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The linear and nonlinear properties of modulated high-frequency (electron-acoustic) electrostatic wave
packets are investigated via a fluid-dynamical approach. A three-component plasma is considered, composed
of two types of electrons at different temperatures (“cold” and “hot” electrons) evolving against a cold stationary
ion background. A weak dissipative effect is assumed, due to electron-neutral collisions. While the cold electrons
are treated as an inertial fluid, the hot electrons are assumed to be in a non-Maxwellian state, described by a
kappa (κ) type distribution. The linear characteristics of electron-acoustic waves are analyzed in detail, and a
linear dispersion relation is obtained. Weakly damped electrostatic waves are shown to propagate above a wave
number k threshold, whose value is related to dissipation (and reduces to zero in its absence). Long-wavelength
values (i.e., for k below that threshold) are heavily damped and no propagation occurs. The nonlinear dynamics
(modulational self-interaction) of wave packets in the propagating region is modeled via a dissipative nonlinear
Schrödinger type equation, derived via a multiscale perturbation technique for the wave envelope, which
includes a dissipative term associated with the finite imaginary part of the nonlinearity term. The dynamical and
structural characteristics (speed, amplitude, width) of dissipative localized modes representing the amplitude
of modulated electron-acoustic wave packets in a collisional plasma are thus investigated for various values
of relevant plasma (configuration) parameters, namely the superthermality index κ , the cold-to-hot electron
density ratio, and collisionality (strength). Our analytical predictions are tested by computer simulations. A
quasilinear perturbation method for near-integrable systems leads to a theoretical prediction for the wave
amplitude decay, which is shown to match our numerical result. The results presented in this paper should
be useful in understanding the dynamics of localized electrostatic disturbances in space plasmas, and also
in laboratory plasmas, where the combined effect(s) of excess energetic (suprathermal) electrons and (weak)
electron-neutral collisions may be relevant.
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I. INTRODUCTION

Localized structures, in the form of electrostatic solitary
waves (ESWs) are known to propagate in plasmas thanks
to a delicate balance between nonlinearity and dispersive
effects [1]. Although ESWs are often modeled as solitons,
i.e., steady state solutions of integrable nonlinear partial dif-
ferential equations (PDEs), they may be subject to external
perturbations, such as wave-wave interactions, forcing, or
dissipation (damping)—of importance here—during propa-
gation; it is known that, for external perturbations which
are not “too” strong, solitons may adapt their propagation
characteristics (amplitude, width, speed) and still propagate
for long distances, eventually decaying in time [2].

Dissipative solitary waves (or dissipative solitons) are
known in plasma physics [3–10] and also in nonlinear optics
[11–16]. In plasmas, dissipation may arise due to collisions
among different plasma constituents (e.g., electron-neutral
collisions [17], ion-neutral collisions [18], dust-ion collisions

*ssultana@juniv.edu
†IoannisKourakisSci@gmail.com

[18], dust-neutral collisions [17], due to nonlinear Landau
damping [19], or finally due to kinematic fluid viscosity [20]).

Real plasmas, both in space and in laboratory, are most
often not in thermodynamic equilibrium; instead, they are
characterized by energetic particles, which are accelerated
via different mechanisms. This is reflected in an excess
population in the fast (superthermal) particle velocity distri-
bution component, which thus deviates from the (thermal)
Maxwellian distribution function and rather acquires a long-
tailed power law dependence, as observed in space [21–24].
This behavior is successfully described via the κ (kappa)
nonthermal distribution function [24–27], as a plethora of in
situ observations have shown, both in space plasmas [28–30]
and in the laboratory [31–33].

Nonlinear wave propagation in plasmas is dynamically
affected by accelerated (superthermal) particles (electrons
or/and ions), as shown in a number of theoretical investiga-
tions, modeling solitary waves [34–36], shock waves [37,38],
double layers [39], and modulated wave packets [38,40].

Modulational processes involved in the dynamics of elec-
trostatic wave packets are known to be modeled by the cu-
bic nonlinear Schrödinger equation (NLSE) [38,40,41]. In
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an alternative formulation, in optics, electromagnetic wave
packets are modeled by a Ginzburg-Landau type equation
(GLE) [3–6], in the presence of gain and loss terms, i.e.,
due to dissipation. This mainly affects nonlinear phenomena,
such as modulational instability (MI), a well-known generic
mechanism for energy localization in nonlinear and disper-
sive media [1]. Importantly, envelope solitons, modeled by
either NLSE or GLE theories, are used in telecommunications
[42], to model signal transmission via pulses propagating in
optical fibers, due to their remarkable stability properties. In
a real-life dissipative system, an external source of energy
(amplifier, amplitude modulator) [43] is added to sustain the
original information over a very long distance, e.g., in fiber
optics. The external energy thus balances dissipation, and the
initial solitary pulse maintains its stability while propagating
through a balance of gain and loss mechanisms.

Decades ago, Nicholson [3] used the NLSE paradigm to
model high-frequency electrostatic plasma oscillations in the
simultaneous presence of collisional and Landau damping by
adopting a kinetic (statistical) approach, arguing that Landau
damping results in a soliton pulse which is shorter (of smaller
amplitude) and wider (in spatial extension) due to decay,
while collisional damping may result in narrower and smaller
solitons, with constant speed [3]. An ad hoc NLSE model
with complex coefficients was adopted in Ref. [4] to describe
the combined action of growth and damping processes in
plasmas. A localized soliton-like steady state was proposed
[4], and the characteristic soliton parameters of the soliton
(amplitude, width) were found analytically, assuming that the
pulse’s shape remains unchanged.

The investigation at hand focuses on electron-acoustic
waves (EAWs) [44–50], i.e., a propagating electrostatic mode
sustained thanks to inertia being provided by a “cold” electron
fluid, while the restoring force is provided by the thermal
pressure of a “hot” electron fluid, both evolving against a neu-
tralizing ion background [44–50]. The hot electron population
is characterized by an excess in the superthermal region of
its (non-Maxwellian) particle distribution, which is effectively
modeled by a kappa (κ) type distribution function. Interest-
ingly enough, these conditions are satisfied in Saturn’s mag-
netosphere [51], where a coexistence of electron populations
(at distinct temperatures) is observed, with κ index varying
from κ � 2 to 4 in a wide region. Nonlinear electron-acoustic
(EA) structures have been studied via different theoretical
approaches in the recent past [10,40,52–54].

