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Adaptive mesh simulations of polycrystalline materials using a Cartesian representation
of an amplitude expansion of the phase-field-crystal model
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This paper introduces improvements to an amplitude expansion of the phase-field-crystal model. An auxiliary
field describing local grain rotation is introduced and used to enable the adaptive mesh to be coarsened in all
grains, regardless of their orientation. Only a Cartesian representation of the amplitude equations is used.
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I. INTRODUCTION

Many industrially important problems relate to the ability
to understand and predict the microstructure evolution during
thermomechanical processing of polycrystalline materials. In
field of metallic materials, these include the processes of
solidification, solid state phase transformations, recrystalliza-
tion, grain growth, nucleation, and growth or dissolution
of precipitates, etc. Predicting the microstructure’s evolution
generally requires accurate models to describe processes si-
multaneously occurring at various spatial and temporal scales,
ranging from atomistic to mesoscopic and macroscopic and
from atomic vibrations to diffusive times. Despite modern
computational resources, even today these large variations
in time and length scales in material modeling represent a
huge research challenge. In past decades, several approaches
were developed to study microstructure’s evolution at various
length scales, i.e., molecular dynamics and kinetic Monte
Carlo on the atomistic scale, the cellular automata, Potts–
Monte Carlo and phase-field (PF) methods on the mesoscopic
scale, and continuum-based methods on the macroscopic scale
[1]. To establish a way to bridge these models addressing
phenomena at various scales, a range of approaches have
been proposed [2,3]. In recent years, the materials engineering
field has seen the increasingly popular concept of integrated
computational materials engineering (ICME) which links ma-
terial models at multiple scales hierarchically [4]. While
approaches like ICME may be of great practical value by
associating material models at different scales with processing
technologies and product design, they may be associated
with difficulties of discontinuous transitions between scales
that can lead to nonphysical phenomena. In contrast, the PF
method in combination with adaptive mesh refinement was
used to study the microstructure evolution on spatial scales
spanning several orders of magnitude [5,6]. Its success lies
in expressing the boundary conditions on the solid-liquid
interface with a partial differential equation for the evolution
of a phase-field variable. As the evolved phase field is a
continuous function of space, the method is not well suited
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for modeling phenomena occurring on an atomistic scale, as
it is averaged out in the phase-field variable. To describe the
atomic arrangement, the phase-field-crystal (PFC) methodol-
ogy was introduced [7,8]. The PFC model is a reformulation
of the Swift-Hohenberg model [9] and can be derived from
classical density functional theory under some necessary as-
sumptions [10]. The method uses a crystal density field to
describe the dynamics of atomic structures. It incorporates
elasticity and various topological defects in a natural way.
Since the PFC method was initially developed, it has been
improved in multiple ways, enabling it to be applied to even
more problems. PFC models have been extended to describe
materials with different crystal lattices using a two-mode
PFC model [11], model structural transformations in materials
using a constructed two-particle correlation function (XPFC
model) [12,13], and extend this approach to stabilize sev-
eral phases with a three-particle correlation function [14,15],
incorporate acoustic waves [16] and spatial anisotropy [17],
describe liquid crystals [18,19], and model phenomena occur-
ring in ferromagnetic [20] and ferroelectric multicomponent
materials [21].

One important PFC model improvement that is increasing
in popularity is the complex-amplitude expansion (APFC)
developed by Goldenfeld et al. [22,23]. The method uses a
renormalization group based approach to express the atomic
density function as a sum of waves, aligned with the reciprocal
lattice vectors, and derives the evolution equations for the
amplitudes. This approach offers the possibility to bridge the
gap between the PFC method and PF methods. Such im-
provements greatly increase the size of the modeled material
and, combined with other APFC method properties, offer the
ability to study many phenomena in which larger volumes
of material must be modeled at diffusive timescales. This
extension has been successfully applied to the study of grain
boundary motion and polycrystalline films [22–24], structural
phase transitions [25], heteroepitaxial ordering of thin films
[26–29], and grain boundary energies [30,31]. The method
was initially developed for single-component systems with
triangular symmetry in two dimensions (2D) and since then
has been extended to binary systems [9,32,33], honeycomb
[28,30] and square [25] lattices in 2D, and fcc and bcc systems
[32,34] in three dimensions (3D). The APFC extension was
also improved to obtain an instantaneous mechanical equilib-
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rium [35], tune the energy of defects and interfaces [31], and
couple the microstructure forming fields to the hydrodynamic
velocity field [36].

