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Density response from kinetic theory and time-dependent density-functional
theory for matter under extreme conditions
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The density linear response function for an inhomogeneous system of electrons in equilibrium with an array
of fixed ions is considered. Two routes to its evaluation for extreme conditions (e.g., warm dense matter) are
considered. The first is from a recently developed short-time kinetic equation; the second is from time-dependent
density functional theory. The result from the latter approach agrees with that from kinetic theory in the
“adiabatic approximation,” providing support and contextual clarity for each. Both provide a connection to the
phenomenological Kubo-Greenwood method for calculating transport properties.
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I. INTRODUCTION

Matter under extreme conditions is of broad current
interest, ranging from applications in theoretical astrophysics
(e.g., massive exoplanets) to new experimental access to such
materials [1]. The state conditions include those for which
many traditional methods of plasma physics or condensed
matter physics fail or become uncontrolled. However, thermo-
dynamic properties such as pressure, free energy, and structure
are treated well by ab initio molecular dynamics (AIMD)
methods [2], wherein complex electronic states are described
by finite temperature density-functional theory (DFT). These
methods allow inclusion of strong coupling, bound and free
states, and quantum effects across a wide range of temper-
atures and densities. Transport properties and other dynam-
ical features require an extension of these tools [3] . One
approach is a recently developed short-time kinetic equation
for time correlation functions [4]. It subsumes a practical phe-
nomenology, the Kubo-Greenwood (KG) method [5,6], used
for calculating correlation functions. This approach models
the true many-body Hamiltonian by one for noninteracting
particles whose excitations are those of the equilibrium Kohn-
Sham Hamiltonian. The KG method exploits strong coupling
features of equilibrium DFT, extending its advantages to time-
dependent properties.

A second approach is time-dependent density-functional
theory (tdDFT), designed to extend the advantages of equi-
librium DFT to dynamical properties [7–9]. Its formulation
and application to ground state properties is well developed,
but much less so for the finite temperature extended systems
considered here. An extension of van Leeuwen’s fundamental
theorem for tdDFT [10] to mixed states (ensembles) [11,12]
is proposed and discussed in Appendix A. Its application
to linear response [13] about an initial equilibrium state is
described in Sec. V. In particular, it is shown that the density
response function from tdDFT can be expressed in terms of
the KG response function, so its connection to the KG phe-
nomenology is quite direct. Both the kinetic theory and tdDFT

provide means to include corrections to the KG method. In the
“adiabatic approximation” tdDFT gives corrections that are
equivalent to those from kinetic theory, thereby establishing a
connection between these two quite different approaches.

Here we address three different groups: (1) those focused
upon applications (simulations and experiments) in warm,
dense matter, (2) kinetic theory specialists in many-body
physics, and (3) time-dependent density-functional theorists,
mainly from atomic and molecular physics. Typically one
group does not follow the literature of the others. The result is
loss of insight. We have tried to make the presentation simple,
direct, and self-contained for value to all three.

II. DENSITY RESPONSE AND RELATED PROPERTIES

Linear response for systems at initial equilibrium is treated
in most text books on condensed matter physics [14,15]. A
recent updated discussion of linear response can be found
in Ref. [16]. However, for definition of notation and precise
specification of linear response as used herein, a brief review
follows. Consider a one-component system of N identical
particles with Hamiltonian H (t ):

H (t ) = K + U + V (t ). (1)

Here K is the kinetic energy, U is a many-body potential
energy among the particles (more specifically, below this is
chosen to be the Coulomb interactions among electrons and
between them and a configuration of fixed ions), and V (t )
is an external time-dependent potential (perturbation) of the
form

V (t ) =
∫

drv(r, t )̂n(r), n̂(r) =
N∑

i=1

δ(r − qi ). (2)

The number density operator is defined in terms of the particle
position operator {q}. (A caret is included on n̂(r) in this
definition to distinguish the operator from its state-averaged
value n(r) introduced below.) The form of the external
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potential v(r, t ) is unspecified at this point. The state of the
system is given by its density matrix ρ(t ). Its evolution is
governed by the Liouville–von Neumann equation, for t � τ ,

∂tρ(t ) + i[H (t ), ρ(t )] = 0, (3)

with some given initial condition ρ(τ ).
Choose the initial state ρ(τ ) to be stationary (equilibrium)

under the unperturbed Hamiltonian,

[(K + U ), ρeq] = 0, ρ(τ ) ≡ ρeq . (4)

Then the solution to Eq. (3) to linear order in the perturbation
is

ρ(t ) = ρeq −
∫ t

τ

dt ′
∫

drv(r, t ′)i [̂n(r, t ′ − t ), ρeq], (5)

where the time dependence of the local density operator is

n̂(r, t ) = ei(K+U )t n̂(r)e−i(K+U )t . (6)

The equilibrium averaged local density to linear order is
therefore

n(r, t | v) = neq (r) +
∫ t

τ

dt ′
∫

dr′χ (r, r′; t − t ′)v(r′, t ′).

