56), and (61) that

p∞ = p�∞ ⊗ pA∞ ⊗ pR∞, ‖p∞‖1 = 1. (62)

With the conversion reaction in (52), R is such that
eT
LR = 0. It follows from (32) and (56) that

(eJ ⊗ eK ⊗ eL)T B = 0. (63)

Using (56), we find that(
eJ ⊗ eK ⊗ eT

Lp
)
t
= (eJ ⊗ eK ⊗ eL)T pt = 0, (64)

and the probability is preserved

‖p(t )‖1 = ‖p(0)‖1 = ‖p∞‖1 = 1, (65)

with a properly chosen initial solution p0 = p(0).
When the timescale of the diffusion is fast with a large

τ = κ−1
0 � γ −1

0 , then by (46) κ0A is negligible in (56) since A
is of O(1). Spatial gradients disappear rapidly and the system
becomes well stirred. On the contrary, if τ is small, then
κ0A dominates and there is a fast equilibration in the internal
states such that the solution is (after reordering the unknowns
pik�) p(t ) ≈ p′(t ) ⊗ pA∞ and IJ ⊗ IL ⊗ Ap ≈ (IJ ⊗ IL)p′ ⊗
ApA∞ = 0 in the second term in B in (56).

The expected value uik� of the concentration of species �

in voxel i and internal state k is given by

uik�(t ) = E

[
Yik�

|Vi |
]

= N

|Vi |pik�(t ) = ȳikl

|Vi | . (66)

Since the mean values of the copy numbers y(t ) satisfy (56),
u in (66) satisfies an equation like (26) with an additional
reaction term.

The diffusion coefficient in the equation for the observable
Ui� in (38) in voxel i and species � with eT

Kpi�(t ) > 0 is by
(37), (66), and (44):

γ̂i�(t ) = γ0
eT
KTpi�(t )

eT
Kpi�(t )

= γ0

∑K
k=1 θkpik�(t )∑K
k=1 pik�(t )

� γ0 (67)

since 0 � θj � 1 [cf. (48) for the stationary case]. The time
dependent diffusion coefficient γ̂i�(t ) depends on p0 and the
dynamics of B in (56). It is bounded from above by the
nominal coefficient γ0 and as t → ∞, γ̂i�(t ) approaches γ̄

in (48).
Suppose that the error in θk satisfies |�θk| � �θ . Such

a bound can be determined from the formulas in Sec. III C.
Then, a bound on the error in γ̂i� in (67) is

|�γ̂i�(t )| = γ0

∣∣∣∣∣
∑K

k=1 �θkpik�(t )∑K
k=1 pik�(t )

∣∣∣∣∣ � γ0�θ. (68)

A simpler alternative to γ̂ in (67) is to derive the random
diffusion field in (38) as follows. First, discretize the time
derivative in (38) at tn, n = 0, 1, . . ., and sample γ̂ n

j with
the stationary distribution in (47). Then, we have a numeri-
cal approximation of the parabolic PDE (12) discretized by
finite elements in (38) with a random, space and time de-
pendent diffusion coefficient field γ̃ with mean and variance
(48) and (49).

The sum of the molecules over the internal states in each
voxel and for each species is denoted by

Zi� =
K∑

k=1

Yik�. (69)

Since Y is multinomially distributed with parameters p, Z is
also multinomially distributed M(N, q) according to (57) and
(58) where q has the components

qi�(t ) =
K∑

k=1

pik�(t ). (70)

At the stationary distribution, q is

qi�∞ =
K∑

k=1

p�∞,ipA∞,kpR∞,� = p�∞,ipR∞,�. (71)

The observable Ui� is the expected value of the concentration
of species � in Vi :

Ui�(t ) = E

[
Zi�

|Vi |
]

= N

|Vi |qi�(t ). (72)

Using (71), we find that the steady state solution U∞,i� is
independent of i and thus constant in space. The variance of
the concentration is

var

[
Zi�

|Vi |
]