To further increase the size of the simulated domain,
adaptive mesh refinement (AMR) algorithms can be applied
to APFC models, as demonstrated by Athreya et al. [37].
Despite the AMR APFC model’s initial success, some un-
resolved issues are preventing its further development [9].
Consequently, most of APFC models still use simple numer-
ical methods on a fixed grid [9,24–30,32–36]. Therefore, the
main purpose of this work is to propose a way for solving
problems related to grain rotation in APFC models. The
presented model does not require the use of separate phase
and amplitude equations like in Athreya et al. [37]. Instead,
an auxiliary local rotation field is calculated and used to align
the basis vectors with the rotation of grains at all calculation
points.

This contribution is organized as follows. In Sec. II, the
main features of the PFC model and complex amplitude equa-
tions used in this work are recapitulated. Section III contains
a description of the model, algorithm, and primary features of
the numerical approach used. In Sec. IV, simulations results
are presented and, finally, concluding remarks are given in
Sec. V.

II. APFC MODEL

Evolution of the density field in the PFC model is given by
[7]

∂ρ

∂t
= �∇2

(
δF
δρ

)
, (1)

where F is the free energy functional dependent on local free
energy density f (ρ,∇2ρ) and � is a constant. The chosen free
energy functional is minimized by a spatially uniform liquid
state at high temperatures and by a spatially periodic “crys-
talline” phase at low temperatures [7]. A solution with the
required form will naturally exhibit the properties observed
in the crystals, such as the correct properties of elastic energy,
defects in the crystalline phase, proper grain boundary energy,
epitaxial growth, yield strength of nanocrystalline materials,
and proper behavior of misfit dislocations as already shown
by Elder et al. [7,8].

The exact form of the functional used is

f = ρ
[
α�T + λ

(
q2

0 + ∇2
)2]

ρ/2 + uρ4/4, (2)

where α, λ, q0, and u are model parameters that can be used
to match the properties of a chosen material. The model’s
behavior can be better understood by first rewriting the free

energy in dimensionless units using �x = �rq0, ψ = ρ

√
u/λq4

0 ,

r = a�T/λq4
0 , τ = �λq6

0 t , and F = Fu/λ2q8−d
0 into

F =
∫

d �x{ψ[r + (1 + ∇2)2]ψ/2 + ψ4/4}. (3)

Conversion of the dynamic Eq. (1) yields

∂ψ

∂t
= ∇2{[r + (1 + ∇2)2]ψ + ψ3}, (4)

where ε = ukbT qd−4
0 /λ2. Equation (4) was introduced by

Elder et al. [7,8] and since then has frequently been referred
to as the PFC equation. The single mode solution of the
PFC equation in the solid phase has triangular symmetry and
can be approximated in terms of the complex amplitudes Aj

[22,23,37] as

ψ ≈
3∑

j=1

Aje
ikj·x +

3∑
j=1

A∗
j e

−ikj·x + ψ, (5)

where kj are the reciprocal lattice vectors of a hexagonal
crystal

k1 = k0(−�i
√

3/2 − �j/2), k2 = k0 �j,

k3 = k0(�i
√

3/2 − �j/2), (6)

and k0 the wave number set to k0 = 1 in this work. This
wave number corresponds to the atomic spacing of a0 =
2π/(

√
3/2). Dynamic equations for the coarse grained com-

plex amplitudes have been derived by Goldenfeld et al.
[22,23]:

∂Aj

∂t
= L̃jAj − 3Aj |Aj |2 − 6Aj

∑
k:k �=j

|Ak|2 − 6ψ
∏

k:k �=j

A∗
k,

(7)
where k, j ∈ [1, 3] and

L̃j = (1 − ∇2 − 2ikj · ∇)(−r − 3ψ
2 − {∇2 + 2ikj · ∇}2)

(8)
is a rotationally covariant operator. The parameters ψ and
r are the dimensionless average density and the dimension-
less temperature proportional to the temperature difference
to a critical temperature Tc. Due to rotational covariance of
the operator L̃j , multiple orientations of the crystal grains
can be modeled using only the set of basis vectors listed
in (6).