(7)

The linear response function χ (r, r′; t ) is identified as

χ (r, r′; t ) ≡ −i〈[̂n(r, t ), n̂(r′)]〉eq, (8)

and the bracket with subscript eq denotes the equilibrium
average over the initial state,

〈X〉eq = TrρeqX. (9)

The cyclic invariance of the trace and stationarity of ρeq have
been used to obtain the form Eq. (8).

To be more specific, consider the example of a system of
Ne electrons in equilibrium with a distribution of Ni fixed ions
at the initial time τ . The Hamiltonian H (τ ) = HNe

is then

HNe
= K + U = K + 1

2

Ne∑
i �=j=1

e2∣∣qi − qj

∣∣ +
Ne∑
i=1

V (qi , {R}),

(10)

and the interaction potential for each electron with the ions is

V (qi , {R}) ≡ −
Ni∑

j=1

Zje
2∣∣qi − Rj

∣∣ . (11)

Also, for the stationary equilibrium state, choose the grand
canonical ensemble

ρeq,Ne
= eβ�e−β(HNe −μNe)SNe

, (12)

where μ is the chemical potential, SNe
is the Ne particle anti-

symmetrization operator, and � is the normalization constant:

e−β� =
∑
Ne>0

Tr(Ne )e−β(HNe −μNe)SNe
. (13)

Averages in the grand ensemble are defined by

〈X〉eq =
∑
Ne>0

Tr(Ne )ρeq,Ne
XNe

. (14)

A. Relationship to dielectric function and conductivity

Define the Fourier-transformed response function

χ̃
(
k, k′; t

) =
∫

drdr′e−i(k·r+k′ ·r′ )χ (r, r′; t )

= −i〈[̃n(k, t ), ñ(k′)]〉eq, (15)

where ñ(k) is the Fourier transform of the number operator
n̂(r). A related property is the dielectric function ε(k, k′; t )
defined by

Ṽ (k)χ̃ (k, k′; t ) = δk,−k′ − ε−1(k, k′; t ). (16)

Here Ṽ (k) is the Fourier transform of the electron-electron
Coulomb potential. If ε(k, k′, t ) is expanded to leading order
in Ṽ (k) the random phase approximation (RPA) is obtained,

ε(k, k′, t ) → εRPA(k, k′; t ) = δk,−k′ + Ṽ (k)χ̃ (0)(k, k′; t ),

(17)

where χ̃ (0)(k, k′; t ) is the response function for noninteracting
electrons in the presence of the external ions.

Other properties of interest are related to χ̃ (k, k′; t ), or
equivalently to ε(k, k′; t ), by the microscopic number density
conservation law,

∂t ñ(k, t ) + ik · j̃(k,t ) = 0,

j̃(k) = ∑N
i=1

1
2 (e−ik·qi vi + vie

−ik·qi ), (18)

where j̃(k) is the Fourier transformed number flux operator
and vi = pi/m is the velocity operator for particle i. The time
derivative of χ̃ (k, k′; t ) gives

∂t χ̃ (k, k′; t ) = ik	〈i[j̃	(k, t ), ñ(k′)]〉eq . (19)

The Einstein summation convention applies to repeated in-
dices. Use the cyclic property of the trace

〈[j̃	(k, t ), ñ(k′)]〉eq = Tr[̃n(k′), ρe]j̃	(k, t ), (20)

and the operator identity

i [̃n(k′), e−βH (τ )] =−
∫ β

0
dλe−(β−λ)H (τ )i [̃n(k′),H (τ )]e−λH (τ )

= −
∫ β

0
dλe−(β−λ)H (τ )ik′ · j̃(k′)e−λH (τ )

(21)

to get

∂t χ̃ (k, k′; t ) = ikmik	

∫ β

0
dλ〈j̃m(k′,−t + iλ)j̃	(k)〉eq .

(22)

Finally, the Fourier transform in time,

˜̃χ (k, k′; ω) ≡
∫ ∞

−∞
dteiωt χ̃ (k, k′; t ), (23)

gives

˜̃χ (k, k′; ω) = i
kmk	

ω

∫ ∞

−∞
dteiωt

∫ β

0
dλ〈j̃m(k′,−t+iλ)j̃	(k)〉eq

= 2i
kmk	

ωe2
σm	(k, k′; ω), (24)
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where the electrical conductivity tensor is

σm	(k, k′; ω) = 1

2
e2

∫ ∞

−∞
dteiωt

∫ β

0
dλ〈j̃m(k′,−t

+ iλ)j̃	(k)〉eq . (25)

III. KUBO-GREENWOOD METHOD

The response function (and related equilibrium time
correlation functions) is determined from the Hamiltonian,
Eq. (10), which appears both in the equilibrium distribution
function and the dynamics of n̂(r, t ) in Eq. (6). Its evaluation
for the conditions of interest here involves all the difficulties
of the many-body problem for which standard methods of
condensed matter physics or plasma physics are questionable
or intractable. Instead, a phenomenological mean-field model
incorporating strong coupling information from equilibrium
DFT commonly is assumed. The actual Hamiltonian is
replaced by

HNe
→ HKS ≡

Ne∑
i=1

hKS (i), hKS (i)= p2
i

2m
+vKS (qi , {R}).

