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Numerical solutions of Fokker-Planck equations with drift-admitting jumps

Yaming Chen* and Xiaogang Deng
College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China

(Received 23 May 2018; revised manuscript received 1 August 2018; published 4 September 2018)

We develop a finite difference scheme based on a grid staggered by flux points and solution points to solve
Fokker-Planck equations with drift-admitting jumps. To satisfy the matching conditions at the jumps, i.e., the
continuities of the propagator and the probability current, the jumps are set to be solution points and used
to divide the solution domain into subdomains. While the values of the probability current at flux points are
obtained within each subdomain, the values of its first derivative at solution points are evaluated by using stencils
across the subdomains. Several benchmark problems are solved numerically to show the validity of the proposed
scheme.
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I. INTRODUCTION

Piecewise-smooth stochastic systems are used as models
of physical and biological systems [1–3]. The interrelation
between noise and discontinuities in such systems has at-
tracted considerable attention recently [4–14]. Some of them
can be modeled by stochastic differential equations (SDEs)
with piecewise-smooth drifts. Particularly, we consider in this
paper the problems that can be modeled by the Langevin
equation

v̇(t ) = �(v) +
√

2Dξ (t ), (1)

where the overdot denotes the time derivative, the drift �(v)
is discontinuous at some points, and D > 0 represents the
strength of the Gaussian white noise ξ (t ) that is characterized
by the zero mean 〈ξ (t )〉 = 0 and the correlation 〈ξ (t )ξ (t ′)〉 =
δ(t − t ′). Here, the notation 〈. . . 〉 stands for the average over
all possible realizations of the noise, and δ denotes the Dirac
delta function. The initial condition for Eq. (1) is set to be
v(0) = v0.

The theory of piecewise-smooth SDEs is only in its in-
fancy compared to its noiseless counterpart [15]. For a few
simple piecewise-smooth drifts, the propagators of Eq. (1) are
known analytically. For instance, when the drift is pure dry
friction [2] (also called solid friction or Coulomb friction),
the propagator is available in closed analytic form [16–18].
More generally, when the drift is piecewise constant with a
discontinuity (called the Brownian motion with a two-valued
drift), the propagator can be expressed in terms of convolution
integrals [17,19]. Moreover, the distribution of the occupation
time can also be obtained analytically [20]. When the drift
contains both dry friction and viscous friction, the propagator
can be expressed as a sum of series [18] or in connection
with a Laplace transform [21]. For Eq. (1) with dry friction
the first two moments of the displacement and other integral
functionals have also been obtained by solving backward
Komogorov equations [22] or using the method based on

*chenym-08@163.com

the Pugachev-Sveshnikov equation [23]. However, there are
vast cases that cannot be solved analytically by using existing
theoretical methods. In those cases, we should resort to some
effective numerical methods if we want to know the dynamics
of Eq. (1).

For instance, one can employ some numerical schemes to
solve the SDE (1) directly. The Euler-Maruyama scheme is
one of the simplest schemes that can be applied to obtain
approximate results [24]. However, there are errors arising
from the approximations to discontinuities and the derivative.
To address this issue, the so-called exact simulation was
developed for solving Brownian motions with drift admitting
a unique jump [25,26]. The exact simulation involves only
computer representation errors, enabling one to get exact
samplings for the considered SDEs. In addition, the algorithm
can be generalized to solve Brownian motions with drift-
admitting several jumps [27]. Nevertheless, it requires heavy
calculations to realize the exact simulation.

In this paper, we intend to solve the following Fokker-
Planck equation directly, which governs the propagator of the
model (1) with the Gaussian white noise:

∂t p = −∂v[�(v)p] + D∂2
v p, (2)

where p = p(v, t |v0, 0) denotes the propagator with the ini-
tial condition p(v, 0|v0, 0) = δ(v − v0). To solve Eq. (2) with
drift-admitting jumps, we need to apply two matching con-
ditions at each jump of the drift, i.e., the continuity of the
propagator and the continuity of the probability current (or
flux)

f (v, t |v0, 0) = −�(v)p + D∂v p. (3)

When the drift is continuous, there are many numerical
methods that can be used to solve Eq. (2); see, for instance,
[28–35]. However, to the best of our knowledge, there are
only few numerical results in the literature considering the
cases with drift-admitting jumps. In [7], the authors trans-
formed the Fokker-Planck equation with pure dry friction
to a Schrödinger equation with a delta potential, and then
investigated the displacement statistics by solving a corre-
sponding Brinkman hierarchy numerically. By treating the
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FIG. 1. Illustration of the grid staggered by flux points and solution points for the case with two jumps at v = vd1 and vd2 , respectively.
The two jumps are both set to be solution points and used to divide the computational domain [v

L
, v

R
] into three subdomains �i (i = 1, 2, 3).

discontinuous drift carefully using a finite volume method
[36] or an immerse interface method [37], second-order
schemes were developed for solving Eq. (2). In this paper,
we attempt to derive a finite difference scheme based on a
grid staggered by flux points and solution points (see, e.g.,
Fig. 1). It will be seen later that the aforementioned matching
conditions at jumps can be easily satisfied by using this grid,
resulting in a simple way to treat the cases with drift-admitting
jumps.

The rest of this paper is arranged as follows. In Sec. II
we take as an example the case with drift-admitting two
jumps to describe the procedure of the main algorithm for the
spatial discretization. The corresponding staggered grid is also
introduced. Then, we present the finite difference scheme in
Sec. III. Some benchmark problems are solved numerically
in Sec. IV to show the validity of the scheme. In Sec. V,
we extend the algorithm to study the displacement of the
Brownian motion with pure dry friction. Finally, conclusions
are drawn in Sec. VI.

II. STAGGERED GRID

We describe the algorithm by assuming that the drift in
Eq. (1) admits two jumps at v = vd1 , vd2 (vd1 < vd2 ), re-
spectively. For other cases, the algorithm can be generalized
straightforwardly according to the number of jumps.