From a methodological point of view, we have applied a
multiple scale technique to derive an evolution equation for
the electrostatic potential φ. We have thus been led to a mod-
ified version of the well-known nonlinear Schrödinger (NLS)
equation, the novelty lying in the fact that the nonlinearity
coefficient is now complex-valued, in account of dissipation
(due to an ad hoc damping term adopted in the dynamics
to model weak plasma collisionality). Building up on earlier
knowhow [7,10,38,40,41], we aim at modeling the dynami-
cal evolution of modulated amplitude electron-acoustic wave
packets, and investigating their dynamical dependence on
different plasma composition parameters and mechanisms:
dissipation, superthermality, composition.

The layout of this paper is as follows. A fluid model
for high-frequency electrostatic wave packets is presented in

Sec. II. A linear dispersion relation is derived and the linear
properties of EAWs are analyzed in Sec. III. A nonlinear
analysis is carried out and an evolution equation is derived for
the wave packet amplitude (envelope) and the role of damping
is then discussed in Sec. IV. A parametric investigation is
presented, based on a critical comparison of analytical and
numerical (simulation) results, in Sec. V. Finally, our results
are summarized in the concluding Sec. VI.

II. FLUID MODEL

We consider a three-component unmagnetized collisional
plasma consisting of cold (inertial) electron, hot (inertialess)
electrons (characterized by a nonthermal κ distribution), and
stationary (positively charged) ions.

We focus on the dynamical motion of the cold electron
population, considered to be dominant in our scale of interest,
by assuming that the wave’s phase speed is far smaller than
the hot electrons’ thermal speed, and much greater than both
ions’ and cold electrons’ thermal speed, i.e., vth,i , vth,c �
vph � vth,h (the indices i, c, and h denote the ions, cold
electrons, and hot electrons, respectively). Working in a one-
dimensional (1D) geometry, the “cold” electron component is
described by the fluid-dynamical equations

∂nc

∂t
+ ∂ (ncuc )

∂x
= 0, (1)

∂uc

∂t
+ uc

∂uc

∂x
= e

me

∂�

∂x
− νcuc, (2)

∂2�

∂x2
= 4πe[nc + nh − Zini0]. (3)

The “hot” electrons are assumed to be in a non-
Maxwellian state, modeled by the kappa (κ) distribution func-
tion [21,25,55]:

nh = nh0

[
1 − e�

kBTh(κ − 3/2)

]−κ+1/2

, (4)

where the spectral index κ is a real parameter which mea-
sures the deviation from the Maxwell-Boltzmann equilibrium
state: note that smaller values of κ imply stronger deviation
(nonthermal behavior), while the appropriate expression(s)’
Maxwellian state is recovered in the infinite-κ limit [25].

We may now normalize Eqs. (1)–(4), for tractability and
analytical convenience. This is achieved by adopting appro-
priate scales, to be defined below. We thus obtain the rescaled
(dimensionless) equations

∂n

∂t
+ ∂ (nu)

∂x
= 0, (5)

∂u

∂t
+ u

∂u

∂x
= ∂φ

∂x
− νu, (6)

∂2φ

∂x2
� β(n − 1) + c1φ + c2φ

2 + c3φ
3, (7)

where the cold electron fluid number density nc and veloc-
ity uc are normalized by the equilibrium number density
nc0 and the characteristic (hot) electron thermal speed v0 =
(Th/me )1/2, respectively, while the electrostatic potential �

is scaled by �0 = Th/e. The space x and time t variables
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are scaled by the hot electron screening length λDh =
(Th/4πnh0e

2)1/2 and by the hot electron plasma period (in-
verse frequency) ω−1

ph = (4πnh0e
2/me )−1/2, respectively. The

normalized collisionality parameter now reads ν = νc/ωph.
We have defined the cold-to-hot electron density ratio as β =
nc0/nh0. Note that the right-hand side of Eq. (7) was expanded
to a McLaurin series near equilibrium; hence the suprathermal
electron feature (manifested via κ) is now incorporated in the
coefficients c1, c2, and c3, respectively given by c1 = κ−1/2

κ−3/2 ,

c2 = c1(κ+1/2)
2(κ−3/2) , and c3 = c2(κ+3/2)

3(κ−3/2) . Here, Tc (Th) denotes the
temperature of the cold (hot) electron component, in energy
units (the Boltzmann constant was omitted where obvious).

It should be stressed, for rigor, that electron-acoustic wave
propagation is possible provided that the phase speed (value)
lies between the thermal speed of the hot and cold electron
populations, so that the waves do not resonate with either
particle component (thermal speeds), thus avoiding resonant
damping. In general electron-acoustic waves suffer strong
Landau damping generated by the hot electron population;
practically speaking, they do survive for a temperature ra-
tio Th/Tc � 10 and for a density ratio 0.25 � nc0/nh0 � 4
[40,46,56], where the subscript h (c) obviously denotes the hot
(cold, respectively) electrons. In other words, the hot electron
population needs to be less than 25% that of cold electron
population, so as to render propagation of EAWs possible
in the plasma. It has also been pointed out in Ref. [56] (see
Figs. 3–5 therein, as well as the accompanying discussion)
that the region in the relevant parameter space (carrier wave
number, spectral index κ , hot/cold electron population density
ratio) needed to ensure weak damping of EAWs becomes
smaller, if one consider lower values of the ratio Th/Tc

and/or lower κ (i.e., stronger deviation from the Maxwellian
equilibrium state).

III. LINEAR ANALYSIS

To model linear waves, we proceed by considering har-
monic perturbations of the dependent (state) variables as
ei(kx−ωt ), where ω and k denote the wave frequency and wave
number, respectively. A dispersion relation relating ω and k

is thus obtained, upon linearizing the dimensionless system of
evolution equations (5)–(7), in the form

ω(ω + iν) = βk2

k2 + c1
. (8)

Assuming that the condition

βk2

k2 + c1
− ν2

4
> 0

is satisfied, we may separate real and imaginary parts to obtain

ω = −i
ν

2
+

√
βk2

k2 + c1
− ν2

4
. (9)

The real part of the frequency ωr is a function of the plasma
intrinsic configuration parameters (namely, superthermality
via κ , electron concentration ratio via β, and collisionality via
ν), while the imaginary part ωi is associated with collisional-
ity, depending only on the parameter ν. The above condition
implies that the wave number exceeds a certain threshold
kc = [c1ν

2/(4β − ν2)]1/2 (� √
c1/β ν/2, for ν � √

β).

2

3

4

5

Κ
0.0

0.5

1.0

Β
0.0

0.5

1.0

ΛD,eff
Κ

FIG. 1. The variation of the κ-dependent Debye screening length
λ

(κ )
D,eff , from (10), is depicted versus the hot electron spectral (su-

perthermality) index κ and the cold-to-hot electron number density
ratio β.