(26)

This is a sum of independent Hamiltonians in each of which
the effective single-particle potential is the Kohn-Sham poten-
tial of equilibrium DFT. It is determined from the equilibrium
free energy functional according to

vKS (q1, {R}) = V (q1, {R}) + δF (1)

δn(q1, {R})
, (27)

where F (1) is the excess free energy, beyond the correspond-
ing noninteracting contribution. It is a functional of the initial
equilibrium density n(q1, {R}). It can be calculated with good
confidence for matter under extreme conditions from recently
developed finite temperature equilibrium DFT methods [17].
The approximation Eq. (26) is known as the Kubo-Greenwood
method. Since it invokes a system of noninteracting particles,
the response function can be calculated exactly, for a given
F (1) and configuration of the ions {R}, in terms of the eigen-
functions and eigenvalues of hKS [6].

The origin and basis for the Kubo-Greenwood method
is not clear beyond the hope that the reasonably accurate
description of interactions for thermodynamic properties from
equilibrium DFT approximations might extend to the dynam-
ics as well. A major objective of the present work is to provide
a more convincing rationalization for the replacement shown
in Eq. (26).

IV. SHORT-TIME KINETIC THEORY

The density response function can be written in the
equivalent form

χ (r, r′; t ) = i 〈̂n(r′ )̂n(r, t )〉eq − i 〈̂n(r, t )̂n(r′)〉eq
= i[C(r, r′; t ) − C(r, r′; t + iβ )]. (28)

Here C(r, r′, t ) is the time correlation function

C(r, r′; t ) = 〈̂n(r′ )̂n(r, t )〉eq . (29)

To obtain the second line of Eq. (28) the cyclic invariance of
the trace has been used. Following the formal kinetic theory of
Ref. [18], the correlation function can be written as an average
over the single-electron subspace,

C(r, r′; t ) = Tr1δ(r − q1)ψ (1, r′; t ). (30)

Here Tr1 denotes a trace in the single-particle Hilbert space,
and the single-particle operator ψ (1, r; t ) is averaging over all
other degrees of freedom (analogous to a one-particle reduced
density matrix but representing the correlation function). It
obeys the formally exact kinetic equation,

[∂t + B(1)]ψ (1, r′; t ) =
∫ t

0
dt ′M (1; t ′)ψ (1, r′; t − t ′) ,

(31)

where B and M are superoperators that map the single-
particle Hilbert space operators onto other single-particle
operators. For the present, the detailed formal definitions for
B(1) and M (1; t ) are not needed, beyond the facts that B(1)
is time independent and M (1; t ) is nonsingular at t = 0. This
means that the exact short-time form for the kinetic theory is

[∂t + B(1)]ψ
(
1, r′; t

) = 0, t → 0. (32)

Use of this form for t > 0 constitutes the Markov approxi-
mation, whereby the generator of the time dependence does
not depend on time. Such an approximation does not involve
any explicit limitation on coupling strength or other small pa-
rameter conditions. Hence it is a good candidate for materials
under extreme conditions.

The correlation function C(r, r′; t ) calculated using this
short-time kinetic theory is obtained by integrating Eq. (32)

C(r, r′; t ) = Tr1δ(r − q1)e−Btψ (1, r′, 0), (33)

and the corresponding response function from Eq. (28) is

χ (r, r′; t ) = iTr1δ(r − q1)e−Bt (1 − e−iβB )ψ (1, r′; 0). (34)

This can be simplified using the exact initial value for
χ (r, r′; t ) calculated directly from its definition, Eq. (15),

χ (r, r′; 0) = iTr1δ(r − q1)[f (1)(1), δ(r′ − q1)], (35)

where f (1)(1) is the single-electron equilibrium distribution
operator

f (1)(1) =
∑
Ne�2

NeTr2..Ne
ρeNe

, (36)

ρeNe
is the grand canonical equilibrium state of Eq. (12), and

the trace Tr2..Ne
is taken over all degrees of freedom except

index 1. This determines ψ (1, r; 0) in terms of B,

(1 − e−iβB )ψ (1, r′; 0) = [f (1)(1), δ(r′ − q1)], (37)

to give the final short-time kinetic theory result for the
response function,

χ (r, r′; t ) = Tr1δ(r − q1)φ(1, r′; t ), (38)

[∂t + B(1)]φ(1, r′; t ) = 0,

φ(1, r′; 0) = i[f (1)(1), δ(r′ − q1)]. (39)

As an example, the calculation of B(1) in the weak
coupling limit is given in Ref. [18], leading to B(1) for the
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random phase approximation linear kinetic equation:

B(1)φ(1, r′; t )→i

[(
p2

1

2m
+ V (q1, {R})

)
, φ(1, r′; t )

]
+ Tr2i[Vee(12), f (2)(12)f −1(1)φ(1, r′; t )]

+ Tr2i[Vee(12), f (2)(12)f −1(2)φ(2, r′; t )].