For Eq. (2) defined for v ∈ (−∞,∞), we first truncate
the domain into a finite interval, denoted by [v

L
, v

R
], con-

taining the two discontinuous points. Then, by using these
two points we partition the interval into three subdomains,
i.e., �1 = [v

L
, vd1 ], �2 = [vd1 , vd2 ], and �3 = [vd2 , vR

]. As
illustrated in Fig. 1, a grid staggered by flux points and
solution points is used for the partitioned subdomains. In
particular, the discontinuous points vd1 and vd2 are both set
to be solution points such that the continuity conditions of
the propagator are satisfied automatically for the discrete
method.

In each subdomain �i , the grid points are set to be uni-
formly distributed with the solution points defined by

v1,j = v
L

+ (j − 1/2)h1, 1 � j � N1

v2,j = vd1 + (j − 1)h2, 1 � j � N2

v3,j = vd2 + (j − 1)h3, 1 � j � N3

(4)

where Ni are the numbers of solution points and hi the spatial
steps for the subdomains,

h1 = (vd1 − v
L
)/(N1 − 1/2),

h2 = (vd2 − vd1 )/(N2 − 1),

h3 = (v
R

− vd2 )/(N3 − 1/2).

(5)

Especially, we have v1,N1 = v2,1 = vd1 and v2,N2 = v3,1 = vd2 .
The flux points vi,j+1/2 are defined by

v1,j+1/2 = v
L

+ jh1, 0 � j � N1 − 1

v2,j+1/2 = vd1 + (j − 1/2)h2, 1 � j � N2 − 1

v3,j+1/2 = vd2 + (j − 1/2)h3, 1 � j � N3.

(6)

Particularly, we have v1,1/2 = v
L

and v3,N3+1/2 = v
R
, i.e., the

end points of the interval [v
L
, v

R
] are both flux points, which

are designed to impose boundary conditions.
Given initial values at the solution points of the staggered

grid, a finite difference scheme for Eq. (2) can be constructed
by the following procedure:

(i) Within each subdomain �i , obtain the solutions at the
flux points by using interpolation schemes. For the purpose
of stability, upwind interpolations are used here according to
the sign of the drift �(v). If �(v) changes its sign within
�i , we need to split the drift into an appropriate form to
apply upwind interpolations. Here, we split the drift into two
parts: �(v) = min{�(v), 0} + max{�(v), 0}, ensuring that
each part does not change its sign. Then using this split form
we can approximate the term �(v)p appearing in Eq. (2) at
the flux point vi,j+1/2 by

min{�(vi,j+1/2), 0}p+
i,j+1/2 + max{�(vi,j+1/2), 0}p−

i,j+1/2,

(7)

where p+
i,j+1/2 and p−

i,j+1/2 are the approximate values of p

at vi,j+1/2, respectively, obtained by using interpolations with
stencils as illustrated in Fig. 2.

(ii) Evaluate the first derivative of p at flux points by using
difference schemes in each subdomain �i .

(iii) Obtain the values of the current (3) at fluxes points
by using the above two steps. Then, approximate the values
of the derivative of the current at solution points by using a
difference scheme, which is designed for the domain [v

L
, v

R
]

directly since the current (3) is theoretically continuous every-
where.
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FIG. 2. Illustration of the stencils used to reconstruct the values
p±

i,j+1/2 required by the approximation (7). Here, only the stencils
of the fifth-order interior interpolations are presented. Near the
boundaries the stencils should be adjusted accordingly.

III. SCHEME

To discretize the right side of Eq. (2), we follow the
aforementioned procedure: first calculate the values of the
probability current at flux points and then derive a differ-
ence scheme to evaluate the derivative of the current. Here,
the spatial scheme is designed to be fifth order for the cases
with smooth drifts. Finally, a third-order Runge-Kutta scheme
is employed to solve the resulting ordinary differential system.

A. Evaluation of the probability current

There are two terms appearing in the current (3). For the
first term �(v)p, we use interpolation schemes to reconstruct
the required values in the approximation (7). For the second
term D∂vp, we derive difference schemes to approximate it.

In the following, we will present the schemes in ma-
trix forms, where the entries of the matrices are all easily
obtained by using Lagrangian interpolations according to
specified stencils. For example, if we consider the stencil
S = {v1,1, v1,2, . . . , v1,5}, then at any point v, the values of
p and ∂vp are approximated, respectively, by

p
I
(v) =

5∑
k=1

lk (v)p1,k, (8)

d

dv
p

I
(v) =

5∑
k=1

d

dv
lk (v)p1,k, (9)

where

lk (v) =
5∏

s=1,s �=k

v − v1,s

v1,k − v1,s

. (10)

Since the grid points are slightly different in different
subdomains (see Fig. 1), we describe the schemes separately
for each subdomain �i . For convenience of notations, we will
first consider the subdomain �2, and then �1 and �3.

1. Subdomain �2

To describe the scheme compactly, let us introduce the vec-
tors p±

2 = [p±
2,3/2, p

±
2,5/2, . . . , p

±
2,N2−1/2]T and the vector p2 =

[p2,1, p2,2, . . . , p2,N2 ]T , where the “T ” denotes the transpose
operation. Then, according to the grid point distribution in
�2 we can compute the values at flux points by the fifth-
order interpolation schemes p±

2 = I±
2 p2, where I±

2 are both

(N2 − 1) × N2 matrices. Here,

I+
2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

35
128

35
32 − 35

64
7

32 − 5
128

− 5
128

15
32

45
64 − 5

32
3

128

. . .
. . .

. . .
. . .

. . .

− 5
128

15
32

45
64 − 5

32
3

128
3

128 − 5
32

45
64

15
32 − 5

128

− 5
128

7
32 − 35

64
35
32

35
128

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(11)

and I−
2 is defined by letting its entries satisfy that [I−

2 ]j,k =
[I+

2 ]N2−j,N2+1−k , 1 � j � N2 − 1, 1 � k � N2.
Denote the approximation to ∂vp at the flux point v2,j+1/2

as (∂vp)2,j+1/2 and introduce the vector

p2,v = [(∂vp)2,3/2, (∂vp)2,5/2, . . . , (∂vp)2,N2−1/2]T .

