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Magnetorotational instability in spin quantum plasmas
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The magnetorotational instability (MRI) is analyzed using a two fluid model with the effect of spin
magnetization in a differentially rotating degenerate electron-ion (e-i) quantum plasma. The electrons are taken
to be degenerate, whereas ions are considered as classical owing to their large inertia. The general dispersion
relation for spin quantum e-i plasma is derived and a local dispersion relation for MRI is obtained by applying
MHD approximations. The obtained MRI criteria is discussed for both magnetized and unmagnetized plasma
duly modified by spin correction terms. The instability criteria differ significantly from that reported for the case
of classical plasma. Spin magnetization plays a vital role via coupling to the Alfvénic speed and can alter the
instability criteria which leads to the transport phenomenon in compact astrophysical objects.
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I. INTRODUCTION

Currently there is a great deal of interest in studying and in-
vestigating physics of quantum plasmas. In plasma, quantum
effects become prominent when the de Broglie wavelength of
charged particles, i.e., λDe(= h̄/mevte ), becomes comparable
to the system scale, e.g., interparticle distances n−1/3, where
n is the equilibrium particle density, h̄ is the reduced Planck’s
constant, me is the mass of electron, and vte is the thermal
speed of electrons. Starting from Schrödinger’s description of
quantum electron, one can derive a set of equations for plasma
either from N -body description, density matrix, or Madelung
description of wave function [1,2]. Such quantum plasma has
relevance in nanoscale electromechanical systems [3,4], dense
laser plasma [5], lasers interaction with atomic systems [6,7],
plasma echoes [8], and quantum plasma instabilities [9,10].
From an experimental perspective more interest is directed
towards the relation of spin properties to the classical theory
of motion. The effect of strong field on a single particle
with spin has attracted experimental interest in the laser
community [11–13]. In 2005, Haas [14] formulated a quantum
magnetohydrodynamic (QMHD) model for degenerate dense
quantum plasma and later this model was extended to spin
quantum dense plasma [15] by taking the spin effect into
account. The applicability of this sort of model to the dense
astrophysical plasmas, dusty plasmas, and solid state plasmas
were discussed and used to investigate the properties of hy-
drodynamic waves for the electron spin effects. Brodin and
Marklund used spin MHD approach by using a nonrelativistic
Pauli equation for spin-1/2 particles that gives the desired
governing dynamics of spin plasmas [16]. It is to be noticed
that spin effects are important for low temperature, high
density, and strongly magnetized plasma. The effect of strong
field has applications in astrophysical environments such as
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pulsars [17] and magnetars [18]. Therefore, much attention
has been received in astrophysical surroundings, especially in
strongly magnetized plasmas. In laboratory plasmas, many of
the studies are motivated on the properties of single particles.
It is expected that the collective spin effects can influence the
propagation characteristics of waves in a strongly magnetized
quantum plasma [19]. Andreev [20] investigated the separated
spin up and spin down quantum hydrodynamics of degenerate
electrons. He found the contribution of magnetic field in
the wave dispersion via the difference of occupation of the
two spin states. A lot of progress has been made to investi-
gate electron spin magnetization [21], kinetic description of
Fermi particles [22], and the spin dynamics of semirelativistic
plasma [23]. Moreover, Groot and Suttorp [24] discussed the
connection between microscopic and macroscopic spin dy-
namics. Maroof et al. [25] investigated the dispersive feature
of magnetosonic waves in relativistic degenerate electron-
positron-ion magnetoplasma with spin-1/2 effect. Mushtaq
et al. [26] studied the oblique propagation of low frequency
magnetosonic waves in spin-1/2 degenerate magnetoplasma
consisting of mobile ions, electrons, and positrons. Asenjo
[27] analyzed the propagation of low frequency magnetosonic
waves with mobile electrons and ions by using nondegenerate
temperature with the effects of Bohm potential and spin of
electrons and discussed the effect of quantum corrections.