(40)

Here, f (1) and f (2)(12) are the noninteracting one- and
two-particle reduced density operators, including exchange,
and Vee(12) = e2/ | q1 − q2 |. The second term on the right
of Eq. (40) represents the Hartree-Fock additions to the
single-particle energies, while the third term gives the
RPA screening. More generally, to include strong coupling
effects, B(1) has been expressed exactly in terms of the one-,
two-, and three-particle equilibrium reduced density matrices
for the interacting system [18]. However, a more practical
representation has been obtained only in the semiclassical
limit. That invokes a classical representation for the electrons
with short-distance regularization of the Coulomb potentials
for electron-electron and electron-ion interactions to account
for quantum diffraction and exchange effects. In that case
B(1) can be calculated exactly without any limitations on the
coupling strength between electrons or electrons and ions [4],
and its quantization performed a posteriori (see Sec. V of
Ref. [4]). The result again is in the form of the random phase
approximation but with the ion-electron and electron-electron
potentials renormalized for strong coupling:

B(1)φ
(
1, r′; t

) =i

[(
p2

1

2m
+ V (q1, {R})

)
, φ

(
1, r′; t

)]
+ Tr2i[Vee(12), f (1)(1)φ(2, r′; t )], (41)

with

V (q1, {R}) = −δF (0)(β | n)

δn(q1, {R})
, (42)

Vee(12) = Vee(q1, q2) = δ2F (1)(β, {R} | n)

δn(q1, {R})δn(q2, {R})
. (43)

Note that these are evaluated at the density of the equilibrium
reference state. The free energy for the system F = F (0) +
F (1) has been separated into its noninteracting and excess
parts. The noninteracting part is related to the Kohn-Sham
potential of equilibrium DFT, δF (0)(β | n)/δn(r, {R}) ≡ μ −
vKS (r, {R}), so

V (r, {R}) = vKS (r, {R}) − μ. (44)

The chemical potential μ does not contribute to the first term
on the right side of Eq. (41), so this becomes the commutator
with the Kohn-Sham Hamiltonian of Eq. (26).

The short-time kinetic theory Eq. (39) now becomes

∂tφ(1, r′; t ) + i[hKS (1), φ(1, r′; t )]

= −Tr2i[Vee(12), f (1)(1)φ(2, r′; t )]. (45)

The left side of this equation describes independent particle
dynamics generated by the Kohn-Sham Hamiltonian:

hKS (1) = p2
1

2m
+ V (q1, {R}). (46)

This is precisely the generator for the dynamics of the KG
method. Indeed, if Vee(12) is set equal to zero on the right side
of Eq. (45), the resulting kinetic theory is equivalent to that
method. The more general short-time kinetic theory therefore
provides some context for the KG method and shows that
renormalized RPA screening by the electrons is neglected in
that method. Further comment on this connection is given in
Sec. VI.

The short-time kinetic equation solution as given in Ap-
pendix B determines the density response function. The result
is given by the linear integral equation

χ (r, r′, t ) = χKG(r, r′; t ) +
∫ t

0
dt ′

∫
dr1dr2χKG

× (r, r1; t − t ′)Vee(r1, r2)χ (r2, r′; t ′). (47)

Here χKG is the response function calculated with the Kohn-
Sham Hamiltonian Eq. (26), i.e., that from the KG method.

V. TIME-DEPENDENT DENSITY-FUNCTIONAL THEORY

Time-dependent density-functional theory is a well-
developed tool within dynamic electronic structure methods
with a wide range of applications to problems in atomic,
molecular, and extended systems in physics, chemistry, and
materials science [7,8]. Typically such applications are pure
state dynamics. Formulation and application of tdDFT to the
mixed state ensembles at finite temperatures of interest here
are more limited [11,12]. However, an interesting calcula-
tion of x-ray Thomson scattering for warm, dense matter
conditions has been reported recently [19]. Central to that
formulation are the consequences of van Leeuwen’s theorem
on the existence and uniqueness of a time-dependent density
representation [7,8,10]. For completeness, an extension of
van Leeuwen’s theorem for general mixed states, including
those of thermal equilibrium, is proposed in Appendix A. The
argument for this extension assumes physically reasonable
behavior (e.g., invertibility, analyticity) to make the point
without addressing mathematical difficulties well known in
the pure state case [20].