We can write the difference scheme as p2,v = A2p2/h2,

where the (N2 − 1) × N2 matrix A2 is

A2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 11
12

17
24

3
8 − 5

24
1

24
1

24 − 9
8

9
8 − 1

24

− 3
640

25
384 − 75

64
75
64 − 25

384
3

640

. . .
. . .

. . .
. . .

. . .
. . .

− 3
640

25
384 − 75

64
75
64 − 25

384
3

640
1

24 − 9
8

9
8 − 1

24

− 1
24

5
24 − 3

8 − 17
24

11
12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(12)

such that the difference scheme is sixth order at v2,j+1/2 with
3 � j � N2 − 3 and fourth order at the other flux points.

2. Subdomain �1

Introduce p±
1 = [p±

1,1/2, p
±
1,3/2, . . . , p

±
1,N1−1/2]T and p1 =

[p1,1, p1,2, . . . , p1,N1 ]T . We first compute the right vector p+
1

by using the fifth-order interpolation scheme p+
1 = I+

1 p1 with
the N1 × N1 matrix I+

1 written as

I+
1 =

[
a

(I+
2 )(N1−1)×N1

]
.

Here,

a = [
315
128 − 105

32
189
64 − 45

32
35

128 0 . . . 0
]

(13)

is a 1 × N1 vector and the matrix (I+
2 )(N1−1)×N1 is defined

in Eq. (11) by replacing N2 with N1. (The same notation
method will be used throughout this paper.) For the left values,
first let p−

1,1/2 = p+
1,1/2. Then, we derive the interpolation

scheme p−
1 = I−

1 [p−
1,1/2, pT

1 ]T with the N1 × (N1 + 1) matrix
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I−
1 reading as

I−
1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

− 1
7

5
8

5
8 − 1

8
1

56
3

35 − 1
4

3
4

9
20 − 1

28
3

128 − 5
32

45
64

15
32 − 5

128

. . .
. . .

. . .
. . .

. . .

3
128 − 5

32
45
64

15
32 − 5

128

− 5
128

7
32 − 35

64
35
32

35
128

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(14)

Introducing the vector

p1,v = [(∂vp)1,1/2, (∂vp)1,3/2, . . . , (∂vp)1,N1−1/2]T ,

we can derive the difference scheme p1,v = A1p1/h1 with the
N1 × N1 matrix A1 written as

A1 =
[

b

(A2)(N1−1)×N1

]
,

where

b = [− 31
8

229
24 − 75

8
37
8 − 11

12 0 . . . 0
]

(15)

is a 1 × N1 vector and A2 is defined in Eq. (12), such that
the difference scheme is sixth order at v1,j+1/2 with 3 � j �
N1 − 3 and fourth order at the other flux points.

3. Subdomain �3

The schemes for this subdomain are basically the
same as those of the subdomain �2 if we swap the di-
rection. Introduce p±

3 = [p±
3,3/2, p

±
3,5/2, . . . , p

±
3,N3+1/2]T and

p3 = [p3,1, p3,2, . . . , p3,N3 ]T . We first reconstruct the vec-
tor p−

3 by using the fifth-order interpolation scheme
p−

3 = I−
3 p3 with the entries of the N3 × N3 matrix I−

3
defined by [I−

3 ]j,k = [(I+
1 )N3×N3 ]N3+1−j,N3+1−k . Then, the

right values are calculated by the fifth-order interpola-
tion scheme p+

3 = I+
3 [pT

3 , p+
3,N3−1/2]T , where the entries of

the N3 × (N3 + 1) matrix I+
3 are derived to be [I+

3 ]j,k =
[(I−

1 )N3×(N3+1)]N3+1−j,N3+2−k . Note that we have assumed
p+

3,N3−1/2 = p−
3,N3−1/2 here.

Similarly, by introducing the vector

p3,v = [(∂vp)3,3/2, (∂vp)3,5/2, . . . , (∂vp)3,N3+1/2]T ,

the derivative values at flux points are approximated by p3,v =
A3p3/h3 with the entries of the N3 × N3 matrix A3 defined
by [A3]j,k = −[(A1)N3×N3 ]N3+1−j,N3+1−k , such that the differ-
ence scheme is sixth order at v3,j+1/2 with 3 � j � N3 − 3
and fourth order at the other flux points.

4. Imposing boundary conditions

Using the above schemes derived for subdomains, we can
obtain the values of the probability current at all flux points.
However, it is noted that we have not used any boundary
conditions so far. As we will see later in Sec. IV, depending on
the signs of the drift at the domain boundaries, we may need to
set the computational domain to be large enough and impose

reflecting boundary conditions [38] appropriately. In that case,
we just reset the current values at the boundaries to be zero.

B. Derivative of the current

Now, we are ready to derive a difference scheme to com-
pute the derivative of the current using the values at flux
points obtained in Sec. III A. To get a correct solution, it is
no doubt that we have to consider information transmission
between different subdomains �i . As mentioned before, al-
though the derivative of the propagator is not continuous at
jumps, the current is continuous everywhere. Therefore, we
can derive a difference scheme for the whole domain directly
to approximate the derivative of the current. However, as it
allows different spatial steps in different subdomains, we have
to pay attention to the solution points near the jumps.

For convenience of notations, let us introduce the flux
vector f = [fT

1 , fT
2 , fT

3 ]T , where

f1 = [f1,1/2, f1,3/2, . . . , f1,N1−1/2]T , (16)

f2 = [f2,3/2, f1,5/2, . . . , f2,N2−1/2]T , (17)

f3 = [f3,3/2, f1,5/2, . . . , f3,N3+1/2]T . (18)

The values of the derivative ∂vf at solution points are denoted
by fv = [fT

1,v, fT
2,v, fT

3,v]T with

f1,v = [(∂vf )1,1, (∂vf )1,2, . . . , (∂vf )1,N1 ]T , (19)

f2,v = [(∂vf )2,2, (∂vf )2,3, . . . , (∂vf )2,N2 ]T , (20)

f3,v = [(∂vf )3,2, (∂vf )3,3, . . . , (∂vf )3,N3 ]T . (21)

Then, we attempt to derive a derivative matrix A such that
fv = Af . Here, the size of A is Nv × (Nv + 1) with Nv =
N1 + N2 + N3 − 2.