We conclude that wave packets with short-wavelength
value, i.e., for k > kc, will propagate, while the carrier wave
will experience amplitude attenuation (decay) as

ei(kx−ωt ) = e−iνt/2ei(kx−ωr t ).

The smaller the value of ν, the longer the propagation distance
will be.

On the other hand, for lower wave number k < kc, the wave
will be strongly damped and aperiodic, since ωr = 0 and ωi =
− ν

2 ± ( ν2

4 − βk2

k2+c1
)1/2 (both solutions are negative; the minus

sign will be dominant in this case).
As a matter of fact, the dispersion relation (9) suggests that

ωr � ( β

c1
)1/2k, for k � c

1/2
1 and ν � 0, suggesting that the

phase speed is vph ≈ ( β

c1
)1/2 in this case. This is the true phase

speed of EAWs in this kind of plasma, a result which is in
agreement with Ref. [56]. The same (dimensionless) quantity
may be interpreted as the κ-dependent Debye screening
length:

λ
(κ )
D,eff =

(
β

c1

)1/2

= κ − 3
2

κ − 1
2

nc0

nh0
. (10)

We note that the κ-dependent Debye screening length, say
λ

(κ )
D,eff , reduces to zero in either of the limits κ → 3/2 or

β → 0 (see in Fig. 1) as physically expected [65], from
previous works [40,56]. Finally, a Taylor series near the wave
number threshold kc =

√
c1ν√

4β−ν2
, discussed above, yields

ωr � ν(4β − ν2)3/2

8β
√

c1
(k − kc ) ≈

√
β√
c1

ν

(
k −

√
c1ν

2
√

β

)
. (11)

The threshold takes small values, e.g., kc � 0.488 for
representative values κ = 3, β = 0.5, and ν = 0.5; see Fig. 2.
The threshold increases (extending the “forbidden,” over-
damped region to larger k) for stronger dissipation (i.e., for
larger ν).

In Fig. 3, we depict the threshold wave number kc against
the collision frequency ν for different cold-to-hot electron
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FIG. 2. Dispersion relation: The wave frequency ω is depicted
versus the wave number k. Here, we have considered a strong
superthermality index value κ = 3, along with a cold-to-hot electron
number density ratio β = 0.5. The positive upper part denotes the
real part of the frequency, ωr , while the constant negative part at the
bottom of the graph denotes the imaginary part ωi .

population ratio β and also for different superthermality pa-
rameter κ . Note that the threshold practically varies linearly

(since ν � √
β in all realistic cases), i.e., kc �

√
c1
β

ν
2 , as seen

in the plots. The wave number threshold is actually lower for
a higher cold electron concentration in the plasma, as seen
in Fig. 3(a). On the other hand, kc is lower in a Maxwellian
plasma (large κ) than in a nonthermal plasma (for low κ

values), as depicted in Fig. 3(b). It is seen in Fig. 4 that the real
part of the wave frequency ωr (in the region k > kc) increases
as either β or ν increase.

As discussed in the introduction, electron-acoustic waves
are sensitive to Landau damping (though this is inevitably
neglected in a fluid description, like in our case), so these
can survive only for specific values of the cold-to-hot elec-
tron number density [46,47,53]. We shall therefore consider
appropriate values of the cold-to-hot electron density ratio β

in the following.
The wave packet’s envelope propagates at the group ve-

locity vg = dω/dk = dωr/dk which, based on Eq. (8), is
given by

vg = βkc1

(k2 + c1)2

1

ωr

, (12)

which is a real (positive) quantity for k > kc. The reality of the
group velocity confirms the fact that electron-acoustic (EA)
wave packets will not suffer any dispersive loss during their
propagation in the plasma.

IV. NONLINEAR ANALYSIS

We proceed by adopting a multiple (space and time)
scales technique, following the methodology described in
Refs. [40,41,57]. The method is only briefly summarized
here, since details on the tedious procedure are provided in
Appendix A. The algebraic procedure amounts to consid-
ering excitations off-equilibrium, expressed by a series of
the form φ � εφ

(1)
1 eiθ + ε2(φ(2)

0 + φ
(2)
1 eiθ + φ

(2)
2 e2iθ + · · · ,

 = 0.5

 = 1

 = 1.5
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(b)
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Β

Β

Β

FIG. 3. The wave number threshold kc is shown versus the colli-
sional parameter ν: (a) for different cold-to-hot electron population
ratio β (for κ = 3, here), and (b) for different κ (with β = 0.5).

where θ = kx − ωt is the fundamental (leading harmonic)
phase and ε � 1 is a small (real) parameter. (Analogous
expressions are obtained for the remaining state variables, i.e.,
the cold electron density nc and fluid speed uc, in our model.)
Details on the tedious algebraic procedure, as well as the set
of expressions obtained for the various coefficients associated
with second-order zeroth, first, and second harmonics, are
described in Appendix A.

A. Nonintegrable NLS equation for dissipative
envelope soliton modes

The condition for annihilation of secular terms in third
order in ε (n = 3) results in a closed PDE for the first
harmonic (l = 1), in terms of the leading harmonic amplitude
φ

(1)
1 . This equation takes the form of a cubic nonlinear

Schrödinger equation in the form

i

(
∂φ

(1)
1

∂T2
+ vg

∂φ
(1)
1

∂X2

)
+ P

∂2φ
(1)
1

∂X2
1

+ Q
∣∣φ(1)

1

∣∣2
φ

(1)
1 = 0, (13)

where T2 = ε2 t , X2 = ε2 x, and X1 = ε x are slow time
and space variables. Now, applying the Galilean coordinate
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FIG. 4. The variation of the wave frequency ωr (real part), as
given in Eq. (11), is shown (a) versus the wave number k and the
cold-to-hot electron number density ratio β, for κ = 3 and ν = 0.5,
and (b) versus the wave number k and the collisional parameter ν,
for κ = 3 and β = 0.5.

transformation ζ = x − vgt, τ = t , one finds the standard
form of the NLS equation:

i
∂ψ

∂τ
+ P

∂2ψ

∂ζ 2
+ Q|ψ |2ψ = 0, (14)

where ψ denotes the electric potential correction φ
(1)
1 .

The group velocity dispersion coefficient P (= 1
2

d2ω
dk2 ) is

a real-valued parameter, given by the expression (B1) in
Appendix B. The nonlinearity coefficient Q is given by
a lengthy expression, also provided in Appendix B; see
Eq. (B2). The approximate expressions of the dispersion
term P and the nonlinear term Q for small v are provided in
Appendix C.