Grain rotation in the complex-amplitudes equations (7)
is represented by the so called beats in the amplitudes of
grains, not aligned with the initial choice of basis vectors
[22,37], as shown in Fig. 1. This makes adaptive mesh re-
finement techniques ineffective in solving the problem, as
the mesh does not coarsen in misaligned grains due to the
fast changing amplitudes caused by the beats. To tackle
this problem, an improved approach using polar represen-

FIG. 1. Beats in misaligned grains. The images show (a) real
component of the first complex amplitude Re(A1), and (b) the recon-
structed atomic density field ψ in three seeds, rotated for (clockwise
from bottom left) θ = 0, π/24, and π/6.
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tation of the complex-amplitudes equations in combination
with the existing representation was introduced by Athreya
et al. [37]. The complex amplitudes were split into phase
and amplitude as Aj = �j e

i�j and both phase � and am-
plitude � were evolved separately. The phase is computed
as � = arctan(Im(Aj )/Re(Aj )) making phase � a locally
discontinuous function, leading to calculation problems. To
resolve problems with discontinuities, the simulation domain
was divided into two subdomains: a liquid region, where the
ordinary dynamic equations (7) were evolved, and a solidified
region, where the phase and amplitude equations were used.
Within the solidified region, an approximation of a frozen
phase gradient was applied, which eliminated problems with
the discontinuities of the phase gradient. As the conversion
between representations is simple, the resulting computational
scheme is efficient and produces significant speedups of the
simulations originating from the added ability to coarsen the
adaptive mesh within all grains, regardless of their orienta-
tion. The approximations used in the framework allow the
efficient use of the computational resources, although some
problems still remain. In particular, the problem of a hidden
grain boundary between grains rotated by a multiple of the
crystal’s symmetry, as reported by Spatschek and Karma
[9], is not easy to solve. Therefore, other approaches are
needed to study the grain behavior under full grain rotation
conditions. A possible approach is proposed in the following
section.

III. DESCRIPTION OF THE MODEL

A. Local rotation of the basis vectors

The model exploits the fact that beats of complex ampli-
tudes in solidified grains disappear, when the basis vectors
for the amplitudes are correctly rotated. A local rotation field
is introduced, and dynamic equations of the coarse grained
complex amplitudes (7) are solved by taking into account the
spatially dependent rotation of the basis vectors kj.

Density function of a grain rotated by ϑ with regard to the
basis vectors can be written as [37]

ψ (ϑ ) =
3∑

j=1

Aϑ
j eikj (ϑ )·x + c.c. + ψ, (9)

=
3∑

j=1

Aϑ
j eiδkj(ϑ )eikj ·x + c.c. + ψ, (10)

=
3∑

j=1

Aje
ikj ·x + c.c. + ψ, (11)

where kj (ϑ ) = kj + δkj (ϑ ) are rotated basis vectors and c.c.
denotes the complex conjugate of the first sum. We derive the
connection between the rotated amplitudes Aϑ

j and nonrotated
amplitudes Aj by comparing the terms associated with the
same wave vectors and obtain

Aj = Aϑ
j eiδkj (ϑ )·x. (12)

It follows that grains with arbitrary rotations can be described
in terms of kj , with grain rotation resulting in beats of the
amplitudes.

As the rotated amplitudes within a perfect, rotated grain
remain constant, the gradient of the rotated amplitudes inside
is zero:

∇Aϑ
j = (∇Aj )e−iδkj ·x + Aj (−iδkj )e−iδkj ·x = 0. (13)

From (13) it follows that for a local rotation, at which beats
disappear, the following must hold for the rotated basis vec-
tors:

δkj (ϑ ) = ∇Aj

iAj

= kj (ϑ ) − kj . (14)

In simulations we know the amplitudes Aj , but not the local
grain rotation. From (14) we can derive the local rotation of
the grain in which the beats disappear.

Due to rotational covariance of the operator L̃j and all of
its parts used in the calculation, it follows that conversion
between basis vectors rotated by a different amount can be
separated from the operator evaluation. The operator defined
as

�ϑ = [∇2 + 2ikj (ϑ ) · ∇] (15)

is rotationally covariant and therefore the following must
hold:

�ϑAϑ
j = e−iδk·x�Aj, (16)

where � = �ϑ=0. Further, if we separate operator L̃j into two
operators that can each be evaluated in a single step with a
simple differential schema

L̃ϑ
1j = (−r − 3ψ

2 − (�ϑ )2), (17)

L̃ϑ
2j = (1 − �ϑ ), (18)

L̃ϑ
j = L̃ϑ

2j L̃ϑ
1j , (19)

then both L̃1j and L̃2j are rotationally covariant. This allows
us to apply dynamic evolution equation even when the rotation
of the basis vectors is spatially dependent.