Recently, many theories of quantum plasma and hydrody-
namic stability of magnetized plasma have been developed
which have a great importance in various astronomical envi-
ronments [28–30]. Astrophysical objects contain degenerate
matter due to which quantum mechanical treatment is impor-
tant in such regimes. Most of the work on magnetorotational
instability (MRI) was made in classical based dynamics of
plasma; however, the main stream of the MRI study belongs
to the astrophysical trends. Beside its classical treatment one
can analyze it by using a quantum mechanical approach. MRI
is considered as an important candidate for the core collapse
and many dynamical behavior of various stars. MRI is a type
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of MHD instability initially addressed by Velikov [31] in 1959
and then confirmed by Chandrasekhar [32] in 1960. It has
much more attraction with the work performed by Balbus and
Hawley [33]. They restudied the MRI and applied the concept
to the accretion disk rotating around a compact astrophysical
object and showed that the MRI growth rate does not depend
on the magnetic field with even a very low magnetic field that
can alter the instability criteria. However, in the presence of
magnetic field the instability criteria shifts from the outwardly
decreasing angular velocity to the radially increasing angu-
lar velocity. Hydrodynamical accretion disks are stable but
they are unstable magnetohydrodynamically and lead to disk
turbulence and angular momentum transport [34–36]. Many
analytical explanations, numerical analysis, and experimental
investigations of this MHD instability has certainly become
a basic plasma phenomenon. MRI is also assumed to act as
a dynamo in the accretion disks [37]. Hereinafter, there is an
increasing interest in the MRI applications to the astrophysical
problems concerning magnetized accretion disks like proto-
planetry disks [38], stellar disks [39], differentially rotating
protoneutron stars [40], etc. Using local linear analysis, Ren
et al. [41] investigated MRI in differentially rotating dusty
plasma with the dissipative and immobile dust effect. The
two fluid hydromagnetic model [42] was used to investigate
MRI by considering electron and ions having the same angular
frequency which encompass both the electron and ion gyro
effects. The instability criteria was presented in the case of
magnetized and nonmagnetized plasma which is different
from that reported in one fluid model. Mikhailovskii et al.
[43] studied nonaxisymmetric MRI in rotating plasma by
neglecting the gravitation and derived the dispersion relation
for ideal plasma including the effect of viscosity.

In this work we investigate MRI in electron-ion (e-i)
quantum plasma by introducing a spin force term to the
dynamic equation of motion. Solving the quantum hydro-
dynamic equations together with Maxwell’s equations we
obtain the generalized dispersion relation. It is shown that the
instability criteria for MRI defined in the classical context
using two fluid model and MHD model is duly modified
by spin effect. We derived the instability criteria in both
magnetized and unmagnetized cases for degenerate quantum
plasma. The spin magnetization effect shows some important
consequences on the instability criteria. Previously almost
all of the studies about MRI are carried out in the classical
based dynamics of plasma. We in this work are intending to
make intensive analysis of MRI by looking into the quan-
tum perspective of astrophysical objects and exploring the
differences between the classical and quantum picture of
the problem.

This manuscript is organized as follows. In Sec. II plasma
quantum hydrodynamic equation of motion for electron-ion
plasma in the presence of electron spin magnetization effect
is presented. Based on this model, dispersion relation for the
electron-ion plasma with axial magnetic field is derived in
Sec. III. In Sec. IV a reduced dispersion relation is obtained
using MHD approximations. In this section, different MRI
characteristics (in the presence of spin magnetization) are dis-
cussed with and without magnetic field, for arbitrary magnetic
field, and with ion Hall effect. Finally, in Sec. V the main
results of the work are presented.