A very important comment must be made at this stage.
Although Eq. (14) is reminiscent in structure of the standard
form of the NLS equation (see, e.g., in Refs. [1,41]), it is

Κ = 3
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Κ = 100
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0.4
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0.2
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0.0

k

P
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0
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k

Qr
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Κ = 3
Κ = 5
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0 1 2 3 4
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(c)

FIG. 5. We depict the effect of superthermality (via κ) on (a) the
dispersive term P , (b) the real part of nonlinear term Qr , and (c) the
imaginary part of nonlinear term Qi , versus the wave number k for
β = 0.5, ν = 0.05. The inset figures show a zoom-in view of regions
of interest.

not identical to the “traditional” (integrable, actually) form
of the NLSE, which is characterized by real dispersion (P )
and nonlinearity (Q) coefficients. On the contrary, although P

is real, Q = Qr + i Qi is actually a complex quantity in our
case. Closed analytical expressions for the real part Qr and the
imaginary part Qi are provided in Appendix B. It is straight-
forward to verify [either analytically or numerically; cf.
Fig. 5(c)] that Qi tends to zero, for vanishing ν, as expected.

The real-valued P in combination with the complex-valued
Q suggest a decaying electrostatic mode; i.e., the amplitude
of the wave is expected to decay with time. The dispersion
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FIG. 6. Variation of the wave number threshold k0 [in which
Qr (k0) = 0] versus the superthermality index κ for different values
of cold-to-hot electron number density ratio β, where ν = 0.05. The
inset figures show a zoom-in view of regions of interest.

term P will seek to balance the nonlinear term, i.e., the real
part of the nonlinear coefficient Qr . However, the nonlinear
Schrödinger equation (14) does not have the dispersive gain
term, i.e., does not have an imaginary part in the dispersive
coefficient to balance Qi . As a consequence, no source exists
to balance the nonlinear loss term, i.e., with the imaginary part
of the nonlinear coefficients Qi , and thus the coefficient Qi

will lead to nonlinear decay of the wave envelope.
The effect of nonthermality (via κ) on the coefficients

P , Qr , and also Qi in the presence of damping is explored
in Fig. 5. It is evident that the dispersion term P and the
imaginary part of nonlinearity coefficient Qi are negative
for any value of wave number k. On the other hand, the
real part of nonlinearity coefficient Qr is positive for low k

(long wavelength), but becomes negative for higher values of
wave number k (short wavelength). The value of the wave
number where Qr vanishes, i.e., the root k0 [viz., Qr (k0) =
0] is obviously a function of β and κ , to be obtained nu-
merically. The value of k0 decreases with lower κ , down
from a maximum value k0 � 2.5, for very large κ (i.e., in
the Maxwellian limit), all the way down to k0 � 3.35 for
κ � 3 (anti-Maxwellian limit). This behavior is visible in
Figs. 5(b) and 6. Interestingly, the threshold tends to infinity
as κ approaches its lower bound 3/2; hence Qr is positive
for any wave number, for very small κ (near 1.5). Practically
speaking, the focusing (bright soliton) condition PQr > 0
will never be realized for strongly non-Maxwellian plasmas
therefore, rendering bright-type excitations (bright soliton,
breathers, rogue wave structures) unstable, for any realistic
(except infinitesimally short) carrier wavelength values, in the
very low κ (�2, roughly) regime. One thus draws the general
conclusion that superthermality invalidates bright electroa-
coustic envelope solitons, for ultralow values of κ (these are
actually not frequent in space observations, which are mostly
consistent with values in the region 2 < κ < 6).

It is known that the integrable NLSE, here recovered from
(14) upon setting Qi = Qi (ν = 0) = 0, possesses bright-type
envelope soliton modes in the so-called focusing regime, i.e.,
when PQr > 0 (in our notation, here). In the opposite case,
where PQr < 0, dark-type envelope soliton modes are ob-
tained. Upon simple inspection of Fig. 5, it is obvious that the

focusing regime is realized in our case for high-wave-number
values, i.e., for carrier wave number above (the root of Qr ) k0.
We shall now proceed by considering this (focusing) region
only.

B. Canonical form of the NLSE

We now introduce new rescaled coordinates for the time
and space variables, as well as for the wave amplitude, as

T = |Qr |ψ2
0 τ, ξ = |Qr/2P |1/2 ψ0 ζ, ψ = ψ/ψ0, (15)

where ψ0 represents a characteristic (electrostatic potential)
wave amplitude scale (left arbitrary at this stage). Introducing
(15) into Eq. (14) and separating the real and imaginary parts,
one finds a reduced form of the NLSE as

i
∂ψ

∂T
+ α1

2

∂2ψ

∂ξ 2
+ α2|ψ |2ψ = −iα3D|ψ |2ψ, (16)

where α1 = P/|P | = ±1, α2 = Qr/|Qr | = ±1, and α3 =
Qi/|Qr | = ±1 denote the sign(s) of the respective coeffi-
cients. Note that (16) is valid in general, obtained upon
imposing the scaling (15) on Eq. (14) above. In our case, α1 =
α3 = −1, while α2 = +1 in the “defocusing” (modulationally
stable) region k < k0, or α2 = −1 in the “focusing” (modula-
tionally unstable) region k > k0. (These signs can be inferred
upon simple inspection from Fig. 5.) Note that D = |Qi/Qr |
is the (absolute value of the) ratio of the imaginary to real
nonlinearity coefficients, in fact a positive definite quantity.

Combining the above considerations, and henceforth limit-
ing our attention to the “focusing” (modulationally unstable)
region k > k0 (i.e., for P Qr > 0), we obtain from (16) the
following variant of the canonical form of the NLSE:

i
∂ψ

∂T
− 1

2

∂2ψ

∂ξ 2
− |ψ |2ψ = iD|ψ |2ψ = f [ψ], (17)

where we have formally defined the right-hand side via the
action of the operator f [ψ] = iD|ψ |2ψ .

We note, for rigor, that the scaling (15) adopted above
introduces space and time scales which are actually functions
of the wave number k (via P and Qr ), alongside plasma
parameters (κ , β). The reduction of Eq. (14) to the latter
“canonical” form (17), carried out here, will be important
as an algebraic procedure, not only to pinpoint the effect of
dissipation, but also to discuss, e.g., relevant mathematical
properties of Eq. (17) as a nearly integrable dynamical system
and to serve as basis for numerical simulation (see next
section). However, the resulting equation cannot be used for
a parametric investigation anymore, since relevant plasma
(configuration) parameters are now “hidden” in the scales.