By observing the distribution of the grid points, we design
the difference scheme by using the stencils

[fv]j =

⎧⎪⎨⎪⎩
∑5

k=1 aj,k[f]k, 1 � j � 2∑6
k=1 aj,k[f]j+k−3, 3 � j � Nv − 2∑5
k=1 aj,k[f]Nv+k−4, Nv − 1 � j � Nv

(22)

where [f]k denotes the kth entry of the vector f and the coef-
ficients aj,k can be determined directly by using Lagrangian
interpolations. Hence, the difference matrix A can be easily
written following the above stencils.

We first present the coefficients of the cases with stencils
in a single subdomain. The results are as follows:

[aj,k]1�k�5 =
{

1
h1

[− 11
12 , 17

24 , 3
8 ,− 5

24 , 1
24

]
, j = 1

1
h1

[
1

24 ,− 9
8 , 9

8 ,− 1
24 , 0

]
, j = 2

(23)

[aj,k]1�k�6 =

⎧⎪⎪⎨⎪⎪⎩
1
h1

c, 3 � j � N1 − 3
1
h2

c, N1 + 3 � j � N1 + N2 − 4
1
h3

c, N1 + N2 + 2 � j � Nv − 2

(24)

[aj,k]1�k�5 =
{ 1

h3

[
0, 1

24 ,− 9
8 , 9

8 ,− 1
24

]
, j = Nv − 1

1
h3

[− 1
24 , 5

24 ,− 3
8 ,− 17

24 , 11
12

]
, j = Nv

(25)
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FIG. 3. Illustration of the grid points near a jump. The spatial
steps on the left and on the right of the jump are h1 and h2,
respectively.

where the vector

c = [− 3
640

25
384 − 75

64
75
64 − 25

384
3

640

]
. (26)

For the other cases, we have to pay attention to the fact
that the stencils (22) are across the jumps, as illustrated in
Fig. 3. When N1 − 2 � j � N1 + 2, by using Lagrangian
interpolations we can determine the coefficients to be

aj,k = dj−N1+3,k (h1, h2), 1 � k � 6 (27)

where ds,k (x, y) are functions of x and y, as shown in Table I.
Similarly, when N1 + N2 − 3 � j � N1 + N2 + 1, we have

aj,k = dj−N1−N2+4,k (h2, h3), 1 � k � 6. (28)

C. Time-marching scheme

Approximating the right side of Eq. (2) by using the above
finite difference scheme, we obtain a semidiscretized system,
denoted by

dp
dt

= R(p, t ), (29)

where p stands for the vector of the unknowns at solution
points, and R(p, t ) represents the right-hand side term. Then,
many time-marching schemes can be used to solve this sys-
tem. In this paper we employ a traditional third-order Runge-
Kutta scheme, written as

pn+1 = pn + 1
9τ (2K1 + 3K2 + 4K3), (30)

K1 = R(pn, tn),

K2 = R
(
pn + 1

2τK1, tn + 1
2τ
)
, (31)

K3 = R
(
pn + 3

4τK2, tn + 3
4τ
)
,

where pn denotes the value of p at time tn and τ is the time
step.

IV. NUMERICAL EXAMPLES

In this section, some benchmark problems are solved nu-
merically to show the validity of the algorithm presented
above. The discrete L2-norm error for the case with two jumps
is defined by

L2 error =
⎡⎣N1−1∑

j=1

e2
1,j h1 + 1

2
e2

1,N1
(h1 + h2) +

N2−1∑
j=2

e2
2,j h2

+ 1

2
e2

2,N2
(h2 + h3) +

N3∑
j=2

e2
3,j h3

⎤⎦1/2

, (32)

where ei,j = pi,j − p(vi,j ) are the errors between numerical
results and exact solutions. In addition, the L∞-norm error is
defined by

L∞ error = max
i,j

{|ei,j |}. (33)

For other cases, the errors are defined similarly. The numerical
convergence rate is defined by

rate = − ln(EM/EN )/ ln(M/N ), (34)

where EM and EN are the errors corresponding to the cases
with M and N solution points, respectively.

In numerical computations, the initial condition of Eq. (2)
given by a delta function cannot be used directly. Instead, if
an exact solution to Eq. (2) is available, we choose the initial
condition to be p(v, τ0|v0, 0) and start the computation from
t = τ0. Here, τ0 is a constant that can be chosen appropriately
for the considered problems. Otherwise, the initial condition
is set to be Gaussian,

p(v, τ0|v0, 0) = 1√
4πDτ0

e−[v−v0−�(v0 )τ0]2/(4Dτ0 ), (35)

which mimics the delta function when τ0 is small. For conve-
nience, D = 0.5 and τ0 = 0.01 are chosen for all test cases in
this section.

It should be noted that the proposed finite difference
scheme can also be applied to solve problems with continuous
drifts. In the following, we first show that the scheme is
actually fifth order for smooth cases. Then, we pay attention
to the cases with drift-admitting jumps, where a second-order
convergence rate is observed.

TABLE I. Coefficients that determine the difference scheme (22) for the cases N1 − 2 � j � N1 + 2 and N1 + N2 − 3 � j � N1 + N2 +
1. When s = 4 and 5, the coefficients are determined by the relation ds,j (x, y ) = −d6−s,7−j (y, x ) for 1 � j � 6.

s = 1 s = 2 s = 3

ds,1(x, y ) − 3
64(9x+y )

−8x2−4xy+3y2

24x(7x+y )(7x+3y )
60y3−69xy2

20x(x+y )(5x+y )(5x+3y )

ds,2(x, y ) 23x+2y

336x2+48xy

16x2+12xy−3y2

8x(5x+y )(5x+3y )
5(23x−18y )y2

6x(x+y )(3x+y )(3x+5y )

ds,3(x, y ) − 9(21x+4y )
32x(5x+y ) − 88x2+116xy+21y2

24x(x+y )(3x+y )
15y2 (8y−23x )