= N

|Vi |2 qi�(t )[1 − qi�(t )]. (73)
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The number of voxels J is often large making qi�(t ) ∝ 1/JL

and small and the variance is approximately Nqi�(t )/|Vi |2 =
Ui�/|Vi |. The covariance between species � in voxel i and
species m in voxel j is

cov

[
Zi�

|Vi | ,
Zjm

|Vj |
]

= − N

|Vi ||Vj |qi�(t )qjm(t ). (74)

The covariation between the voxels is negative and since qi�

is usually small, it is very small. The mean and the variance
of the copy numbers Zi� are

E[Zi�] = Nqi�(t ), var[Zi�] = Nqi�(t )[1 − qi�(t )]. (75)

The Fano factor var[Zi�]/E[Zi�] is 1 − qi�(t ) and close to 1,
which is the factor of a Poisson process.

A similar analysis is possible for a chemical system when
all monomolecular reactions in (52) are included. If the copy
numbers Y in the states of the system are Poisson distributed
initially, then they will remain Poisson distributed with rate
parameters satisfying an equation like (56) and (43) (see [62]).

V. NUMERICAL EXAMPLES

We now proceed to illustrate the behavior of the suggested
coarse-grained model of subdiffusion in stochastic simulation
of trajectories of the chemical network. After first briefly
summarizing the simulation algorithm in Sec. V A, we look at
the mean-square displacement of subdiffusing molecules on a
circle with different distributions of the diffusion coefficient
in Sec. V B using a finite element discretization over a trian-
gular mesh to discretize the required diffusion operator as in
Sec. II B 2. In Sec. V C, we investigate the available range of
dynamics when bimolecular reactions are included. Finally,
in Sec. V D we look at potential subdiffusive effects when
simulating a realistic three-dimensional model of a subsystem
of an E. coli model. In all examples, the mesoscopic internal
states model with variable diffusion coefficients is determined
as in Sec. III. With repeatability and reproducibility in mind,
the models tested here will be released in the coming version
1.4 of our freely available software URDME [28,63].

A. Stochastic simulation algorithm

The direct simulation method [24] by Gillespie determines
the time for the next reaction event and which event that will
take place. For spatial problems, the state of the chemical
system is a random variable Y ∈ NJKL and is defined by the
number of molecules of each species in the internal states
in each voxel. The simulation method of choice is then the
next subvolume method (NSM) [25]. The probabilities for
the events are given by the coefficients in � ⊗ T (diffusion),
A (change of internal state), and the reaction propensities in
f . The change of internal state in a voxel has the form of a
monomolecular reaction.

The NSM algorithm becomes time consuming with mul-
tiple internal states since many events simply change the
internal states without advancing the observable dynamics. A
parallel version suitable for modern multicore computers was
developed in [64] which is effective in dealing with events
taking place within spatial subdomains rather than between
them. We remark that introducing the internal states is a

TABLE I. Estimated values of subdiffusive constant α for differ-
ent values of φ in Fig. 3(a).

φ 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
α 0.84 0.85 0.80 0.75 0.76 0.75 0.69 0.59

way of simulating a system with a random, predetermined
diffusion coefficient γ (x, t ). Simulation of such a system
without internal states requires a special, more complicated
version of Gillespie’s algorithm to handle time dependent
coefficients [65].

B. Pure subdiffusion

There is experimental evidence that the diffusive transport
of molecules in cells is sometimes anomalous [6,11,45] with
a MSD as in (1). The reason for the subdiffusion may be
crowding effects by other molecules and the process is then
nonergodic with a memory (see, e.g., [42,66]).

The macroscopic observable U(x, t ) ∈ RL, e.g., the con-
centrations of the chemical species, satisfies a diffusion equa-
tion with a fractional time derivative [45]

∂U
∂t

= ∂1−α

∂t1−α
(γ�U), (76)

with 0 < α < 1 at least in a time interval t ∈ [t0, t1]. The frac-
tional derivative is defined according to Riemann-Liouville.
The internal state parameters μ and θ are given by statistics
obtained with the microscopic model in [38].