We can numerically apply an operator Õϑ to a locally
rotated field X:

Õϑ (x) Xϑ (x)(x) =
∑

x̃

�x̃e
−i[k(x)−k(x̃)]·x̃Xϑ (x̃)(x̃), (20)

where the summation goes over all neighbors included in
the operator’s evaluation. Õ can be any of the rotationally
covariant operators [Õ ∈ {L̃ϑ

j , L̃ϑ
1j , L̃ϑ

2j }] applied to any of

the derived fields [X ∈ {Aϑ
j , L̃1jA

ϑ
j , L̃jA

ϑ
j }]. x̃ is the location

of the neighbor matching the operator kernel element �x̃. To
convert between local rotations at x and x̃, we need to multi-
ply Xϑ (x̃)(x̃) with a rotation conversion factor e−i[k(x)−k(x̃)]·x̃,
which needs to be stored alongside the values of Xϑ (x)(x).

B. Algorithm description

When considering the evolution of the complex amplitudes
in a system where the basis vectors for the amplitudes vary
with location, one must take into account differences in rota-
tion when applying the dynamic equations. Since all the fields
needed in intermediate steps of the calculation are rotationally
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Algorithm 1 Top level algorithm for evolution of complex
amplitudes.

loop
if step%adaptation = 0 then

Do mesh refinement
Calculate local rotation
Calculate rotation conversion factors

end if
Perform evolution iteration

end loop

covariant, this does not pose a problem apart from an addi-
tional multiplication step and the necessity of maintaining the
rotational constants stored in the computational nodes. The
calculation works in the same way as if all neighbor nodes
of the current calculation node were temporarily converted in
the same rotated system as the central node. When all basis
vectors are the same, the normal evolution Eq. (7) can be
applied.

Averaging over nodes, either when calculating ghost node
values or when calculating values on the newly created nodes
during mesh adaptation is carried out using Eq. (20). As
changes in a local rotation affect the averaging of the fields,
a small change in a local rotation is an additional criterion
for mesh coarsening. The mesh adaptation algorithm therefore
coarsens the mesh only where the change in a local rotation
and all fields is sufficiently small.

The local rotation is calculated from the gradient of the
complex amplitudes, and gradients change rapidly on the
solid-liquid interface and in the vicinity of dislocations. To
prevent large changes in a local rotation, which could result
in skipped beats, an additional averaging step to remove high
frequency changes is performed before the rotation angle
update. The pseudocode of the implementation is shown in
Algorithms 1 and 2.

Since our model employs local orientations of the basis
vectors, and the original model is rotationally covariant, the
properties of both models are equivalent under the assump-
tions of the complex-amplitudes model given with Eq. (7).
An explicit iteration scheme was used in the implementation.
Each complex amplitude is evolved using Eq. (7) on an
adaptive grid. In all the calculations presented in this work,
the parameters were set to match those used by Athreya
in [37]; i.e., r = −0.25, ψ = 0.285 with time step set to
�t = 0.04 and minimal grid spacing δxmin = π/2. In grid
adaptation, the change of amplitudes over one node is limited
by |Aϑ,�

j − A
ϑ,�
j | + |Aϑ,�

j − A
ϑ,�
j | + |Aϑ,�

j − A
ϑ,�
j | + |Aϑ,�

j −
A

ϑ,�
j | < adapt threshold = 0.02 for each j , where the notation

� in A
ϑ,�
j denotes the top left neighbor of the node. The

maximal change is further limited by an additional criterion
that the maximal change in a local rotation over one node must
not exceed max�ϑ = π/16.

An AMR Solver was used in all the simulations, based
on the work of Greenwood. The solver’s implementation is
described in [37–39].