II. GOVERNING EQUATIONS

We consider a collisionless fully degenerate and quasineu-
tral electron-ion plasma embedded in an external magnetic
field B = Bẑ. The strength of the magnetic field is assumed to
be very high in a manner that it remarkably affects the dynam-
ics of plasma. The charge neutrality condition at equilibrium
is ni0 = ne0 = n0, where ni0 and ne0 are the number densities
of ions and electrons, respectively. The basic two fluid quan-
tum hydrodynamic equation of motion in the presence of spin
force is expressed as

∂tvj + (vj · ∇)vj = − 1

mjnj

∇Pj + qj

mj

(E + vj × B)

− ∇� − 2nj0μj

h̄
∇(S · B1). (1)

Here vj is the fluid velocity and Pj is the thermal pressure
with j representing the species. For the massive ions, we used
nondegenerate classical pressure, given by Pi = γinikBTi ,
where γ is the polytropic index. For the degenerate elec-

trons the Fermi pressure is defined as PFe = (3π2 )
2
3 h̄2

5me
n

5
3
e and

∇PFe = 1
3v2

Feme∇ne with vFe = (3π2ne0)
1
3

h̄
me

representing
the Fermi velocity for degenerate electron with h̄ being the re-
duced Planck’s constant. The charge on particle is represented
by qj and the electric field by E. The parameter � = −GM

R

is the gravitational potential of the central object with mass
M , gravitational constant G, and R = (r2 + z2)

1
2 with r being

the distance from the rotation axis and ẑ being the vertical
coordinate. The last term in the above equation corresponds to
spin correction in the equation of motion for electron and can
be neglected in the case of ion dynamics. The parameter μj =

qh̄

2mj c
stands for the magnetic moment and B1 represents the

perturbed magnetic field. For electron the magnetic moment
is defined by μe = −μB , with μB =| qh̄

2mj c
| being the Bohr

magneton. The spin evolution equation for the spin quantum
plasma can be written as [16]

ds

dt
= 2μ

h̄
(s × B). (2)

In MHD limit, under the assumption ω � ωci � ωce, the spin
inertia can be neglected well below the electron cyclotron fre-
quencies and gives the spin equation of motion with solution
[16]

S = − h̄

2
ηj

(
μj B

kBTFj

)
B̂. (3)

Here the Langevin parameter ηj (α) = tanh(α) appears due
to the magnetization of spin distribution in thermodynamic

equilibrium with α = μBB0

kBTFj
and TFj = (3π2nj )2/3 h̄2

2kBmj
represents

the Fermi temperature of the degenerate jth particle. The
singly charged ions are considered to be nondegenerate due
to the fact that ions are massive and have large inertia in
comparison to electrons, so we neglect the quantum spin effect
in the case of ions. The first order continuity equation for the
species is given as

∂tnj + ∇ · (nj vj ) = 0. (4)
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The above equations are coupled to Maxwell equations in the
following form:

∇ · E = e

ε0
(ni − ne ), (5)

∇ · B = 0, (6)

∂tB = −∇ × E, (7)

∇ × B = μ◦J + 1

c2
∂tE, (8)

where J = ∑
j=e,i qjnjvj + cJMe

is the current density with
JMe

= ∇ × Me being the spin magnetization current density
of electron for degenerate Fermi plasma with magnetiza-
tion density vector Me =μBne tanh(α)B̂ and c = (ε0μ0)−

1
2

being the speed of light in vacuum. We considered an
axisymmetric plasma rotating in the azimuthal θ direction
having angular frequency � = �(r ) in a standard cylindri-
cal coordinates system (r, θ, z). The equilibrium quantities
are vj0 = (0, r�, 0), B0 = (0, 0, B0), E0 = (E0, 0, 0), and
Pj0 = Pj0(r ). Electrons and ions are supposed to have the
same angular frequency in order to eliminate the unperturbed
current, i.e., J0 = 0; hence the equilibrium magnetic field is
assumed to be homogeneous.