We compute the MSD (1) of the internal states model in
Fig. 4 by coarse graining into 10 states as in Fig. 3(a) follow-
ing the procedure described in Sec. III B using φ = 0.35 and
γ0 = 0.01. The geometry is the unit circle and the molecules
are released at time t = 0 in the center and in the fastest
diffusing internal state with γ10 = γ0θ10. Since there are no
reactions, all transition rates act linearly and the moment
equations are closed such that the mean-square displacement
can be accurately determined by solving (56) numerically for
p with L = 1 and R = 1 for the probability to be in voxel i.
Then, the MSD in (1) is 〈‖x(t )‖2

2〉 = ∑
i pi (t )‖xi‖2

2 where xi

is the center of voxel i.
The initial diffusion rate is γ0θ10 and, as t → ∞, γ

converges to γ̄ . The region in-between these two limits is
where the subdiffusive behavior is observed, and where α < 1
in (1) and (76). Initially and for large t , α = 1 and we have
ordinary diffusion. By scaling the internal transfer matrix
A with a different κ0 in (23), this region (indicated by the
comparison slope) can be varied accordingly (see Fig. 4),
where the same α is obtained with two different values of κ0.
Recall that κ0 models the speed of diffusion of the obstacles
and for an accurate description their average diffusion speed
should be known.

The α parameter in the MSD is determined in Table I for
different fractions of occupied volume φ in Fig. 3(a). These
values are obtained by least squares fitting within a window
of time in the same manner as in Fig. 4 and are therefore
subject to some degree of uncertainty. The trend is that the
more crowding with higher φ, the lower α is.
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FIG. 5. Results of the bimolecular reaction in (77) presented as
the time history of the number of resulting molecules C. The solid
colored lines represent simulations with Hij in the different cases,
from bottom to top: case 1 (blue with dots), case 2 (red with dots),
case 3 (smooth red), and case 4 (smooth blue), respectively. The
dashed line is the pure diffusion case with k0 as the single rate.

C. Bimolecular annihilation

Consider two species A and B undergoing the single
transition

Ai + Bj → C, (77)

with A in the internal state i and B in j and with an
arbitrary internal state for C. Let the rate for this transition
be Hij , i, j = 1, . . . , K . Then, the reaction propensity is
Hijaibj where ai and bj are the copy numbers of Ai and Bj .
Given an arbitrary non-negative rate matrix H, a steady state
probability distribution pA∞ of the internal states for both A

and B, and a target rate constant k0, we can always scale H
such that the mean rate agrees with the target at the steady
state

k0 = pT
A∞HpA∞. (78)

There is potentially great freedom in selecting the rate param-
eters subject to a scaling. Note that when Hij is independent of
i and j and H = k0eLeT

L , the internal states model agrees with
the standard model using a single target rate k0. The diffusion
in the internal states is as in the previous example.

We release A and B molecules at time t = 0, 105 of each
species, in 10 internal states uniformly in space in the unit disk
with all in the fastest (the 10th) diffusing state. Four different
cases of rate parameters are defined as follows:

(1) H1,1 = 1 and 0 otherwise.
(2) Hij = (11 − i)(11 − j ).
(3) Hij = ij .
(4) H10,10 = 1 and 0 otherwise.
Then, the parameters are rescaled such that H satisfies (78)

with k0 = 10−4. In cases 1 and 4, two molecules A and B

react only when they both are in the same voxel and in the
same internal state. The reaction rate decreases or increases
with the diffusion in cases 2 and 3. The combined effect of
internal states and reactions is modeled by H corresponding
to g ⊗ f in (43).

The result obtained from a single realization of the sys-
tem with URDME, visualized as the number of resulting C

molecules, is displayed in Fig. 5. The diffusion data are from

FIG. 6. A discretized model of an E. coli bacterium.