4x(x+y )(x+3y )(x+5y )

ds,4(x, y ) 57x+18y

48x2+16xy

32x2+124xy+69y2

24x(x+y )(x+3y )
15x2 (23y−8x )

4y(x+y )(3x+y )(5x+y )

ds,5(x, y ) − 17x+8y

192x(x+y ) − x3(x+24y )
y(x+y )(3x+y )(5x+y )(7x+y )

5x2 (18x−23y )
6y(x+y )(x+3y )(5x+3y )

ds,6(x, y ) 18x4

(x+y )(3x+y )(5x+y )(7x+y )(9x+y )
x3(x+8y )

3y(x+y )(x+3y )(5x+3y )(7x+3y )
3x2 (23y−20x )

20y(x+y )(x+5y )(3x+5y )

033302-5



YAMING CHEN AND XIAOGANG DENG PHYSICAL REVIEW E 98, 033302 (2018)

TABLE II. Accuracy test for Eq. (2) with �(v) = 1 at time t = 1.
The total number of solution points is Nv = N1 + N2 + N3 − 2. The
Chang-Cooper scheme for Eq. (2) with constant drift �(v) = μ is
presented in Appendix A. Here, the errors are computed according
to Eqs. (32) and (33), and the rates are defined by Eq. (34).

Current method

N1 N2 N3 Nv L2 error Rate L∞ error Rate

40 10 20 68 1.39E-03 1.94E-03
80 20 40 138 5.16E-05 4.66 5.21E-05 5.11
160 40 80 278 1.77E-06 4.82 1.46E-06 5.11
320 80 160 558 5.09E-08 5.09 4.04E-08 5.15

Chang-Cooper scheme
Nv L2 error Rate L∞ error Rate
68 6.73E-01 9.35E-01
138 2.50E-01 1.40 3.25E-01 1.49
278 3.80E-02 2.69 5.80E-02 2.46
558 1.02E-02 1.89 1.58E-02 1.87

A. Smooth drifts

The following two examples are used to confirm that the
scheme described in Sec. III is fifth order for the cases with
smooth drifts. Herem vd1 = 0 and vd2 = 1 are used to divide
all the computational domains (see Fig. 1) and the time step is
set to be τ = 0.01 min{h2

1, h
2
2, h

2
3}.

1. Constant drift

When �(v) = μ with μ being a constant, Eq. (1) corre-
sponds to the Brownian motion with a constant drift, whose
propagator is simply Gaussian,

p(v, t |v0, 0) = 1√
4πDt

e−(v−v0−μt )2/(4Dt ). (36)

Here, μ = 1 and v0 = 0 are chosen and the solution domain
is truncated to be [−5, 10]. While a zero current boundary
condition is set for the left boundary, i.e., f (−5, t |v0, 0) = 0,
no boundary condition is needed for the right due to the pos-
itiveness of the chosen μ. The numerical results obtained in
Table II show that for this smooth case the algorithm proposed
in this paper achieves a fifth-order convergence rate approxi-
mately, while only approximately second-order for the Chang-
Cooper scheme [28] (see Appendix A), which is one of the
most popular schemes for solving Fokker-Planck equations.
As we can see from Fig. 4, when t = 8 the current is much
large than zero at the right boundary. But the proposed scheme
still produces a solution that matches with the exact solution.
This means that the computational domain is not necessary to
be large to avoid boundary refection here. It is no doubt that
this property is very desirable in numerical simulations.

2. Ornstein-Uhlenbeck process

When �(v) = −γ v with γ being a constant, Eq. (1) cor-
responds to the Ornstein-Uhlenbeck process. In this case, it is
well known that Eq. (2) admits the solution

p(v, t |v0, 0) =
√

γ

2πD(1 − e−2γ t )
exp

(
−γ (v − e−γ t v0)2

2D(1 − e−2γ t )

)
.

(37)

FIG. 4. Numerical result of Eq. (2) with �(v) = 1 at time
t = 8. Here, N1 = 40, N2 = 10, and N3 = 20 are used to compute
the numerical result, which matches well with the exact solution (36).

For γ > 0 and t → ∞, the solution tends to the stationary
solution

pOU (v) =
√

γ

2πD
e−γ v2/(2D). (38)

For γ � 0, no stationary solution exists.
Here, we consider computations for the two cases γ = 1

and −1. The computational domain [−5, 5] is chosen for both
the cases. While zero current boundary conditions are set
for the first case, no particular boundary condition is needed
for the second. As we can see in Table III that the proposed
scheme achieves fifth-order accuracy approximately for the
two cases. Numerical results for larger time as shown in Fig. 5
confirm that the scheme is also valid for long time simulations,
even for negative γ without a large computational domain.

B. Drifts admitting one jump

Since drifts admitting only one jump are considered, the
computational domain is only divided into two subdomains
by the jump here. Then, we can modify the proposed finite
difference scheme just by removing the subdomain �2 as
shown in Fig. 1. Here, the time step is chosen appropriately
to be τ = 0.01 min{h2

1, h
2
2}.

TABLE III. Accuracy test for Eq. (2) with �(v) = −γ v at
time t = 0.5 for two different values of γ . Here, Nv = N1 + N2 +
N3 − 2. The errors are computed according to Eqs. (32) and (33),
and the rates are defined by Eq. (34).

γ = 1

N1 N2 N3 Nv L2 error Rate L∞ error Rate

40 10 20 68 4.11E-04 3.93E-04
80 20 40 138 5.18E-05 2.93 5.63E-05 2.74
160 40 80 278 2.06E-06 4.60 2.03E-06 4.75
320 80 160 558 4.10E-08 5.62 3.86E-08 5.69

γ = −1

N1 N2 N3 Nv L2 error Rate L∞ error Rate
40 10 20 68 3.29E-04 2.87E-04
80 20 40 138 5.59E-05 2.50 4.53E-05 2.61
160 40 80 278 2.34E-06 4.53 1.73E-06 4.67
320 80 160 558 4.75E-08 5.60 3.36E-08 5.65
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FIG. 5. Numerical results of Eq. (2) with �(v) = −γ v for γ = 1
and −1 at different time. Here, N1 = 40, N2 = 10, and N3 = 20 are
used to compute the numerical results, which match well with the
exact solution (37).