III. DISPERSION RELATION

We consider the plasma in the cylindrical coordinates
and the perturbed magnetic field, electric field, and velocity
are represented by B1 = (B̃r , B̃θ , B̃z), E1 = (Ẽr , Ẽθ , Ẽz), and
vj1 = (̃vjr , ṽjθ , ṽjz), respectively, while the perturbed pres-
sure is given by P̃j and the perturbed number density by
ñj . Each perturbed profile is considered to be proportional
to e−iωt+ikzz, where ω and kz are the wave frequency and
wave number directed along z, respectively. The plasma is
considered to be incompressible so that the mass conservation
is reduced to ∇ · vj = 0. To ignore the density fluctuations
the equilibrium state is assumed to be homogeneous, such that
n0 = const, yielding ñj = 0. The perturbed Poisson equation

∇ · E1 = 0, resulting in Êz = i L̂
kz

Ẽr , and the incompressible

condition gives rise to ṽjz = i L̂
kz

ṽjr . The divergence free prop-

erty of the magnetic field ∇ · B1 = 0 provides that Bz = i L̂
kz

B̃r

and from the perturbed Faraday’s law we obtain Êθ = ω
kz

B̃r

and Bθ = k2
z − ∂rL̂

ωkz

Ẽr , where we define the operator L̂ =
1
r

+ ∂r . Now linearizing Eq. (1) for the electron up to the first
order results in the following relation:

∂t (ṽer r̂ + ṽeθ θ̂ + ṽezẑ) + κ2

2�
ṽer θ̂ − 2�ṽeθ r̂

= −∇r,θ,z

mene

P̃e + qe

me

[(Ẽr r̂ + Ẽθ θ̂ + Ẽzẑ)

+(ṽ0B̃z + ṽθ B̃0)r̂ − ṽ0B̃r ẑ − ṽr B̃0θ̂ ] − ηe(α)μene∇zBz.

(9)

Here κ2 = d�2

d ln r
+ 4�2 is the square of the epicyclic fre-

quency. The above linearized equation (9) in component form

(r, θ, z) can be expressed as

∂t ṽer r̂ − 2�ṽeθ r̂ = − ∇r

mene

P̃e + qe

me

[Ẽr + ṽ0B̃z + ṽθ B̃0]r̂ ,

(10)

∂t ṽeθ θ̂ + κ2

2�
ṽer θ̂ = − ∇θ

mene

P̃e + qe

me

[Ẽθ − ṽr B̃0]θ̂ , (11)

∂t ṽezẑ = − ∇z

mene

P̃e + qe

me

[Ẽz − ṽ0B̃r ]ẑ − ηe(α)μene∇zBz.

(12)

Using the plane wave solution Eq. (12) can be rewritten in the
following form:

P̃e

mene

= ω

kz

ṽez − i

kz

qe

me

[Ẽz − ṽ0B̃r ] − ηe(α)μeneBz. (13)

Substituting Eq. (13) into Eqs. (10) and (11) we obtain

−iωṽeθ +
(

κ2

2�
+ ωc

)
ṽer = − ωωc

kzB0
Br (14)

and

−iωṽer − (2� + ωc )ṽeθ

= −iω

k2
z

∂r L̂ṽer + ωωc

kzB0
Bθ − m

iωc

kzB0

d�

d ln r
B̃r

+ i

kz

ηe(α)μene◦∂rL̂B̃r . (15)

Here ωc = eB0
me

is the electron cyclotron frequency associated
with external magnetic field and ω is the wave frequency.
The local approximation is adopted by assuming ∂r � ikr

and krr � 1, where kr is the radial wave number. Thus
∂rL̂ � −k2

r and k = (k2
r + k2

z )1/2 is the total wave number.
The perturbed magnetic field is determined by

∇ × B1 = en0μ0(vi1 − ve1) + ηe(α)μene(∇ × B1). (16)

From (16) the ion perturbed velocities in component form can
be obtained by using the problem geometry as

ṽir = − ikz

en0μ0
B̃θ − ikz

en◦μ◦
ηe(α)μene0B̃θ + ṽer , (17)

ṽiθ = ik2

kzen0μ0
B̃r + ik2

en0μ0
ηe(α)μene0B̃r + ṽeθ . (18)