Consider again the system of electrons in a charge-neutral
background of a given ion configuration at equilibrium. The
Hamiltonian is that of Eq. (10), and the initial state at time
τ is given by Eq. (12). Under a time-dependent perturba-
tion V (t ) = ∫

drv(r, t )̂n(r), its average density for t � τ

is denoted by n(r, t | v). A consequence of van Leeuwen’s
theorem is the existence of a unique external perturbation
V0(t ) = ∫

drv0(r, t )̂n(r) such that the corresponding system
without electron-electron interactions produces the same av-
erage time-dependent density

n0(r, t | v0) = n(r, t | v), (48)

where n0(r, t | v0) is the average density without electron-
electron interactions, in the external potential V0(t ). By conti-
nuity, it is expected that v0 → 0 as v → 0 and therefore that
this equivalence of densities is preserved to linear order in the
two perturbations. Then, repeating the linear response analysis
of Sec. II leads to the equivalence in the initial state,

n0(r, τ | v0) = n(r, τ | v), (49)
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and at later times∫ t

τ

dt ′
∫

dr′χ (r, r′; t − t ′)δv(r′, t ′)

=
∫ t

τ

dt ′
∫

dr′χ0(r, r′; t − t ′)δv0(r′, t ′). (50)

Here, χ0(r, r′; t ) is the response function for the initial nonin-
teracting system.

Equation (49) is a first condition of van Leeuwen’s theo-
rem, that the initial densities should be the same. Furthermore,
since the unperturbed states are equilibrium, it follows from
equilibrium DFT that the external potential for the nonin-
teracting system at t = τ is the Kohn-Sham potential as a
functional of this initial density,

v0(r, τ ) = vKS (r | ne ). (51)

Consequently, χ0(r, r′; t ) is the response function defined by
the Kohn-Sham Hamiltonian, both for its equilibrium average
and for the generator of its time dependence; this is then the
Kubo-Greenwood response function,

χ0(r, r′; t ) = χKG(r, r′; t ). (52)

Since this is a noninteracting system, it can be evaluated
exactly in terms of the eigenvalues and eigenfunctions of the
Kohn-Sham Hamiltonian.

It is a remarkable consequence of van Leeuwen’s theorem
that the equivalence of the densities allows the more complex
interacting system response function to be related to this sim-
pler noninteracting response function. More explicitly, from
Eq. (50)

χ
(
r, r′; t − t ′

) =
∫ t

τ

dt ′′
∫

dr′′χKG

(
r, r′′; t − t ′′

)δv0(r′′, t ′′)
δv(r′, t ′)

= χKG

(
r, r′; t − t ′

)
+

∫ t

τ

dt ′′
∫

dr′′χKG(r, r′′; t − t ′′)

× δ�v0(r′′, t ′′ | n)

δv(r′, t ′)
. (53)

In the second equality the unknown potential v0(r, t ) has been
written as the given potential plus the “excess potential” �v0:

v0(r, t ) ≡ v(r, t | n) + �v0(r, t | n). (54)

The notation recognizes that the one-to-one relationship of
n0(r, t | v0) to the potential v0(r, t ) implies it can be inverted
to give

�v0(r, t ) = �v0(r, t | n0) = �v0(r, t | n). (55)

(The first equality states the one-to-one relationship of the
noninteracting potential to the noninteracting density. The
second equality states that the noninteracting and interacting
densities are the same, a consequence of the central property
of the KS potential.) Then by the chain rule,

δ�v0(r, t | n)

δv(r′, t ′)
=

∫ t

τ

dt1

∫
dr1

δ�v0(r, t | n)

δn(r1, t1)

δn(r1, t1)

δv(r′, t ′)

=
∫ t

τ

dt1

∫
dr1

δ�v0(r, t | n)

δn(r1, t1)

× χ (r1, r′; t1 − t ′) . (56)

The final form for the relationship of χ to χKG becomes,
setting t ′ = 0 in Eq. (53) for simplicity of notation,

χ
(
r, r′; t

) =χKG

(
r, r′; t

) +
∫ t

τ

dt ′′
∫

dr′′χKG(r, r′′; t − t ′′)

×
∫ t

τ

dt1

∫
dr1

δ�v0(r′′, t ′′ | n)

δn(r1, t1)
χ (r1, r′; t1).

(57)

The result, Eq. (57), is formally exact and is simply a
restatement of the consequence of van Leeuwen’s theorem
Eq. (48) to first order in the perturbing potentials. Interest-
ingly, the appearance of the KG response function χKG also is
a consequence of this theorem which requires that the initial
density of the noninteracting and interacting systems should
be the same. For the initial equilibrium state that implies
Eq. (51), and hence the Hamiltonian for the noninteracting
system is the sum of Kohn-Sham single-particle Hamilto-
nians. This provides an important connection with the KG
method and a clarification of its logical context.