Fig. 3(a) at φ = 0.2. The extreme cases 1 and 4 where a single
rate in H is nonzero are clearly identifiable, as are the two
intermediate cases 2 and 3. The single state model is found in
the middle of all of these cases. Different choices of reaction
rates yield a range of different behavior. The idea that there
is a freedom in selecting the rate parameters opens up for
advanced coarse-graining methods.

While there are different procedures to derive the diffusion
rates in the internal states in A in Sec. III D, there is little
theory or data to compute the reaction rates in different
internal states in H. If data from detailed simulations of
reactions based on, e.g., analytic and simulation results in the
diffusion-limited regime [2,67,68], or computational methods
based on data from Brownian dynamics [39,40] or molecular
dynamics [69] simulations, these data could determine Hij .
Here, only examples of rate parameters are tested to see the
effect of different transitions between the internal states in the
reactions.

D. Min oscillations in E. coli

As a more involved example in three space dimensions, we
take the model from [70] of the Min system in the E. coli
bacterium. The geometry is rod shaped with length 3.5 μm,
diameter 1 μm, and discretized using 9761 tetrahedra (see
Fig. 6). MinD proteins oscillate from pole to pole in the cell
with a low concentration in the middle. These oscillations help
the cell locate its middle before cell division [71]. The five
reactions, five species, and reaction parameters from [70] are
found in Table II. Two of the species, MinDmem and MinDE,
are attached to the membrane and only diffuse there. The other
three species diffuse freely in the cytosol, where the effective
diffusion constant is γ0 = 2.5 μm2/s in [70]. Since the inside
of an E. coli is a highly crowded environment (cf. Fig. 1), it is

TABLE II. The chemical reactions of the Min system.
The constants take the values kd = 0.0125 μm−1 s−1, kdD = 9 ×
106 M−1 s−1 (here scaled by an additional factor of 1.65 in the nu-
merical experiments), kde = 5.56 × 107 M−1 s−1, ke = 0.7 s−1, and
kp = 0.5 s−1.

MinDcytATP
kd−−−→ MinDmem

MinDcytATP + MinDmem
kdD−−−→ 2MinDmem

MinE+MinDmem
kde−−−→ MinDE

MinDE
ke−−−→ MinDcytADP + MinE

MinDcytADP
kp−−−→ MinDcytATP
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FIG. 7. Two realizations of MinD oscillations in the membrane
of an E. coli bacterium. (a) The number of MinD molecules in the
leftmost (dashed red) and rightmost (solid blue) quarters of the bac-
terium, respectively. Top: ordinary diffusion without internal states.
Bottom: our coarse-grained subdiffusion model. (b) The Fourier
power spectrum of the pole oscillations of the two models: ordinary
diffusion (solid) and coarse-grained subdiffusion (dashed).

of interest to investigate the incorporation of subdiffusion due
to crowding and reaction rates depending on the internal state
in the mesoscopic model.

As a proof of concept and in order to demonstrate the
possibilities here, we scaled the critical binding reaction rate
kdD by a factor 1.65, thus bringing the kinetics into a more
sensitive regime compared to the original rate. The normally
diffusing model then displays stable oscillations of the Min
protein in the membrane (see upper left panel in Fig. 7).

As in the previous experiments, we employ 10 internal
states obtained from coarse graining with data from Fig. 3(a)
at φ = 0.2. For the binding reaction of state i, we multiply
kdD by a factor 1 + 0.03i meaning that the reactivity increases
with faster diffusion. We then rescale the resulting rate as
in (78) such that the steady state mean rate agrees with
the single state model. To bring in a bias we arbitrarily let
all reactions produce products in the fastest diffusing state
with i = 10 (Ai + Bj → C10, ∀ i, j where 1 � i, j � 10),
thus skewing the distribution over the internal states towards
faster diffusion and also faster binding rate. The presence of
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transition rate 
between states Aij  