Algorithm 2 Local rotation adjustment. Parameters p, q,
Bmin amp, and ϑmax phase are heuristic.

for each computation node do
Find optimal rotation ϑopt:
if |Aϑ

j | > Amin amp then
In solidified regions: from gradient
for all j ∈ {1, 2, 3} do

δkj (ϑcurrent ) = Re
(∇A

ϑcurrent
j

iA
ϑcurrent
j

)
ϑx,j = 1 + kj (ϑcurrent ) · δkj

ϑy,j = [kj (ϑcurrent ) × δkj ] · êz

end for
ϑopt = ϑcurrent + atan2

( ∑
j ϑy,j /3,

∑
j ϑx,j /3

)
else

In liquid regions: drop towards zero
ϑopt = 0

end if
Smooth the changes
ϑnew = p × ϑcurrent + q × ϑopt

Prevent skipping beats
dϑ = max{all neighbors NN} |ϑNN − ϑnew|modulo 2π

kϑ = dx dϑ/ϑmax phase

if kϑ > 1 then
ϑnew = ϑcurrent + (ϑnew − ϑcurrent )/kϑ

end if
ϑcurrent = ϑnew

end for

IV. RESULTS

Figure 2 shows evolution of the microstructure represented
by the average amplitude field (

∑
j |Aj |/3), of an example

problem in which 12 seeds with an initial radius of 8π and
orientation angles in the range [0, π/12) were placed inside
a square domain of size 256π with a periodic boundary
condition. The example problem was chosen to match the
example configuration employed by Athreya et al. in [37]
as closely as possible to allow the reader to make an easy
comparison. Note that the grain rotations are different and
thus the number of dislocations on different grain boundaries
is not the same as in [37]. A visible example is the grain
boundary on the bottom right part of the simulation domain
where in our simulations dislocations do not appear due to a
small difference in the rotations of the impinging grains.

By introducing a local rotation field in combination with
exploitation of the rotational covariance of all steps in the
calculation, we were able to solve the complex-amplitudes
equations on an adaptive grid, with coarsening in all grains,
regardless of their orientation. This ensures the computational
resources spent on calculations scale with the grain surface
in the same manner as achieved by Athreya et al. [37]. In
comparison, our approach does not require different repre-
sentations of the complex amplitudes in different regions of
the computational domain, which eliminates difficulties that
could arise from application of two different evolution equa-
tions in separate regions of the simulation domain. However,
compared to the basic APFC model described by Goldenfeld
et al. [22,23], this model requires additional multiplications
and memory for the storage and application of the rotation
factors.

033303-4



ADAPTIVE MESH SIMULATIONS OF POLYCRYSTALLINE … PHYSICAL REVIEW E 98, 033303 (2018)

FIG. 2. Microstructure evolution in time. Comparison of the
AMR model with and without local rotation. When using a local
rotation, the mesh coarsens in all seeds, regardless of their orien-
tation, and remains dense on grain boundaries where dislocations
are formed. Images show the average amplitude field (

∑
j |Aj |/3)

at different times.

The evolution of the microstructure shown in Fig. 2 shows
the results obtained with our algorithm closely match the
results obtained with the previous approach. The positions of
the dislocations and the resulting microstructure overall are
the same, while the grid remains dense only on the solid-liquid
interface and around the dislocations, where the field values
change more rapidly.

A better insight into our model’s properties can be ob-
tained by analyzing the results displayed in Fig. 3 where the
impingement of two grains was simulated. The left grain is
rotated by π/12 and therefore exhibits the amplitude beats
in all amplitudes, whereas the right grain is aligned with the
choice of basis vectors and shows no beats. This may be
seen in the Fig. 3(c) on the third row where the phase of the
first complex amplitude �(A1) is shown, indicating beats in
the left grain and no beats in the right grain. The introduced
locally rotated complex amplitude Aϑ

1 is shown on the second
row in Fig. 3(b), where we can see that no beats are exhibited
in the interior of either grain, where our algorithm is able to
align the orientation of the basis vectors with the rotated grain
on the left and remove all the beats. It can be observed that

FIG. 3. Beats and mesh refinement in rotated and nonrotated
grains. The grains are rotated by θ = π/12 and 0. From top to bottom
the image shows (a) the average absolute amplitude (

∑
j |Aj |/3), (b)

the real part of locally rotated complex amplitude [Re(Aϑ
1 )], (c) the

phase angle of the complex amplitude A1 [�(A1)], (d) local mesh
refinement (δx), (e) reconstructed atomic density function (ψ), and
(f) the fields δx,

∑
j |Aj |/3 in cross section.

when using a local rotation, the mesh coarsens inside both
grains, regardless of their orientation, and remains dense on
the boundary between the grains.