1. Pure dry friction

When �(v) = −μ sgn(v) with μ being positive constant
and “sgn” denoting the sign function, Eq. (1) corresponds
to the Brownian motion with pure dry friction [2], whose
propagator is known in closed analytic form [16–18]

p(v, t |v0, 0) = μ

D
p̂
(

μ

D
v,

μ2

D
t
∣∣ μ

D
v0, 0

)
, (39)

where

p̂(x, τ |x0, 0) = e−τ/4

2
√

πτ
e−(|x|−|x0|)/2e−(x−x0 )2/(4τ )

+ e−|x|

4

[
1 + erf

(
τ−(|x|+|x0|)

2
√

τ

)]
with erf (x) = 2

∫ x

0 exp(−z2)dz/
√

π denoting the error func-
tion. The exact solution at time t = τ0 is set to be the initial
condition with v0 = 2, the computational domain is chosen
to be [−4, 8], and zero current conditions are set at the
boundaries. Figure 6 shows that the numerical results are
consistent to the exact solutions. Since the solution admits
a cusp at v = 0 like peakons [39], second-order accuracy is
observed in Table IV, as expected. In addition, the results for
a more general case with a two-valued drift are presented in
Appendix B.

2. Other drifts admitting one jump

Additional to the pure dry friction case, we consider here
another two drifts admitting one jump, which are studied by

FIG. 6. Propagators of Eq. (1) with the drift �(v) = −sgn(v)
at t = 1 and 5. Here, v0 = 2 and N1 = N2 = 50 are chosen to
compute the numerical results, which matches well with the exact
solution (39).

using exact simulations of Eq. (1) in [25] and [26], respec-
tively.

The drift studied in [25] is

�(v) =
{

3π
2 − π

2 cos
(

π
5 v
)
, v < 0

−π
2 cos

(
π
5 v
)
, v > 0.

(40)

We choose the computational domain to be [−2, 3] and im-
pose zero current conditions at the domain boundaries. The
initial condition is set to be Eq. (35) with v0 = 0. However,
in Eq. (40) we did not define the value of �(0) since the
proposed finite difference scheme does not involve the values
of the drift at discontinuous points. Therefore, we have to
define the value of �(0) involved in the initial condition (35).
In this case, we define �(0) = [�(0−) + �(0+)]/2. The
same definition will be used throughout this paper. The profile
of the numerical propagator as shown in Fig. 7(a) agrees with

TABLE IV. Accuracy test for Eq. (1) with the drift �(v) =
−sgn(v) at t = 1. Here, v0 = 2 and Nv = N1 + N2 − 1. The errors
are computed according to Eqs. (32) and (33), and the rates are
defined by Eq. (34).

N1 N2 Nv L2 error Rate L∞ error Rate

50 50 99 4.73E-03 2.80E-03
100 100 199 1.21E-03 1.96 6.94E-04 2.00
200 200 399 3.01E-04 2.00 1.72E-04 2.00
400 400 799 7.57E-05 1.99 4.32E-05 1.99
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FIG. 7. Propagators of Eq. (1) with the drifts (40) [(a)] and (41)
[(b)] at t = 1; v0 = 0. Here, the coarse-grid solutions obtained with
N1 = N2 = 50 match well with the fine-grid solutions obtained with
N1 = N2 = 400.

the result obtained in [25] (see Fig. 4 therein). Moreover, the
result obtained for a coarse grid matches with the fine-grid
solution.

The drift investigated in [26] is

�(v) =
{

sin
(
v − π

4

)
, v < 0

sin
(
v − 7π

6

)
, v > 0.

(41)

The solution domain is truncated to be [−5, 4] and zero
current conditions are imposed at the domain boundaries. As
we can see from Fig. 7(b), the results agree with that obtained
in [26] (see Fig. 1 therein). Moreover, the results obtained by
using a coarse grid and a fine grid match with each other.

C. Drifts admitting two jumps

Here, the two examples presented in [27] are consid-
ered. In both cases, the time step is chosen to be τ =
0.01 min{h2

1, h
2
2, h

2
3}.

The first drift admitting two jumps reads as follows:

�(v) =

⎧⎪⎨⎪⎩
0, v < 0

1, 0 < v < 1

0, v > 1

(42)

which is piecewise-constant. In this case, the computational
domain is chosen to be [−4, 6] and no numerical boundary
condition is needed for the proposed scheme. The numerical
solutions as shown in Fig. 8(a) agree with the result presented
in [27] [see Fig. 6(a) therein]. In addition, the results obtained
by using a coarse grid and a fine grid are consistent.

FIG. 8. Propagators of Eq. (1) with the drift (42) at time t = 1
[(a)] and the drift (43) at time t = 0.6 [(b)]. Here, v0 = 0.5 is chosen
for both cases. The coarse-grid solutions are obtained with N1 = 60,
N2 = 10, and N3 = 50, and the fine-grid solutions are obtained with
N1 = 480, N2 = 80, and N3 = 400. The coarse-grid solutions match
well with the fine-grid solutions.

The second drift is

�(v) =

⎧⎪⎨⎪⎩
−2 cos(v), v < 0

sin(v), 0 < v < 1

cos(v − 1) + sin(1), v > 1.

(43)

The computational domain is chosen to be [−4, 5], which is
large enough for us to impose zero current conditions at the
domain boundaries for time t = 0.6 with v0 = 0.5. As shown
in Fig. 8(b), the profile of the propagator agrees with that
presented in [27] [see Fig. 6(b) therein]. Again, it is observed
that the results obtained by using a coarse grid and a fine grid
are consistent.