In the case f [ψ] = 0 (only), the nonlinear Schrödinger
equation (17) possesses an infinite number of conserved quan-
tities (integrals). Following Ref. [58], upon formally setting
q = ψ and R[q] = f [ψ] therein, we define the energy and
momentum integrals [58–60]

E =
∫ ∞

−∞
|ψ |2dξ (18)

and

M = 1

2

∫ ∞

−∞
(ψψ∗

ξ − ψ∗ψξ )dξ, (19)

033207-6



DISSIPATIVE HIGH-FREQUENCY ENVELOPE SOLITON … PHYSICAL REVIEW E 98, 033207 (2018)

respectively, where ψξ represents the derivative of ψ with
respect to ξ .

It is well known that plane wave solutions become unstable
[1] for PQr > 0 (in the case f = 0). Bright type envelope
modes [41,57,61–63] also occur under the same condition.
The bright soliton solution [59,64] (for D = 0) has the form

ψ = ρ sech[ρ(ξ − v T )] exp[i{v ξ + (ρ2 − v2)T/2}], (20)

which represents an envelope with constant amplitude ρ and
velocity v. By combining Eqs. (18), (19), and (20), we obtain
the soliton energy and momentum as

E = 2ρ, M = −2iρv, (21)

respectively.
As we now have to deal with a dissipative dynamical

system, the wave may not have a constant amplitude and/or
velocity. Assuming a state off (but not far from) the steady
state solution of the integrable problem, we may allow the
amplitude ρ and the velocity v of the wave to vary in time
T and space ξ , assuming the expression (20) to be still valid
in the dissipative (“near-integrable”) case. We now consider
the complete NLSE (17), to trace the evolution of the wave
amplitude ρ and the velocity v. For the “perturbed,” i.e.,
nonintegrable nonlinear Schrödinger equation (17), one can
adapt the procedure in Refs. [58–60], to find a set of equations
modeling the time variation of the above integrals, i.e., in the
form

dE

dT
= −i

∫ ∞

−∞
(ψf ∗ − ψ∗f )dξ, (22)

dM

dT
= i

∫ ∞

−∞
(ψξf

∗ + ψ∗
ξ f )dξ. (23)

Combining the expressions (20)–(23), we obtain the ordi-
nary differential equations (ODEs) for the envelope amplitude
and velocity as

dρ

dT
= −4

3
Dρ3,

dv

dT
= 0. (24)

The velocity of the envelope turns out to be constant, in
agreement with Ref. [3]. To trace the decay (damping) effect
of the wave amplitude, we integrate Eq. (24a) and obtain an
analytical expression for the wave envelope (amplitude) as
follows:

ρ(T ) =
(

8

3
D T + 1

ρ2
0

)−1/2

, (25)

where ρ0 is the initial amplitude of the electric potential (i.e.,
the amplitude at time T = 0). In the limit T � 1 (or D � 1),

one is led to ρ �
√

3
8 D

1
T

, suggesting a decay as ρ ∼ 1/
√

T .
On the other hand, for T � 1 (or D � 1), the envelope
amplitude becomes ρ = ρ0(1 − 4

3D T ρ2
0 ), suggesting that,

for a negligibly small value of D, the amplitude remains
approximately equal to its initial amplitude. We may now
recover the dimensions of Eq. (25), in terms of the scaling
in (14), for transparency; we thus obtain

ψm(τ ) = ψmax
(

8
3 |Qi | τ ψ2

max + 1
)−1/2

, (26)

where ψm(τ ) = ψ0ρ(T ), τ = T/ψ2
0 |Qr |, and ψmax = ψ0ρ0.

V. PARAMETRIC INVESTIGATION

In order to characterize the dynamics and propagation
characteristics of electron-acoustic envelope modes, we will
now focus our attention on the role of dissipation (an element
absent in earlier works on EAWs [41]), i.e., manifested as
damping of the envelope (wave packet amplitude), and on
its parametric dependence on various plasma (configuration)
parameters in particular, namely the superthermality index κ ,
the carrier wave number k, the cold-to-hot electron density
ratio β. The bright envelope soliton solution given in Eq. (20)
will be considered as the initial condition.

Recall that the dispersion coefficient P is a real-valued
quantity; that is, there is no gain term provided by the disper-
sion. On the other hand, the nonlinear coefficient Q is a com-
plex quantity—suggesting wave propagation may be subject
to the simultaneous effect of mechanisms like nonlinear wave
steepening and also amplitude growth, e.g., through modu-
lational instability (arising due to the real part of Q) [41],
and energy loss (given by the imaginary part). The dispersive
term may balance the nonlinear steepening term. However, as
there is no external energy source to counteract (or balance)
the nonlinear loss term, the wave packet is expected to suffer
damping (amplitude decay) while propagating. Analytically
speaking, the damping (dissipative) effect is measured by
the parameter D, appearing in Eq. (17) above. The effect
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Κ = 100

0 1 2 3 4 5 6
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FIG. 7. The damping factor D, given in Eq. (17), is depicted
versus the wave number k (a) for different superthermality κ for
β = 0.5, ν = 0.05, and (b) for different cold-to-hot electron density
ratio β for κ = 3, ν = 0.05.
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of damping on the high-frequency electron-acoustic wave
packets’ amplitude is investigated, both analytically—based
on the result given in Eq. (25) above—and numerically, for
different plasma configuration parameters.

A. Analytical prediction

In Fig. 7, we show the variation of the damping factor
D [given in Eq. (17)] versus the wave number for different
values of (the spectral index) κ and (the cold-to-hot electron
number density ratio) β. It is necessary to recall here that the
dispersive term P and the imaginary part of the nonlinear
term Qi are always negative for all k, while the real part of
the nonlinear term Qr can be negative or positive depending
on the plasma parameters; see Fig. 5. According to the stan-
dard theory of envelope solitons, formed by self-modulational
processes—see, e.g., in Refs. [1,41,57]—envelope modes
may be either of the bright (envelope pulses) or dark (en-
velope holes) type, depending only on the sign of the real
nonlinear term Qr , in our case [40,57]: bright solutions are
obtained for Qr < 0, while dark types solutions are possible
for Qr > 0. Now, regarding the role of dissipation, note the
appearance of a vertical asymptote in the graph of D =
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FIG. 8. The evolution of the normalized envelope amplitude ρ

(in units of electric potential), as given in Eq. (25), is depicted
versus time T (in units of ω−1

ph ). We have considered different values
of (a) the carrier wave number k (in units of λ−1

Dh), for collision
frequency ν = 0.05, and (b) the dissipation factor ν for k = 4. The
other parameters are fixed at κ = 3, β = 0.5. The inset plots show a
zoom-in view of regions of interest.

|Qi/Qr |, corresponding to the roots of Qr ; see Fig. 7. In fact,
the left three curves (preceding the asymptote) in Fig. 7 are
for Qr > 0 (defocusing regime, hence dark envelope soliton
solutions), while the right three (i.e., for large k, following the
asymptote) are for Qr < 0 (focusing regime, hence bright-
type soliton solutions, or breathers). Stable bright envelope
modes (breathers) will therefore exist in the short-wavelength
regime, while dark-type envelope solitons will be encountered
for long carrier wavelengths.