ȳt = γ0(Λ ⊗ T)ȳ + κ0(IJ ⊗ A)ȳ
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FIG. 8. Summary of the method. (a) A triangulation (gray edges)
between the nodes xj defines the primal mesh and the dual mesh
(blue boundaries) which form the voxels Vj . Red and black tracer
molecules diffuse (red arrows) between voxels. They react with each
other (green arrow) when they are located in the same voxel. (b)
The molecules in a voxel are in K internal states (K = 5 here).
In the equation without chemical reactions for the mean values ȳ of
the number of molecules in each state in every voxel, γ0 is the free
diffusion coefficient, � is the matrix of jump coefficients between the
voxels given by a finite element discretization, T scales the hindered
diffusion due to crowding in the K internal states, 1/κ0 determines
the time scale of the internal jumps, and A is the matrix of jump
coefficients between the internal states in a voxel. (c) The jump rates
between the internal states in A are determined by computing the
mean first exit time from the blue circle for a red tracer molecule with
black obstacle molecules. Statistics is collected for many different
obstacle configurations. Sampling from this distribution means that
the tracer molecule is experiencing different crowder densities and
consequently changes its internal state. Summary: Our approach
focuses on coupling the internal states model (b), which has pre-
viously been used to simulate anomalous diffusion, to the explicit
description of crowder molecules by coarse graining the microscopic
information to the mesoscopic level (c).
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subdiffusion and variable reaction rates in this model has a
striking effect on the oscillatory behavior. The oscillations are
damped considerably (see the lower left panel in Fig. 7). The
peak in the power spectrum at about 0.03 Hz in the right panel
of Fig. 7 is reduced by more than a factor 6 in the internal state
model. With our computational framework, an investigation
of the dynamics due to crowding and variable reaction rates
is computationally feasible even in nontrivial and quite large
examples.

VI. CONCLUSIONS

We have developed a computationally efficient approach
to simulate diffusive and subdiffusive transport processes for
chemical species on the mesoscopic level taking the explicit
description of obstacle sizes and densities into account. Two
existing methods are coupled: the internal states model and
the coarse graining of a microscopic crowded geometry to the
mesoscopic level (see the summary in Fig. 8). Our method is
faster than directly simulating microscopic Brownian dynam-
ics and permits more detailed modeling than a standard meso-
scopic model with fixed diffusion and reaction coefficients.
In other lattice methods for simulation of crowding, only a
limited number of molecules can occupy the same voxel in
the lattice. Compared to those methods, our method is less
heuristic and models the effect of crowding by deriving a dis-
tribution of diffusion coefficients from a fine-grain geometry
with obstacles of different shape and size.

An observable is the sum of the copy numbers in all
internal states. The mean values of the copy numbers of the
observables satisfy macroscopic PDEs discretized by a finite
element method. The diffusion in the PDE for the observables
is not explicitly known unless the mean values of the full
mesoscopic system are known.

The crowding model has been implemented in URDME

[28,63] and examples in 2D and 3D show the effects of
crowding and the modeling of the reactions. The mean-square

displacement of a diffusing molecule is computed and the α

parameter measuring the deviation from Brownian motion is
recorded. Subdiffusive behavior is observed in a time interval
after release of the molecule. The reaction propensities vary
with the internal state in two examples. The scaling of the re-
action coefficients is such that the same steady state is reached
but the transient phase differs in the simulations depending
on the particular choice of internal representation. This is
illustrated in one example. In the other example, a realization
of the MinD system without internal states is oscillatory but is
irregular with an internal structure in the voxels.

The data for calibration of the internal states are here taken
from homogenization of a detailed microscopic model of
crowding, but other sources are also possible. One alternative
would be to infer the diffusion and reaction rates from the
posterior distribution of a Bayesian approach to analysis of
experimental data. Another possibility would be to obtain the
rates from coarse-graining data from Brownian dynamics or
molecular dynamics realizations of diffusion and reactions.

Microscopic and detailed computational methods are very
expensive for simulation of biochemical networks and are
restricted to smaller subsystems and for short time. Our meso-
scopic method including microscopic data offers a fast and
accurate approach for larger systems and longer time intervals
at a much reduced computational cost.
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