Equations (14) and (15) engender B̃r and B̃θ in the terms of
ṽer and ṽeθ as

B̃r = −ikzB0

ωc

ṽeθ + kzB0

ωωc

(
κ2

2�
− ωc

)
ṽer (19)

and

B̃θ = ik2B0

kzωc

ṽer + kzB0

ωωc

(
κ2

2�
− ωc

)
ṽeθ

+ ikzB0

ω2ωc

d�

d ln r

(
κ2

2�
− ωc

)
ṽer − k2B2

0

ωω2
c

ηe(α)μeneṽeθ

− ik2B2
0kz

ω2ω2
c

(
κ2

2�
− ωc

)
ηe(α)μeneṽer . (20)

Using Eqs. (14) and (15) for ions and substituting the values
of ṽir and ṽiθ from Eqs. (17) and (18) leads to the following
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expressions:

ω

kzB0

(
k2V 2

A

�c

+ �c

)
B̃r + ωk2V 2

A

kzB0�c

ηe(α)μeneB̃r − iωṽeθ

− ikzV
2
A

B0�c

(
κ2

2�
+ �c

)
B̃θ − ikzV

2
A

B0�c

(
κ2

2�
+ �c

)
× ηe(α)μeneB̃θ +

(
κ2

2�
+ �c

)
ṽer = 0 (21)

and

− ωk2V 2
A

kzB0�c

B̃θ + ωk2V 2
A

kzB0�c

ηe(α)μeneB̃θ − iω
k2

k2
z

ṽer

− ik2V 2
A

kzB0�c

(2� + �c )B̃r − ik2V 2
A

kzB0�c

(2� + �c )ηe(α)μeneB̃r

− (2� + �c )ṽeθ − ω�c

kzB0
B̃θ + i�c

kzB0

d�

d ln r
B̃r = 0. (22)

In the above equations (21) and (22) �c = eB0
mi

stands for

ion gyrofrequency, while VA =
√

B2◦
miniμ◦

and ωA = kzVA are
the Alfvén speed and frequency, respectively. Substituting the
value of the perturbed magnetic field from Eqs. (19) and (20)
into Eqs. (21) and (22) and eliminating the perturbations we
arrive at the following dispersion relation:

(
ω2αo + ω2

Aβ
)2 − ω2 k2

z

k2

[
2�αo + κ2

2�

(
αo − 1 − �c

ωc

)
− k2V 2

A

�c

(
1 − �c

ωc

)][(
2αo − 1 − �c

ωc

)

×
(

κ2

2�
+ ω2ηe(α)μene

)
− αoω

2ηe(α)μene − ω2
A

�c

(
1 − �c

ωc

)
[1 + ηe(α)μene] + ω2

A

ω2
β

(
d�

d ln r
− kzB0ω

ω2
c

ηe(α)μene

)]

+ ω2

ω2
c

(
ω2αo + ω2

Aβ
)[(

αo − 1 − �c

ωc

)
ω2 + ω2

Aβ − ω2kz

ωc�c

(
κ2

2�
+ �c

)(
ηe(α)μene

ωc

− 1

)
ηe(α)μene

−ω2

ω2
c

ω2
A

(
k4V 2

A

ωc�c

[1 − ηe(α)μene] + �ck
2

ω2
c

)][(
2αo − 1 − �c

ωc

)(
κ2

2�
+ ω2ηe(α)μene

)
+ αoω

2ηe(α)μene

+ω2
A

�c

(
1 − �c

ωc

)
− ω2

A

ω2
β

(
d�

d ln r
− kzB0ω

ω2
c

ηe(α)μene

)]
ηe(α)μene = 0, (23)

and here we denote

αo = 1 + k2V 2
A

�cωc

+ �c

ωc

,

β = 1

�cωc

(
κ2

2�
− ωc

)(
κ2

2�
+ �c

)
.