In order to more clearly demonstrate how our model be-
haves, we simulated the growth of 12 grains placed in an
undercooled melt in different locations. As may be seen in
Fig. 4, the results obtained using our model are in excellent
agreement with the results obtained without local rotation and
with results obtained on a regular grid. The comparison shows
that our model successfully reproduces the microstructure
with grid coarsening in all grains. Figure 4 shows a snapshot
of the microstructure’s evolution at t = 360. Results obtained
with different models are placed in consecutive columns of
Fig. 4: the first column shows the APFC model on a uniform
grid, the second column the APFC model on an adaptive
grid, while the third column shows our model. Images in the
rows display the following fields: (a)–(c) reconstructed atomic
density field ψ , (d)–(f) mesh density δx, (g)–(i) average
amplitude

∑
j |Aj |/3, (j)–(l) real part of the first complex

amplitude Re(A1), and (m)–(o) local grain rotation θ in
degrees. The reconstructed atomic density field ψ shown in
the first row (a)–(c) is virtually the same in all models used.
In the images showing mesh density δx in the second row
(d)–(f) we can see that when applying AMR techniques to
the APFC model, the mesh coarsens only in liquid regions
and nonrotated grains, whereas when using our approach
the mesh coarsens in all grains, and dense mesh remains
only around the dislocations and at the solid-liquid interface.
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FIG. 4. Comparison of simulation results with different models
at t = 360. All columns show PFC model with complex-amplitudes
extension. The first column shows results when using a regular
grid, the second column shows results when using adaptive mesh
refinement techniques, and the third column shows results when
using local rotation with the help of an auxiliary rotation field. From
top to bottom: reconstructed atomic density field ψ , mesh density
δx, average amplitude

∑
j |Aj |/3, real part of the first complex

amplitude Re(A1), and local grain rotation in degrees θ are shown.

Average amplitude
∑

j |Aj |/3 presented in the third row (g)–
(i) shows the same grain growth and locations of dislocations
are obtained with all three models. The fourth row presents
the real component of the first complex amplitude Re(A1) in
the columns corresponding to APFC models without a local
rotation (j)–(k). We can observe the beats occurring in rotated
grains that prevent the mesh from coarsening. As our model
uses a locally rotated complex amplitude field Aϑ

j instead of
Aj , the real part of this field is shown in the last column (l). We
can see that the local rotation eliminates beats in all grains and
enables efficient mesh coarsening. The last row shows local
grain rotation. Images corresponding to APFC models (m)
and (n) show a local rotation field obtained in post-processing,
which is not used during calculations and is displayed here
only for comparison. The final image in the last row (o) shows

FIG. 5. Selected variables in excerpt and cross section at t =
560. From top to bottom: (a) absolute value of the first complex
amplitude |A1|, (b) local mesh refinement δx, (c) reconstructed
density field ψ , and (d) local rotation θ . Values of θ , |A1|, and∑

j |Aj |/3 in cross section on the marked line at y = 183π/2 ≈ 287
are shown in the last image (e). The local rotation field correctly
tracks the grain rotation and shows large changes only on the grain
boundaries.

the local rotation field θ as used during the calculations in
our model. We can observe that the density of dislocations
on the boundary between grains corresponds to the difference
in the rotation of the grains. When rotations of two grains
differ only slightly, no dislocations form on the boundary. In
the bottom left part of the simulation domain, we placed two
seeds with the same orientation, but shifted the lattice of one
seed by approximately half of the lattice spacing with regard
to the second seed. On the boundary between these two grains
we can therefore find no dislocations since the orientation is
the same. However, because the atomic lattice is shifted in
one grain with regard to the other, the mesh still does not
coarsen completely as some elastic deformations remain in the
atomic lattice and variations in amplitudes due to the elastic
deformations requiring higher mesh refinement. We can also
observe that shifting the atomic lattice changes the phase of
both locally rotated amplitudes Aϑ

j and Aj . As the phase
changes continuously, no defects appear on this boundary.

Selected fields in the cross section of the same simulation
are shown in Fig. 5, where the changes in local rotation
field θ across the grain boundaries can be better tracked.
Rapid changes can be observed where the cross-section cut
approaches the dislocation (x ≈ 200) and the local rotation
rapidly switches between rotations of both interfacing grains.
A more gradual change in local rotation is observed on the
interfaces between grains which differ in rotation by a smaller
amount (x ≈ 480 and x ≈ 650), where the cut line does
not pass directly through a dislocation. We can see that the
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FIG. 6. Amplitude |A1| in cross section cut along the lines x =
201π ≈ 631 and y = 203π ≈ 638 at times t = 160 and 560. Results
obtained with AMR using a local rotation on an adaptive grid
match the results obtained with simulations on a uniform grid. Exact
values at the intersected computation nodes of the adaptive grid are
shown in combination with interpolated values from the same grid in
comparison with values obtained on a uniform grid.

mesh is refined only on the grain boundaries and remains
refined even on the boundary between grains which vary only
slightly in their orientations and dislocations do not appear
(x ≈ 650). This is needed due to the elastic deformations that
appear there to accommodate the deformation of the crystal
lattice.