The damping factor D, for given wave number k and β,
is higher (suggesting stronger damping) for non-Maxwellian
plasma (i.e., for smaller κ values) in the focusing region,
i.e., slightly above the asymptote; see Fig. 7(a). Reversely, it
appears to be lower (i.e., weaker damping) in the defocusing
region, i.e., below the asymptote in Fig. 7(a). Furthermore, a
qualitative effect of κ is witnessed in Fig. 7(a) (and also in
Fig. 5 above), in the sense that certain wave number values
may lie in the defocusing (modulationally stable) region, in
the Maxwellian case (infinite κ), and still be destabilized
for finite κ , entering the focusing (modulationally unstable)
region. It would be interesting to consider this mechanism
in realistic (e.g., space plasma) observations of electrostatic
wave packets.
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FIG. 9. The evolution of the normalized envelope amplitude ρ

(in units of electric potential), as given in Eq. (25), is depicted versus
time T (in units of ω−1

ph ). We have considered different values of (a)
β for κ = 3, and (b) κ for β = 0.5. The other parameters are fixed at
k = 4, ν = 0.05. The inset plots show a zoom-in view of regions of
interest.
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In an analogous manner, some qualitative conclusions may
be drawn from Fig. 7(b), regarding the damping of envelope
modes and how these depend on the value of β (i.e., for given
κ). Remarkably, a change of regime (from/to focusing to/from
defocusing) occurs upon a continuous variation of the value
of β, suggesting that the electron component configuration
may act as order parameter, as regards not only envelope
structures and their stability [41], but also the decay rate of
the modulated envelope. The effects of the wave number and
of the collisional frequency on the envelope amplitude are
depicted in Fig. 8.

The effects of the cold electron concentration (via β) and
of the spectral (superthermality) index κ on the envelope
amplitude are shown in Fig. 9. An increase in the number
density of the inertial (cold electron) component (i.e., higher
β) apparently results in an increase in the collision rate in
the plasma, hence higher damping; see Fig. 9(a). In a similar
manner, lower κ , i.e., stronger deviation from Maxwellian
equilibrium, leads to stronger damping as well, due to the in-
crease in energetic electrons (in the hot electron component);
see Fig. 9(b).

B. Numerical simulation

Our numerical analysis is based on a numerical integration
of the nonlinear Schrödinger equation given in Eq. (17), by
adopting a Runge-Kutta 4 (RK4) method. The time interval
and the spatial grid size are taken as 2 × 10−4 and 0.015,
respectively. The envelope soliton solution (20) is considered
as initial condition.

−10 0 10 20 30 40 50
0

0.1

0.2

0.3

ξ

ψ

T=0.5
T=2.5
T=4.5
T=6.5
T=8.5
T=10.5

−100 0 100 200
0

0.02

0.04

0.06

ξ

ψ

T=11
T=21
T=31
T=41
T=51

(a)

(b)

FIG. 10. The evolution in time of the (normalized) bright enve-
lope amplitude, given by (20), is depicted. For the initial condition,
based on Eq. (20), we have considered a set of representative pa-
rameter values: k = 4, κ = 3, β = 0.5, and ν = 0.05 (implying P =
−0.0054, Qr = −5.99, and Qi = −66.78). The wave amplitude ψ

is shown versus position ξ , in two successive time intervals.
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FIG. 11. The decay of the envelope soliton (pulse) amplitude
with time is illustrated, as observed numerically (rectangles) and
analytically (dashed line). Different values of the wave number k are
considered: the red (lower) curve is for wave number k = 4, while
the blue (upper) curve is for k = 5. The other parameters are taken
as κ = 3, β = 0.5, and ν = 0.05. A zoom-in aspect is shown in the
panel (b).

Figure 10 shows the evolution of the envelope, for an ad
hoc choice of parameter values: wave number k = 4, κ = 3
(relatively strong deviation from Maxwellian, a typical value
in space observations [38,51]), β = 0.5 (i.e., 33% of the
electrons are in the cold inertial population), and ν = 0.05
(moderate damping), entailing the values P = −0.0054,
Qr = −5.99, Qi = −66.78, and thus D = 11.15. Note that
these values correspond to the focusing regime (PQr > 0).
The evolution of the wave amplitude ψ (in terms of the
electrostatic potential) versus position ξ , for various time
instants T is depicted in Fig. 10. We notice a decaying
amplitude, as time progresses, as expected, both intuitively
and based on the previously obtained analytical result. A
similar trend was observed for various other combinations of
plasma parameter values.

Overall, we have established a dynamical system depend-
ing on various parameters (namely, k, κ , β, and ν). We have
undertaken a meticulous parametric analysis, based on a series
of computer simulations, varying each of these parameters
independently while assuming fixed values for the remaining
parameters. Our results are discussed in the following.

The dependence of amplitude decay for two different val-
ues of the carrier wave number k is considered in Fig. 11, for
κ = 3, β = 0.5, and ν = 0.05.

In Fig. 12, we have depicted the time-dependent (decay-
ing) envelope, for different values of the cold-to-hot electron
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FIG. 12. The decay of the envelope soliton (pulse) amplitude
with time is illustrated, as observed numerically (rectangles) and
analytically (dashed line). Different values of the cold-to-hot electron
density ratio β are considered: the red (upper) curve is for β = 0.5,
while the blue (lower) curve is for β = 1. The other parameters are
taken as k = 4, κ = 3, and ν = 0.05. A zoom-in aspect is shown in
panel (b).

density ratio β, taking κ = 3, k = 4, and ν = 0.05. We see
that the damping is stronger for higher β, i.e., for a dominant
cool electron population.

Finally, a strongly non-Maxwellian plasma (κ = 3)
has been considered in Fig. 9(b), in comparison with a
quasi-Maxwellian plasma (for κ = 100). As seen in Fig. 13,
wave packets propagating in non-Maxwellian plasma suffer
envelope decay at a faster pace, compared with Maxwellian
plasma, in agreement with our analytical prediction in
Fig. 9(b).