This formula refers to the general dispersion relation de-
termining the dynamics of axisymmetric MRI in the quantum
e-i plasma. By letting ηe(α) = 0, the result is reduced to the
relation obtained in Ref. [42]. The classical dispersion relation
for plasma mode is modified by including the spin quantum
correction showing the complete physical picture about the
MRI in both low and high frequency regimes.

IV. DISCUSSION

Equation (23) reveals new contributions due to the spin
magnetization effect to the wave dispersion at the quan-
tum scale depending on the strength of the magnetic field.
This contribution is useful in understanding the features of
long wavelength or low frequency MHD waves in quantum
plasmas that exist in astrophysical environments like neu-
tron stars and white dwarfs. In the low frequency limits,
i.e., kVA � �c, ω � �c, and � � �c assuming �c

ωc
= me

mi
�

0, α0 � 1, and β � −1, the dispersion relation (23) can be

expressed as

ω2 − k2
zV

2
A − k2

z

k2

[
d�2

d ln r
+ 4�2ω2

ω2 − k2
zV

2
A

− k2
zV

2
A

ω2 − k2
zV

2
A

d�2

d ln r
ηe(α)μene

]
= 0. (24)

Equation (24) represents the modified dispersion relation for
the MRI in which the two fluid quantum hydrodynamic model
is reduced to the ideal MHD model with the inclusion of
axial magnetic field and spin magnetization effect. If the spin
magnetization effect is considered to be zero [ηe(α) = 0] in
Eq. (24), then we recover the classical relation reported in
Ref. [33]. In many magnetized plasmas, the spin magnetiza-
tion has a small contribution to the total magnetic field. For
the case when the factor μBB0/kBTFe � 1, the spin quantum
effects are negligible and are more significant in the case
when μBB0/kBTFe � 1. In high density and low temperature
plasmas like in the vicinity of pulsars and magnetars, the spin
contributions arise due to the fact that the component of spin
force is parallel to the ambient magnetic field. For the higher
values of magnetic field the magnetization energy shows some
important effects on the dynamics of the system.

A. Magnetized plasma

To illustrate the instability criteria, the dispersion relation
(23) can be reduced to the following equation under the
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assumption ω2/ω2
c � 1:

ω4α2
0 + ω2 k2

z

k2
(D1 − D3) + k4

z

k4
D2 = 0, (25)

where

D1 =
[

κ2

2�

(
2α0 − 1 − �c

ωc

)
− k2V 2

A

�c

(
1 − �c

ωc

)][
2�α0 + κ2

2�

(
α0 − 1 − �c

ωc

)
− k2V 2

A

�c

(
1 − �c

ωc

)]
− 2α0k

2V 2
Aβ, (26)

D2 = k2V 2
Aβ

[
k2V 2

Aβ − d�

d ln r
[1 + ηe(α)μene]

{
2�α0 + κ2

2�

(
α0 − 1 − �c

ωc

)
− k2V 2

A

�c

(
1 − �c

ωc

)}]
, (27)

and

D3 =
[

2�α0 + κ2

2�

(
α0 − 1 − �c

ωc

)
− k2V 2

A

�c

(
1 − �c

ωc

)]
×

[
κ2

2�

(
α0 − 1 − �c

ωc

)
+ k2V 2

A

�c

(
1 − �c

ωc

)
− ω2

A

ωcω2
kzB0ηe(α)μene

]
ηe(α)μene. (28)

Here we look into the unstable condition for which D2 < 0, i.e.,

k2V 2
Aβ

[
k2V 2

Aβ − d�

d ln r
(1 + ηe(α)μene )

{
2�α0 + κ2

2�

(
α0 − 1 − �c

ωc

)
− k2V 2

A

�c

(
1 − �c

ωc

)}]
< 0. (29)

In MHD limits the relation (29) reduces to

d�2

d ln r
+ k2V 2

A

[1 + ηe(α)μene]
< 0. (30)