The excess potential �v0(r, t | n) remains unknown.
While van Leeuwen’s theorem provides its existence, the
theorem does not provide the explicit functional dependence
of �v0(r, t | n) upon n. However, this dependence is known
initially from Eq. (51). A plausible approximation is to assume
this functional form persists and that its evolution occurs
entirely through the density

v0(r, t | n) ∼ vKS (r | n(t )), (58)

i.e., the functional form is slowly varying and the dominant
change is due to that of its argument. This is referred to as
the “adiabatic approximation” of tdDFT [7,8,21]. With this
approximation,

δ�v0(r′′, t ′′ | n)

δn(r1, t1)
→ δ�vKS (r′′ | n(t ′′))

δn(r1, t1)

= δ2F (1)[n(t ′′)]
δn(r1, t1)δn(r′′, t ′′)

= δ(t1 − t ′′)
δ2F (1)[n(t ′′)]

δn(r1, t ′′)δn(r′′, t ′′)
, (59)

and the response function Eq. (57) becomes

χ (r, r′; t ) = χKG(r, r′; t ) +
∫ t

τ

dt ′′
∫

dr′′χKG(r, r′′; t − t ′′)

×
∫

dr1
δ2F (1)[ne]

δne(r1)δne(r′′)
χ (r1, r′; t ′′). (60)

The density n(t ′′) is given by Eq. (7), so within this con-
text of linear response it has been replaced on the right
side of Eq. (60) by the reference state density n(r, t ′′) →
n(r, τ ) = ne(r). Note that the adiabatic approximation does
not make any reference to limitations on the electron-electron
or electron-ion coupling, hence is an appropriate description
for matter under extreme conditions. Remarkably, it is seen
that this result from tdDFT is the same as Eq. (47) from the
Markov kinetic theory.
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VI. DISCUSSION

The presentation here is complementary to that of
Ref. [12]. The version of the van Leeuwen theorem in that
reference is less comprehensive than that of the Appendix
here, in that it refers only to uniqueness (not existence) and
only within the context of linear response. On the other hand,
the objectives of that reference were to set the stage for
improvements of the adiabatic approximation, while here the
interest is in making connections to other methods within
that approximation. Specifically, the objective of the treatment
presented here has been to describe the density response
function for matter under extreme conditions. This means
conditions of strong Coulomb coupling with both free and
bound electronic configurations. The detailed form of the
interaction potential U in Eq. (1) is not important for the
analysis presented here, but an important case is electrons in
the presence of a given ionic configuration. Two methods for
calculation have been presented, one based in kinetic theory
and the other in tdDFT. In both cases the results are expressed
in terms of effective interactions that can be obtained from
well-developed methods of equilibrium DFT, i.e., functional
derivatives of the free energy [17]. Interestingly, approxima-
tions to the kinetic theory (short-time Markov limit) and to
tdDFT (adiabatic approximation) are found to give equivalent
results, Eq. (47) or Eq. (60). Neither of these approximations
compromises extreme conditions (although some physical
processes are excluded) and hence the result is a good can-
didate for predictive properties. It has a form similar to that
of the RPA. However, the noninteracting response function
in RPA is replaced by χKG, which is determined from non-
interacting Kohn-Sham single-particle Hamiltonians. In this
way the electron-ion interaction is described by vKS rather
than the bare ion-electron Coulomb potential. Similarly, the
RPA screening due to the electron-electron Coulomb potential
is replaced by that due to the renormalized potential Vee of
Eq. (43).

The excluded physical processes alluded to above are
electron-electron collisional effects. The RPA structure
includes mean-field electron-electron screening but not
electron-electron scattering. In contrast, for the example
above of electrons in the external field of ions, the electron-ion
“collisions” are treated in detail by the dynamics of the Kohn-
Sham Hamiltonian determining χKS . In addition to neglect-
ing these electron-electron collisions, the Kubo-Greenwood
method is recovered only if the screening effects found here
are negligible as well. Thus, an important outcome of the
analysis here is to show how the Kubo-Greenwood method
appears as an important component of the response function
calculation, and also to demonstrate its context—neglect of
electron-electron scattering and dynamical screening.

Another interesting outcome is the equivalence of the
response function from the short-time kinetic theory and from
tdDFT in the adiabatic approximation. In hindsight, this is
perhaps to be expected since each becomes exact in the short-
time limit [e.g., compare Eqs. (51) and (58)]. This close con-
nection provides some potential to explore approximations in
tdDFT beyond the adiabatic approximation. For example, the
collision operator M of the exact kinetic equation, Eq. (31),
has been studied in some detail [18] and may provide a route
for corresponding improvements of tdDFT applications.
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APPENDIX A: A PROPOSED GENERALIZATION OF
VAN LEEUWEN’S THEOREM FOR MIXED STATES

Based on the extensive studies of van Leeuwen’s theorem
for pure states, it is reasonable to suppose a corresponding
theorem applies for mixed states as well. A complete char-
acterization of the states and necessary conditions is not the
objective here. Instead, a constructive argument, at physi-
cally plausible levels of rigor, is given to demonstrate van
Leeuwen’s theorem in the rather general context of ensembles
or density matrices as states for the system. We do not revisit
the multiple issues of a mathematically complete investigation
encountered for pure states over the past two decades. Thus
we assume properties such as invertibility, analyticity, etc. are
satisfied as required. Readers interested in those issues should
consult the recent review for pure states by Ruggenthaler et al.
[20]. A more complete justification of the result presented
here is under consideration for a future publication.