A comparison with the results obtained on a regular grid
is shown in Fig. 6 where the field |A1| is shown in cross
section. The results are compared at two different times, in
the top row (a) and (b) at t = 160 where the seeds are still
growing into the undercooled melt, and in the bottom row
(c) and (d) at t = 560 when the entire simulation domain has
already solidified. The comparison is made between the exact
values obtained on the computational nodes of the adaptive
mesh that lie exactly on the cross-section cut line, interpolated
values from the adaptive mesh and results obtained on the
uniform grid. All results are in excellent agreement, with
small differences observed only at the solid-liquid interface
and grain boundaries.

As expected, the number of computational nodes required
in our approach is similar to that achieved by Athreya et al.
[37] using a hybrid implementation. During simulation of
the solidification, the number of computational nodes grows
linearly in time at first, as the interface of the growing grains
becomes larger, which may be seen in Fig. 7. As the mesh
coarsening can be achieved in all grains, regardless of their
orientation, the final number of computational nodes is signif-
icantly lower than the number of nodes of a regularly spaced
grid of a similar size.

0 5000 10000 15000
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FIG. 7. Number of computational nodes as a function of time for
the summations shown in Figs. 2 and 4. After the liquid freezes, the
number of nodes stops increasing. When using the scheme with a
local rotation, the mesh coarsens in all nodes and therefore consists
of a much smaller total number of nodes.

In order to further verify that the introduction of a local
rotation field does not introduce additional errors into the
calculation when local rotation is not correctly determined,
we ran two simulations of an example with three seeds in
an undercooled melt, shown in Fig. 8. One of the seeds was
rotated by 2.5◦, and the other two by 7.5◦. The atomic lattices
of two seeds with the same rotation were mutually shifted by
half of the lattice spacing, resulting in an area with pure elastic
deformation without rotation (at x ≈ 280 in Fig. 8). In the first
simulation run we let our algorithm determine the best local
rotation field, and in the second run we set the local rotation
field to a chosen, time independent function �(x) = �(x).
We chose to use a regular grid for this simulation, as this
eliminates numerical errors originating from AMR and allows
for a better understanding of errors originating from impre-
cisions in determining the local rotation. The simulations
shown in Fig. 8 show that the microstructure obtained in both
simulation runs is virtually the same, with minor differences
only around dislocation cores. The first row of the image
(a) shows the microstructure obtained when our algorithm
determines the local rotation and the second row (b) shows
the case where we fix the local rotation to a time independent
function �(x). The third row (c) shows local rotation as
determined by our algorithm. Possible performance of our al-
gorithm is limited by the amount of deformation that remains
in the rotated amplitudes Aϑ

j after rotation and this remainder

�ε =
√∑

i,j Ei,j is presented in the fourth row image (d)

and in cross section in the bottom row (e) in Fig. 8. Local
rotation � as determined by our algorithm and the imposed
rotation �(x) used in our second simulation run is shown
in cross-section plots in the last row image (e) as well. E is
defined as

E = R(-ϑ )F − I, (21)
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FIG. 8. Accuracy of the simulations under conditions where
local rotation might be incorrectly calculated or where large de-
formations exist. (a) Microstructure of a simulation run where our
algorithm determined local rotation. (b) Microstructure of a simula-
tion run where local rotation was fixed to a chosen function �(x) =
�(x ). The microstructure in both simulation runs matches closely,
with minor differences observed only around dislocations. (c) Local
rotation field � as determined by our algorithm. (d) Deformation
remainder �ε, shown in logarithmic scale. (e) Local rotation �

as determined by our algorithm, the chosen function �(x ), and
deformation remainder �ε in cross section. �ε remains low inside
grains, in the area with pure elastic deformation at x ≈ 280 shows
a small increase coupled with some inaccuracy in the calculation of
a local rotation field � and rapidly increases in the vicinity of the
dislocation at x ≈ 120.