Equation (30) is the basic criteria for MRI which is duly
modified in the presence of spin correction. By ignoring the
spin effect of electron the criteria is reduced to the classical
one in a magnetized plasma previously studied in Ref. [33].
The first term in Eq. (30) represents the Velikhov effect
driving the rotational instability. On the other hand, the second
term in the inequality describes the spin modified Alfvén
wave, where the spin effect plays a vital role via coupling
to the Alfvénic speed. In MHD the magnetic field pertur-
bations travel along the direction of the ambient magnetic
field with the Alfvén velocity. Due to the contribution of spin
effect within the single fluid model, the Alfvén velocity is
decreased. The factor tanh(μBB0/kβTFe ) that appears in the
spin contribution term gives the net effect of spin; however,
it is limited to certain conditions. In the thermodynamic
equilibrium μBB0/kβTFe � 1, the correction factor is close
to unity and, under the approximation μ0H0 ≈ B0 (which
is the magnetic field due to the external sources only), the
spin correction may be omitted. Moreover, the envelope of
weakly modulated Alfvén waves travel for ω � �c, with
group velocity close to the Alfvénic speed [44]. For the case of
strong magnetic field the factor μBB0/kβTFe � 1, that shows
the strong magnetization effect and the spin contribution in
this case, is important, e.g., in compact astrophysical objects
like white dwarfs and magnetars (a type of neutron star with
an extremely powerful magnetic field).

B. Unmagnetized plasma

In the case of unmagnetized plasma, we have B0 = 0

and define ξ = k2V 2
A

�cωc
= k2m

(e2n◦μ◦ ) along with α0 � 1 + ξ and

βk2V 2
A = ( κ2

2�
)2ξ . Neglecting the terms proportional to �c

ωc
, the

criteria in Eq. (29) can then be written as(
κ2

2�

)2

ξ

[(
κ2

2�

)2

ξ − d�2

d ln r
[1 + ηe(α)μene]

×
{

2�(1 + ξ ) +
(

κ2

2�

)
ξ

}]
< 0. (31)

In MHD limits, the inequality (31) reduces to the following
form:

4�2ξ

[1 + ηe(α)μene]
− d�2

d ln r
< 0. (32)

Equation (32) gives the critical condition for instability to
occur in quantum electron-ion plasma with electron spin mag-
netization correction and is identical to the criteria for classi-
cal regimes described in [42] for the two fluid model. In the
case of electron spin contribution, when the external applied
magnetic field is zero (B0 = 0), the spin effect vanishes due to
coupling to the field and has no contribution in the dynamics
of the system. However, it still exists due to induced magneti-
zation (bulk magnetization) due to the spin. This is possible
for oblique JS coupling. For completely aligned the spin
term will also vanished with B0 = 0. It is therefore concluded
that in the case of strongly magnetized plasma, the instability
criteria may alter remarkably due to the presence of spin
effect. In the case of weakly magnetized plasma the spin
of the electrons is equally distributed in spin up and spin
down populations. However, in the presence of electromag-
netic perturbations, the pondermotive force separates the two
populations locally that enhance the original magnetic field
with a fixed ion background (magnetic dynamos) resulting in
a nonlinear phenomena. The criteria defined in Eq. (32) can
be reduced to the MHD one under the assumption ξ = 0 in
the low frequency limits and can be expressed as

d�2

d ln r
[1 + ηe(α)μene] >

2c2k2

ω2
pe

. (33)
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Ignoring the spin effects [ηe(α) = 0] we exactly retrieve the
results obtained for classical plasma reported in Ref. [41].

C. Arbitrary magnetic field

For the magnetic field with an arbitrary strength we can
derive the instability criteria by rewriting Eq. (29) in the
following form:(

d�

d ln r
+ 2� + �c

)(
d�

d ln r
+ 2� + ωc

)

×
[

d�

d ln r
+ k2V 2

A

2�
(
1 + �c

ωc

)
[1 + ηe(α)μene]

×
(

1 + 2�

�c

)(
1 − 2�

ωc

)]
> 0. (34)

By letting d�
d ln r

= X, Eq. (34) has three roots, X1 = −2� −
�c, X2 = −2� + �c, and X3 = −ϑX2, with

ϑ = k2V 2
A

2�
(
1 + �c

ωc

)
[1 + ηe(α)μene]ωc

(
1 + 2�

�c

)
.