In all of the case considered above, the analytical and
numerical results exhibit the same qualitative trend, i.e., a
decaying envelope in time; however, from a quantitative point
of view, the analysis—based on Eq. (25)—predicts a slower
decay rate than the one observed in the computer simulation.
This apparent discrepancy may arguably be attributed to the
fact that the analytical prediction was obtained by assuming
weak dissipation, viz., a small right-hand side of Eq. (17)
above. However, in our physical system, the value of the
dimensionless parameter D = |Qi/Qr | turned out to be sig-
nificant, as obvious from Fig. 7, thus partially invalidating the
perturbative analysis adopted.

VI. CONCLUSION

In this paper, we have investigated the characteristics of
high-frequency dissipative electron-acoustic envelope soli-
tons in a three-component unmagnetized collisional plasma
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FIG. 13. The decay of the envelope soliton (pulse) amplitude
with time is illustrated, as observed numerically (rectangles) and
analytically (dashed line). The red (lower) curve is for κ = 3 and
the blue (upper) curve is for κ = 100 (quasi-Maxwellian). The other
parameters are k = 4, β = 0.5, and ν = 0.05. A zoom-in aspect is
shown in panel (b).

containing inertial cold electrons, inertialess nonthermal κ-
distributed hot electrons, and stationary ions. Electron-neutral
collisions have been taken into account, in fact held responsi-
ble for wave dissipation (damping).

A cubic NLSE with real dispersive coefficient and complex
nonlinear coefficient was derived, by adopting a multiscale
perturbation technique, to model the evolution of the dissipa-
tive wave packet envelope. The dispersive coefficient and the
imaginary part of the nonlinear coefficient were found to be
negative for all plasma parameters, while the real part of the
nonlinear term is positive for long wavelengths (prescribing
modulational stability) and changes sign at a certain wave
number threshold (which depends on plasma configuration
parameters). In our analysis, we have focused particularly on
the time-dependent amplitude and velocity of the envelope
solitons in order to trace the effect of dissipation.

Our results are summarized as follows:
(1) Electron-acoustic wave packets are overdamped in the

long-wavelength regime; in other words, EAW propagation is
not possible for small values of the carrier wave number, i.e.,
below a certain threshold (critical value) kc, which increases
with collisionality.

(2) The wave number threshold kc is reduced for stronger
deviation from the Maxwellian distribution for the electrons,
i.e., for smaller κ , and is also reduced for higher cold electron
concentration (i.e., higher value of β).
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(3) The dispersive term decreases in magnitude, while the
nonlinearity terms (both real and imaginary parts) increase, as
κ decreases (stronger deviation from the Maxwellian equilib-
rium for the hot electrons).

(4) The decay rate of the envelope is higher in non-
Maxwellian plasma, and also higher for stronger cold electron
presence in the plasma.

(5) Approximate analysis, based on known methodology
for near-integrable systems, leads to an analytical prediction
for the decaying envelope that is characterized by constant
velocity, and an amplitude that decays in time.

(6) A series of numerical simulations has been performed
to test our analytical predictions for the envelope amplitude.
The numerical outcome confirms our analytical result qualita-
tively and, to a satisfactory extent, also quantitatively.

Our investigation should be useful for better understanding
the characteristics of modulated high-frequency electrostatic
wave packets that are ubiquitous in laboratory as well as space
plasmas, where a coexistence of different electron populations
(at distinct temperature) occurs, in combination with weak
collisionality and in the presence of energetic (suprathermal)
electrons.
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APPENDIX A: MULTIPLE SCALES
PERTURBATION TECHNIQUE

The nonlinear Schrödinger equation is obtained by
adopting the multiple space and time scale(s) technique
[1,40,41,57], applied to Eqs. (1)–(3). The dependent vari-
ables n, u, and φ [let us say, the state vector S (n) =
(n, u, φ)T ] are assumed as S = S (0) + εS (1) + ε2S (2) + · · · =
S (0) + �∞

n=1ε
nS (n), where S (0) = (1, 0, 0)T is the equilibrium

state vector and �∞
n=1ε

nS (n) is the perturbed state with ε � 1.
We assume the following stretching of the space and the
time coordinates: Xn = εnx and Tn = εnt , respectively, where
n = 1, 2, 3, . . . (viz., X1 = εx, X2 = ε2x, and so forth; same
for time), to be distinguished from the (fast) carrier variables
x (≡ X0) and t (≡ T0). The slow scales, which are assumed
to vary very slowly, enter the argument of the lth harmonic
amplitude S

(n)
l , thus S (n) = ∑n

l=−n S
(n)
l (Xj, Tj )eil(kx−ωt ). We

now substitute these assumptions into our model equations
(1)–(3) and isolate the equations for different n and l.

1. Linear part

In order to get the linear set of equations, we linearize
Eqs. (1)–(3), i.e., isolating the equations for n = 1, l = 1, and
obtain

−iωn
(1)
1 + iku

(1)
1 = 0,

−(iω − ν)u(1)
1 − ikφ

(1)
1 = 0,

−βn
(1)
1 − (k2 + c1)φ(1)

1 = 0.

That is, the compatibility condition for n = 1, l = 1 provides
a dispersion relation for the electron-acoustic excitation given
in Eq. (8). We also determine the first harmonic amplitudes
of the perturbation from the three equations above in terms of
the first-order electrostatic potential correction φ

(1)
1 as

n
(1)
1 ≡ C11

1 φ
(1)
1 , u

(1)
1 ≡ C11

2 φ
(1)
1 , (A1)

where the coefficients C
(11)
j (j = 1, 2) are as follows:

C11
1 = − k2

ω(ω + iν)
= −k2 + c1

β
,

C11
2 = −ω

k

k2 + c1

β
.