Consider two systems characterized by the Hamiltonians
H (t ) and H1(t ):

H (t ) = K + U + V (t ), H1(t ) = K + U1 + V1(t ). (A1)

Here, K denotes the kinetic energy, U and U1 are general
many-body potentials, and V and V1 are sums of single-
particle potentials,

V (t ) =
∫

drv(r, t )̂n(r), V1(t ) =
∫

drv1(r, t )̂n(r). (A2)

The number density operator n̂(r) is given by Eq. (A2). The
expectation value of some observable corresponding to an
operator X is

〈X〉 = TrρX, Trρ = 1. (A3)

The trace is taken over an arbitrary complete set of states
defining the Hilbert space considered. The state of the system
is represented by the positive, semi-definite Hermitian oper-
ator ρ normalized to unity. If it is a projection operator onto
a single vector in the Hilbert space, it is referred to as a pure
state. Otherwise, it is a mixed state. The corresponding quan-
tities for the second system are the same but distinguished by
a subscript 1.

The time dependence of a state ρ(t ) is given by the
Liouville–von Neumann equation,

∂tρ(t ) = −i[H (t ), ρ(t )], ρ(t = 0) = ρ, (A4)

where without loss of generality the initial time is taken to be
t = 0. Accordingly, the average number densities for the two
systems are

n(r, t | v) = Trρ(t )̂n(r) ≡ 〈̂n(r); t〉,
n1(r, t | v1) = Trρ1(t )̂n(r) ≡ 〈̂n(r); t〉1. (A5)

The notation n(r, t | v) indicates that the density is a space-
time functional of v(r, t ). Also, the subscript on the bracket
〈̂n(r); t〉1 indicates an average over ρ1(t ) whose dynamics
is generated by H1(t ). The objective here is to show that
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for a given n(r, t | v) there exists a unique v1(r, t ) such
that n1(r, t | v1) = n(r, t | v). The demonstration is based
on direct construction of v1(r, t ) from all of its initial time
derivatives under the assumption that the density is analytic at
t = 0 and upon some domain of nonzero radius [7,8,10].

Assume there exists a v1(r, t ) such that the densities are
equal,

n(r, t | v) = n1(r, t | v1), (A6)

which gives the formal definition of v1(r, t ). The right side
evolves according to the von Neumann equation,

∂tρ1(t ) = −i[H1(t ), ρ1(t )], (A7)

or equivalently,

ρ1(t ) = ρ1(0) −
∫ t

0
dt ′i[H1(t ′), ρ1(t ′)]. (A8)

Then Eq. (A6) becomes

n(r, t | v) = 〈̂n(r); 0〉1 − i

∫ t

0
dt ′Tr[H1(t ′), ρ1(t ′)]̂n(r)

= 〈̂n(r); 0〉1 +
∫ t

0
dt ′Tr〈i[H1(t ′), n̂(r)]; t ′〉1,

(A9)

where the second line follows from the cyclic invariance of
the trace. A further iteration of Eq. (A8) gives

n(r, t | v) = 〈̂n(r); 0〉1 +
∫ t

0
dt ′i〈[H1(t ′), n̂(r)]; 0〉1

+ (i)2
∫ t

0
dt ′

∫ t ′

0
dt ′′〈[H1(t ′′),

× [H1(t ′), n̂(r)]]; t ′′〉1. (A10)

This is still exact. The right side is a functional of v1(r, t )
and hence gives its formal definition in terms of the given
density n(r, t | v). Suppose the latter is analytic at t = 0 so
that its derivatives exist at arbitrary order. Then Eq. (A10)
can be expanded in powers of t and its coefficients of each
term identified. A first condition is that the initial state ρ1 must
deliver the same density as ρ:

n(r, t | v) = 〈̂n(r); 0〉1 = Trρ1n̂(r). (A11)

Next, for example, the first two time derivatives are

∂tn(r, t | v) = i〈[H1(t ), n̂(r)]; 0〉1 + (i)2
∫ t

0
dt ′′〈[H1(t ′′),

× [H1(t ), n̂(r)]]; t ′′〉1, (A12)

∂2
t n(r, t | v) = i〈[∂tV1(t ), n̂(r)]; 0〉1

+ (i)2〈[H0(t ), [H1(t ), n̂(r)]]; t〉1. (A13)

The first two derivatives at t = 0 are now readily identified:

∂tn(r, t | v) |t=0= i〈[H1(0), n̂(r)]; 0〉1 (A14)

and

∂2
t n(r, t | v) |t=0 = i〈[∂tV1(t ) |t=0, n̂(r)]; 0〉1

+ (i)2〈[H1(0), [H1(0), n̂(r)]]; 0〉1. (A15)

Equation (A14) determines the initial value v1(r′, 0),∫
dr′v1(r′, 0)χ1

(
r, r′)

= ∂tn(r, t | v) |t=0 −i〈[(K1 + U1), n̂(r)]; 0〉1, (A16)

where χ (r, r′) is the static response function,

χ1(r, r′) = i〈[̂n(r′), n̂(r)]〉1. (A17)

The initial state ρ1 is taken to be independent of v1(r, 0)
so that Eq. (A16) is a linear equation for v1(r′, 0). In van
Leeuwen’s original theorem, this is interpreted as a require-
ment that the average current densities of the two systems
must be the same for the initial state, using the continuity
equation. Here it is seen that this can be imposed by the choice
of v1(r, 0). Next, Eq. (A15) determines the first derivative of
v1(r′, t ):∫

dr′∂tv1(r′, t ) |t=0 χ1(r, r′)

= ∂2
t n(r, t | v) |t=0 −i〈[H1(0), i[H1(0), n̂(r)]]; 0〉1.