V. EXTENSION TO FUNCTIONALS

Functionals of a stochastic process have been investigated
intensively in the past and have found numerous applications
in physics. Here, we consider the functional

u(t ) =
∫ t

0
K (v(s))ds (44)

with an integrable kernel K (v), where the stochastic process
v(t ) obeys the Langevin equation (1). In particular, we have
u(0) = 0. The joint propagator of u and v, denoted by p =
p(u, v, t |v0, 0), is governed by the following Fokker-Planck
equation:

∂t p = −K (v)∂u p − ∂v[�(v)p] + ∂2
v p (45)
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FIG. 9. Illustration of the uniform grid staggered by flux points
(47) and solution points (48) for the u direction.

with the initial condition

p(u, v, 0|v0, 0) = δ(u)δ(v − v0). (46)

A. Scheme

To solve Eq. (45), we have to use the same matching
conditions at the discontinuities of the drift �(v) (in the v

direction) as Eq. (2), while in the u direction we just need to
use the continuous condition as usual. Therefore, the scheme
derived for Eq. (2) can be applied directly for the v direction.
In the u direction, we choose the computational domain to be
[u

L
, u

R
]. Then, a uniform staggered grid as shown in Fig. 9 is

used. Here, the flux points and solution points are

uk+1/2 = u
L

+ khu, 0 � k � Nu (47)

uk = u
L

+ (k − 1/2)hu, 1 � k � Nu (48)

where Nu denotes the number of solution points in the u

direction and the step hu = (u
R

− u
L
)/Nu.

Similar to the approximation to the term �(v)p appearing
in the current (3), we approximate the term K (v)∂up at the
point (uk, vj ) by

min{K (vj ), 0}(∂up)+k,j + max{K (vj ), 0}(∂up)−k,j ,

where (∂up)+k,j and (∂up)−k,j are obtained by the following
procedure. For a fixed vj , we first reconstruct the values of
the propagator at uk+1/2 from the values at solution points by
using fifth-order interpolations. Introducing the following two
(Nu + 1) × Nu interpolation matrices,

I−
u =

[
(a)1×Nu

(I−
3 )Nu×Nu

]
, I+

u =
[

(I+
1 )Nu×Nu

ã

]
,

where a is defined in Eq. (13) and ã is defined by let-
ting its entries satisfy that [̃a]1,j = [a1×Nu

]1,Nu+1−j , we
can express the reconstructions as p±

•j = I±
u p•j , where

the vectors p±
•j = [p±

1/2,j , p
±
3/2,j , . . . , p

±
Nu+1/2,j ]T and p•j =

[p1,j , p2,j , . . . , pNu,j ]T . Then, we approximate the derivative
∂up at solution points as (∂up)±•j = Aup±

•j /hu, where the
vectors (∂up)±•j = [(∂up)±1,j , (∂up)±2,j , . . . , (∂up)±Nu,j

]T and
the Nu × (Nu + 1) difference matrix Au is defined by
Au = (A2)(Nu−1)×Nu

such that the difference scheme is sixth
order at uk with 3 � k � Nu − 2 and fourth order at the other
solution points.

Here, the third-order Runge-Kutta scheme (30) is still used
to solve the resulting ordinary differential system.

B. Displacement

Particularly, in this work we focus on the displacement
u(t ) = ∫ t

0 v(s)ds associated with the Brownian motion with
pure dry friction, i.e., �(v) = −sgn(v) and K (v) = v are
chosen for Eq. (45). Here, the the computational domain in
the v direction is divided into two subdomains by v = 0. We
set the initial condition to be

p(u, v, τ0|v0, 0) = 1

4πDτ0
e−(u−v0τ0 )2/(4Dτ0 )

× e−[v−v0−�(v0 )τ0]2/(4Dτ0 ) (49)

FIG. 10. Contour plots of the joint propagator p(u, v, t |v0, 0) of Eq. (45) at different time with �(v) = −sgn(v), K (v) = v, D = 1, and
v0 = 0. Here, N1 = N2 = 100 and Nu = 200 are chosen to compute the numerical results.
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FIG. 11. Propagators of the displacement (52) correspond to the numerical joint propagator p(u, v, t |v0, 0) at different time, as shown in
Fig. 10.

and start the computations at t = τ0 with τ0 chosen to
be 0.01. In addition, the time step is chosen to be τ =
0.01 min{hu, h1, h2}.

As mentioned in the Introduction, for the Brownian motion
with pure dry friction, analytic expressions of the first two
moments of the displacement are available by solving a back-
ward Komogorov equation [22] or using the method based on
the Pugachev-Sveshnikov equation [23]. For instance, when
v0 = 0 and D = 1 we can inverse the expressions (70) and
(73) in [22] to obtain the first two moments as

M1(t ) = 0, (50)

M2(t ) = [
1
8 t4 + 5

6 t3 − 2t2 + 6t − 10
]
erfc

(√
t

2

)
+
[
64 −

√
t
π

(
1
4 t3 + 7

6 t2 − 13
3 t + 10

)]
e−t/4

+ 10t − 54, (51)

where erfc(x) is the complementary error function.

For different time t , computational domains can be chosen
differently. For simplicity, the domain in the v direction is
fixed to be [−6, 6], while the domain for the u direction is
set to be dependent on time. To compute the results shown in
Fig. 10, the computational domain u ∈ [−10, 10] is chosen for
t = 0.1 and 1, u ∈ [−15, 15] for t = 2.5, and u ∈ [−30, 30]
for t = 5. While zero current conditions are set at the do-
main boundaries in the v direction, no particular boundary
condition is needed in the u direction. Numerical evolution
of the joined propagator is shown in Fig. 10. In addition, the
corresponding propagators of the displacement obtained by

pdis(uk, t |0) =
N1−1∑
j=1

pj,kh1 + 1

2
pN1,k (h1 + h2)

+
N1+N2−1∑
j=N1+1

pj,kh2 (52)

FIG. 12. The first two moments of the displacement. Lines correspond to the exact solutions (50) and (51), and points to the numerical
solutions obtained by using Eq. (53) for the displacement distributions as shown in Fig. 11.
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are illustrated in Fig. 11. To confirm the correctness of the re-
sults, the first two moments of the displacement are computed
numerically by

M̃s (t ) = hu

Nu∑
k=1

(uk )spdis(uk, t |0), s = 1, 2. (53)

As shown in Fig. 12, the results agree with the analytical
expressions (50) and (51), indicating the validity of the nu-
merical method.