2. Nonlinear part

The next order perturbations, i.e., for n = 2, l = 1, provide
the compatibility condition in the form

∂φ
(1)
1

∂T1
+ vg

∂φ
(1)
1

∂X1
= 0, (A2)

where the group velocity vg defined as

vg = dω

dk
= βkc1

(k2 + c1)2

2

iν + 2ω
= ω2(ω + iν)2

ω + iν/2

c1

βk3
(A3)

is a real-valued ν-dependent parameter.

a. Second-order first harmonics

The amplitudes corresponding to the first harmonics in
order ε2 are given by

n
(2)
1 = 2ik

β

∂φ
(1)
1

∂X1
,

u
(2)
1 =

[
2iω

β
+ ic1

(k2 + c1)

2

2ω + iν
− iω

ω(ω + iν)

]
∂φ

(1)
1

∂X1
.

b. Second-order second harmonics

For n = 2 and l = 2, the evolution equation provides the
amplitudes of the second-order second harmonic which are
found to be proportional to (φ(1)

1 )2. The expression for these
amplitudes are

n
(2)
2 = C

(22)
1

(
φ

(1)
1

)2 = [
ReC (22)

1 + iImC
(22)
1

](
φ

(1)
1

)2
,

u
(2)
2 = C

(22)
2

(
φ

(1)
1

)2 = [
ReC (22)

2 + iImC
(22)
2

](
φ

(1)
1

)2
,

φ
(2)
2 = C

(22)
3

(
φ

(1)
1

)2 = [
ReC (22)

3 + iImC
(22)
3

](
φ

(1)
1

)2
,
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where

ReC (22)
1 = − (4k2 + c1)

β
ReC (22)

3 − c2

β
, ReC (22)

2 = − (k2 + c1)2
(

βk2

k2+c1
− ν2

2

)
2β2k(ω + iν/2)

− k

ω + iν/2
ReC22

3 ,

ReC (22)
3 = 12βk4[−3(k2 + c1)2 − 2βc2]

2β[36βk6 + ν2(c1 − 2k2)(k2 + c1)(4k2 + c1)]
+ ν2(k2 + c1)[−(c1 − 8k2)(k2 + c1)2 + 6k2βc2]

2β[36βk6 + ν2(c1 − 2k2)(k2 + c1)(4k2 + c1)]
,

ImC
(22)
1 = − (4k2 + c1)

β
ImC

(22)
3 , ImC

(22)
2 = ImC

(22)
3 − ν

2

(k2 + c1)2

β2k
,

ImC
(22)
3 =

ν(k2 + c1)2
√

4βk2

k2+c1
− ν2[−3c1(k2 + c1) − 2βc2]

2β[36βk6 + ν2(c1 − 2k2)(k2 + c1)(4k2 + c1)]
.

c. Second-order zeroth harmonics

The second-order zeroth harmonic amplitudes can be obtained by combining expressions for n = 2, l = 0 and n = 3, l = 0,
and take the general form as

n
(2)
0 = C

(20)
1

∣∣φ(1)
1

∣∣2
, u

(2)
0 = C

(20)
2

∣∣φ(1)
1

∣∣2
, φ

(2)
0 = C

(20)
3

∣∣φ(1)
1

∣∣2
,

where

C
(20)
1 = − 1

β

(
2c2 + c1C

(20)
3

)
, C

(20)
2 = 1

vg

(
k2 + c1

β
− C

(20)
3

)
,

C
(20)
3 = 1

β − v2
gc1

[
2 v2

gc2 + (k2 + c1) + 2 vgβk3(ω + iν/2)

ω2(ω + iν)2

]
.

APPENDIX B: COEFFICIENTS OF THE DISSIPATIVE NLS EQUATION

The dissipative NLS equation (14) involves the coefficients P and Q. The group velocity dispersion coefficient P (= 1
2

d2ω
dk2 )

is a real-valued parameter, given by the expression

P (k, κ, β, ν) = −βc1[12k4β + (c1 − 3k2)(k2 + c1)ν2]

(k2 + c1)4(2ω + iν)3
. (B1)

The nonlinearity coefficient Q can be expressed in the form

Q(k, κ, β, ν) = −ω(ω + iν)

2ω + iν

(
C

(20)
1 + C

(22)
1

) + ν2

2(2ω + iν)
C

(22)
1 − iν

2
C

(22)
1

+ ω2(ω + iν)2

βk2(2ω + iν)

[
2c2

(
C

(20)
3 + C

(22)
3

) + 3c3
] − k

(
C

(22)
2 + C

(20)
2

) − iνk

2ω + iν
C

(22)
2 , (B2)

where all quantities are defined in the previous appendix.
Q can be expressed as Q = Qr + i Qi . Closed analytical expressions for the real part Qr and the imaginary part Qi can be

explicitly obtained, in the form

Qr (k, κ, β, ν) = −ω(ω + iν)

2ω + iν

(
C

(20)
1 + ReC (22)

1

) + ν2

2(2ω + iν)
ReC (22)

1 + ν

2
ImC

(22)
1

+ ω2(ω + iν)2

βk2(2ω + iν)

[
2c2

(
C

(20)
3 + ReC (22)

3

) + 3c3
] − k

(
ReC (22)

2 + C
(20)
2

) + νk

2ω + iν
ImC

(22)
2 , (B3)

Qi (k, κ, β, ν) = −ω(ω + iν)

2ω + iν
ImC

(22)
1 + ν2

2(2ω + iν)
ImC

(22)
1 − ν

2
ReC (22)

1 − kImC
(22)
2 − νk

2ω + iν
ReC (22)

2

+ ω2(ω + iν)2

βk2(2ω + iν)
2c2ImC

(22)
3 . (B4)

The various quantities in the latter expressions are given in Appendix A.

APPENDIX C: APPROXIMATE EXPRESSIONS FOR SMALL ν

The dispersion term, given in Eq. (B1), can be expressed as

P (k, κ, β, ν) = p0 + p1 ν2 + · · · , (C1)
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where

p0 = −
3
(
κ − 1

2

)√
βk2

2
2κ−3 +k2+1

2
(
κ − 3

2

)(
2

2κ−3 + k2 + 1
)2 (C2)

and

p1 = − (2κ − 1)[4κ + (6κ − 9)k2 − 2]

16k2[2κ + (2κ − 3)k2 − 1]2
√

β(2κ−3)k2

2κ+(2κ−3)k2−1

. (C3)

It is obvious and also justified from our plasma model that p0 is exactly the same as the dispersion coefficient in Ref. [40] in
the absence of collisional damping ν. Approximate values of p0 and p1 for the Maxwellian case can be recovered for the limit
κ → ∞, which read

p0Max = − 3
√

βk

2(k2 + 1)5/2
, (C4)

p1Max = −3k2 − 2

16
√

βk3(k2 + 1)3/2
, (C5)

where p0Max refers to the dispersion coefficient for EAWs in Maxwellian plasmas in the absence of collisional effect and
matches with the dispersion term in Ref. [41]. Similarly, the real nonlinear term Qr and the imaginary nonlinear term Qi can be
written as

Qr = qr0 + qr1 ν2 + · · · , Qi = qi1 ν + qi2 ν3 + · · · , (C6)

where expressions of qr0, qr1, qi1, qi2, are very long and omitted here. qr0 represents the nonlinear term for ν = 0 as in
Ref. [40], and one can easily recover the Maxwellian case for collisionless plasma [41] by considering the limit κ → ∞ and
ν = 0.
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