(A18)

All ingredients on the right side of this equation are known
from the first two equations, (A11) and (A16).

The structure of Eq. (A18) is similar for all higher deriva-
tives as well. Return to Eq. (A12) and differentiate it m + 1
times at t = 0, for m > 0:

∂m+1
t n(r, t | v) |t=0

= ∂m
t Tri[H1(t ), ρ1(t )]̂n(r) |t=0

=
m∑

p=0

m!

p!(m − p)!
Tri

[
∂

m−p
t V1(t ), ∂p

t ρ1(t )
]̂
n(r) |t=0

= 〈[
∂m
t V1, n̂(r)

]
; 0

〉
0 |t=0 +

m∑
p=1

m!

p!(m − p)!
Tri

×[
∂

m−p
t H1(t ), ∂p

t ρ1(t )
]̂
n(r) |t=0 . (A19)

Rearranging gives∫
dr′∂m

t v1(r′, t ) |t=0 χ1(r, r′)

= ∂m+1
t n(r, t | v) |t=0 −

m∑
p=1

m!

p!(m − p)!
Tri

× [
∂

m−p
t H1(t ), ∂p

t ρ1(t )
]̂
n(r) |t=0 . (A20)

The highest derivative of the second term on the right side is
of order m − 1 and hence denotes a quantity depending on
known derivatives of lower order than m.

The argument above constitutes a demonstration of the
existence of v1(r, t ) in the domain of analyticity of the cho-
sen density about t = 0, subject to constraints on the initial
state and the invertibility of χ1(r, r′). The argument also
can be used to demonstrate uniqueness, as follows. Con-
sider two systems that are the same except for their external
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potentials

H (t ) = K + U + V (t ), H1(t ) = K + U + V1(t ). (A21)

If it is assumed both potentials give the same density, then
the construction of their derivatives given above can be ap-
plied to each potential. The result is that the equations for
∂m
t v(r, t ) |t=0 and for ∂m

t v1(r, t ) |t=0 are the same (up to a
constant); consequently, v(r, t ) and v1(r, t ) are the same.
(They can differ by a function of time c(t ) since the Liouville–
von Neumann equation is invariant under such a change.) In
summary, there is a one-to-one relationship of the density and
the single-particle potential for a given system.

APPENDIX B: SOLUTION TO THE MARKOV
KINETIC EQUATION

A formal solution to the kinetic equation, Eq. (45), for
φ(1, r′; t ) is

φ(1, r′; t ) = φKS

(
1, r′; t

) −
∫ t

0
dt ′e−iHKS (t−t ′)

∫
dr1dr2Vee

× (r1, r2)I (1, r1, r2, r′, t ′)eiHKS (t−t ′), (B1)

where

φKS (1, r′; t ) = e−iHKS tφ(1, r′; 0)eiHKS t , (B2)

HKS =
Ne∑
i=1

hKS (i), hKS (i) = p2
i

2m
+ vKS (qi , {R}). (B3)

Recall that vKS (qi , {R}) is a functional of the initial equilib-
rium density and therefore HKS is time independent. Also,

I (1, r1, r2, r′, t ′)

≡ Tr2i[δ(r1 − q1)δ(r2 − q2), f (1)(1)φ(2, r′; t ′)]

= i[δ(r1 − q1), f (1)(1)]Tr2φ(2, r′; t ′)δ(r2 − q2)

= −φ(1, r1; 0)χ (r2, r′; t ′). (B4)

The definition of φ(1, r; 0) in Eq. (39) and of χ (r, r2; t ′) in
Eq. (38) has been used in the last line.

The response function is given by Eq. (34):

χ
(
r, r′; t

) = Tr1δ(r − q1)φ
(
1, r′; t

)
. (B5)

With Eq. (B1) this becomes

χ (r, r′; t ) = χKG(r, r′; t ) +
∫ t

0
dt ′

∫
dr1dr2Vee(r1, r2)Tr1δ(r − q1)e−iHKS (t−t ′ )φ(1, r1; 0)eiHKS (t−t ′ )χ (r2, r′; t ′)

= χKG(r, r′; t ) +
∫ t

0
dt ′

∫
dr1dr2χKG(r, r1; t − t ′)Vee(r1, r2)χ (r2, r′; t ′), (B6)

where the Kubo-Greenwood response function is

χKG(r, r′; t ) = Tr1δ(r − q1)φKS (1, r′; t ). (B7)
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