VI. CONCLUSIONS

We have derived in this paper a finite difference scheme
to solve Fokker-Planck equations with drift-admitting jumps.
The scheme is based on a grid staggered by flux points and
solution points. In particular, the positions of the jumps are
set to be solution points and used to split the solution domain
into subdomains, such that we do not have to do much work
to deal with the matching conditions of the propagator and the
probability current at the jumps. Some benchmark problems
have been computed numerically to show the validity of the
scheme. The results showed that the scheme is fifth order for
the cases with smooth drifts and second order for the cases
with discontinuous drifts.

One of the desirable properties of the scheme is that,
depending on the signs of the drift �(v) at the domain
boundaries, we may not need to specify boundary conditions
for the proposed scheme and could use a small computational
domain to get a correct solution. This property is in particular
useful when we extend the scheme to study functionals of a
process, where no boundary condition is needed at the domain
boundaries of the functionals. The displacement statistics
of the Brownian motion with pure dry friction have been
computed to show the effectiveness of the extended scheme.

The proposed numerical approach may be generalized
to solve other problems involving discontinuous drifts, e.g.,
problems with both discontinuous drifts and some col-
ored noises [14], and high-dimensional problems with drift-
admitting jumps [40].

ACKNOWLEDGMENTS

This work was supported by the National Natural Science
Foundation of China (Grant No. 11601517) and the Basic
Research Foundation of National University of Defense Tech-
nology (Grant No. ZDYYJ-CYJ20140101).

APPENDIX A: CHANG-COOPER SCHEME
FOR CONSTANT DRIFT

Divide the computational interval [v
L
, v

R
] into N cells with

the nodes vj satisfying

vj = v
L

+ j h, 0 � j � N (A1)

where the step h = (v
R

− v
L
)/N . Then, the Chang-Cooper

scheme [28] for the Fokker-Planck equation (2) with the

constant drift �(v) = μ can be written as

1

τ

(
pn+1

j − pn
j

) = 1

h

μ

1 − e−μh/D

(
pn+1

j−1 − 2pn+1
j + pn+1

j+1

)
− μ

h

(
pn+1

j+1 − pn+1
j

)
(A2)

for 1 � j � N − 1. Here, τ is the time step. As stated in
Sec. IV A 1 for μ > 0, we impose zero boundary condition
pn+1

0 = 0 for all n. For j = N , we simply use an extrapolation
scheme pn+1

N = 2pn+1
N−1 − pn+1

N−2. Now, introducing the vector
pn = [pn

1 , pn
2 , . . . , pn

N−1], we can write the scheme (A2) as a
compact form Zpn+1 = pn, where the matrix

Z =

⎡⎢⎢⎢⎢⎢⎢⎣

b c

a b c

. . .
. . .

. . .

a b c

a − c b + 2c

⎤⎥⎥⎥⎥⎥⎥⎦ (A3)

with

a = μr

λ − 1
, b = 1 − μr

λ + 1

λ − 1
, c = μr λ

λ − 1
. (A4)

Here, r = τ/h and λ = e−μh/D .

APPENDIX B: TWO-VALUED DRIFT

Let us consider in Eq. (1) the two-valued drift

�(v) =
{
μ

L
, v < 0

−μ
R
, v > 0

(B1)

where μ
L

and μ
R

are constants. Equation (1) with the drift
(B1) is called the Brownian motion with a two-valued drift,
whose propagator can be expressed in terms of convolution
integrals [see Eq. (5.7) in [17] or Eq. (42) in [19]]. In the fol-
lowing, we consider three cases according to the signs of μ

L

and μ
R
. Here, the point v = 0 is used to divide the computa-

tion domains into two subdomains and τ = 0.01 min{h2
1, h

2
2}

is chosen for the time step. In addition, we set the initial con-
dition to be Eq. (35) with τ0 = 0.01 and start the computations
from t = τ0.

1. Case 1: μL > 0 and μR > 0

For the case with μ
L

= μ
R

> 0, this is just the Brownian
motion with pure dry friction discussed in Sec. IV B 1. Here,
μ

L
= 1 and μ

R
= 2 are chosen. The computational domain is

set to be [−3, 3] and zero boundary conditions are imposed.
The result shown in Fig. 13(a) demonstrates the validity of the
numerical method for this case.

2. Case 2: μL > 0 and μR < 0

In this case, when μ
L

= −μ
R

= μ > 0, Eq. (2) degen-
erates to the Brownian motion with a constant drift (see
Sec. IV A 1). For other cases with μ

L
�= −μ

R
, it is expected

that the propagator is nonsmooth at v = 0. Here, we consider
the case with μ

L
= 1 and μ

R
= −2. The computational do-

main is chosen to be [−4, 8], a zero current condition is set
at the left boundary, and no boundary condition is specified at
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FIG. 13. Propagators of the case (B1) with different values of μ
L

and μ
R

at time t = 1. Here, v0 = 0, D = 0.5, and N1 = N2 = 50 are
chosen to compute the numerical solutions, which match well with the exact solutions that are obtained by evaluating the convolution integrals
appearing in the analytic expression [see Eq. (5.7) in [17] or Eq. (42) in [19]] numerically by using the routine NIntegrate in Mathematica 8.0.
(a) μ

L
= 1 and μ

R
= 2; (b) μ

L
= 1 and μ

R
= −2; (c) μ

L
= −1 and μ

R
= −1; (d) μ

L
= −1 and μ

R
= −2.

the right. The numerical result as shown in Fig. 13(b) agrees
with the exact solution, as expected.

3. Case 3: μL < 0 and μR < 0

In this case, no boundary condition is needed according
to the signs of μ

L
and μ

R
. For v0 = 0 it is expected that

the propagator is symmetric for μ
L

= μ
R

and nonsymmetric
for μ

L
�= μ

R
. For μ

L
= μ

R
= −1, the computational domain

[−8, 8] is used. The result depicted in Fig. 13(c) shows that
the numerical result is consistent with the exact solution. For
μ

L
= −1 and μ

R
= −2, the computational domain [−6, 8]

is chosen. The result shown in Fig. 13(d) also confirms the
validity of the numerical method.
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