where ϑ is the rotation determined by our algorithm and F is
the deformation gradient [35], defined as

F = I + ∇u = I + 2

3

3∑
j=1

kj∇[arg(Aj )]. (22)

As the deformation gradient can be split into rotation R(ϑ̃ )
and pure deformation U by polar decomposition as F =
R(ϑ̃ )U, the parameter �ε vanishes when our algorithm can
determine the correct local rotation (ϑ = ϑ̃) and there is no
pure deformation (U = I). In the last row in Fig. 8 we can see
that the local rotation removes almost the entire deformation

in the interior of grains with �ε quickly dropping below 0.05.
Around dislocations and on the grain boundaries, a significant
portion of the deformation remains, but this does not result in
increased errors in the calculations. The comparison between
images in the first and second rows in Fig. 8 shows that the
microstructure remains the same even if we use incorrect local
rotation in large areas of the computational domain. This is a
consequence of rotational covariance of evolution equations,
and due to this property the calculations are independent of
the actual rotation used. Additional errors are not introduced
due to possible inaccuracies in the calculation of a local
rotation field. Our method is best understood as an exploit
of the rotational covariance of the evolution equations that
locally transform the equations to a set of rotated amplitudes
Aϑ

j , defined on a set of basis vectors aligned with the local
grain. This removes fast variations of the real and imaginary
parts of the complex amplitudes in misaligned grains that
originate from rotation of the grain. With only slow variations
in complex amplitudes remaining, the AMR can be effectively
used in the entire simulation domain using only the Cartesian
representation.

Therefore, the idea of a local rotation should not be un-
derstood as a way to approximate values of the complex
amplitudes and does not require additional assumptions to
work. Just as AMR can be applied to a basic complex-
amplitudes model, our model can be used in cases where
large deformations are expected. When rotated grains are
simulated with basic complex-amplitudes models, the use of
AMR is ineffective as the high spatial variations of amplitudes
require high mesh refinement, but does not produce inaccurate
results. The computational mesh refines and computational
efficiency is lost, but not the accuracy. When areas with large
deformations are encountered in our model, the local rotation
cannot eliminate the variations in the Cartesian representation
of the complex amplitudes and the mesh refines. This results
in the same accuracy as we would achieve without local
rotation, with some loss in the computation speed.

Aside from enabling the coarsening of the computational
mesh in all grains using only the Cartesian representation of
the amplitude equations, our model helps to resolve another
pressing issue of modeling with complex-amplitude equa-
tions. With some additional improvements, to be reported in
detail elsewhere, we were able to eliminate an unphysical
grain boundary that appears when the misfit between the
impinging grains approaches the crystal’s symmetry rotation
(60◦ in our case). As reported by Spatschek and Karma [9], the
amplitude equations’ formalism is unable to properly model
grain boundaries where interfacing grain rotations differ by
more than half of the angle of the crystal symmetry rotation.
Our initial simulations indicate that improvements resulting in
the use of a local rotation field could also lead to better model-
ing of grain boundaries for a whole range of misorientations.

V. CONCLUSIONS

A model is presented for solving complex-amplitude equa-
tions on an adaptive mesh, which solves the problem of beats
in misaligned grains and allows for mesh coarsening in all
grains. It is based on the observation that the beats disappear
when the basis vectors for the amplitudes are correctly rotated.
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The proper rotation of the basis vectors was derived from the
complex amplitudes and stored in an auxiliary variable used
in calculations. The rotational covariance of the operators
used in the evolution of the complex amplitudes allowed us
to separate the conversion between differently rotated fields
from the evolution equations. The results obtained using our
approach closely match the results obtained with existing
models.

Our model’s computational efficiency scales in the same
way as the hybrid approach described by Athreya et al. in [37].
The model does not require a presumption of a frozen phase
gradient inside the solidified grains and uses only the Carte-
sian representation of the fields in the entire computational
domain. The model shows promise with regard to modeling
grains of a larger rotation range. With some improvements
to the model, the unphysical grain boundary between grains
which differ in rotation by a multiple of the crystal’s symmetry
rotation can be removed.

We confirmed that the model is resilient to inaccuracies
in the calculation of a local rotation angle, and does not
introduce errors into calculations even in areas where large
strains exist. This is an expected consequence of the main idea
of our model: it is an exploit of the rotational covariance of the
evolution equations, aimed at enabling AMR mesh coarsening
in all grains.
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