X1 is always negative, X2 may be negative or positive, while
the sign of X3 depends on the value of X2. The instability
takes place in the region when X > X2, resulting in X < X3,
and Eq. (34) gives

d�

d ln r
< − k2V 2

A

2�
(
1 + �c

ωc

)
[1 + ηe(α)μene]

×
(

1 + 2�

�c

)(
1 − 2�

ωc

)
. (35)

In the long wavelength limits, Eq. (35) reduces to the follow-
ing inequality:

d�

d ln r
[1 + ηe(α)μene] < 0. (36)

The system is still unstable to the magnetic perturbations.
The spin of electrons are aligned that develops a magnetic
field and pushes the electrons away from its locality. This
local displacement of electrons increases the share rate and is
responsible for the particle transport leading to the accretion
process in the interiors of compact degenerate astrophysical
objects. When X2 < 0, this leads to X3 > 0, resulting in X >

X3, and Eq. (34) can be expressed as

d�

d ln r
> − k2V 2

A

2�
(
1 + �c

ωc

)
[1 + ηe(α)μene]

×
(

1 + 2�

�c

)(
1 − 2�

ωc

)
, (37)

d�

d ln r
[1 + ηe(α)μene] > 0. (38)

The criteria shifts from the outwardly decreasing angular
velocity to the radially increasing angular velocity. Many re-
gions are developed corresponding to the instability that exists
in multicomponent plasmas like X > X2, X < X1, and X3 <

X. The region discussed above in Eq. (37) gives the criteria for

the MRI in the presence of electron and ion gyro effects duly
modified by the spin force term.

D. Hall-MHD

The MHD frequency has restrictions to the unstable region
mentioned in Eq. (34) and the instability criterion is reduced
to MHD under the assumption � � �c. For the same region
if we ignore the electron gyro effect (� � ωc ), while taking
into account the ion gyro effect, i.e., assuming that � is
comparable to or greater than �c, then the criteria for MRI
in the presence of spin effect can be deduced from Eq. (34) as

d�

d ln r
+ k2V 2

A

2�[1 + ηe(α)μene]

(
1 + 2�

�c

)
< 0. (39)

The term proportional to �
�c

is called the Hall effect. For the
case when � � �c, we can write Eq. (39) in the following
form:

d�

d ln r
+ k2V 2

A

2�[1 + ηe(α)μene]
< 0. (40)

By ignoring the spin term in Eq. (40), the result is identical to
that of Ref. [42].

V. CONCLUSIONS

In this work, we have analytically studied the MRI by
using QHD equations including spin magnetization effect and
obtained the dispersion relation for axisymmetric MRI in a
rotating degenerate quantum e-i plasma. The dispersion rela-
tion for e-i quantum plasma has been presented in Eq. (23),
which describes the waves in both longer and shorter wave-
length limits. Our main focus was on low frequency of the
mode with the effect of spin magnetization. The electron spin
magnetization can introduce some new aspects to the MRI due
to its low inertia and quantum signature. The local dispersion
relation was obtained by using MHD approximations and the
criteria for instability has been defined in magnetized plasma
along with the modified form of the spin term. The spin
magnetization effect can be minimized through the condition
μBB0 � kβTFe; however, it can even influence the criteria for
instability and the properties of MHD waves in the degenerate
plasma. Spin contributions are important in high density,
low temperature, and strongly magnetized plasmas. The latter
can be found in astrophysical surroundings, e.g., pulsars and
magnetars. The instability criteria for MRI was obtained for
various cases, e.g., magnetized plasma, unmagnetized plasma,
arbitrary magnetic field, and for Hall regime, duly modified by
the spin correction term. The comparison of both classical and
quantum description has been shown with the same qualita-
tive behavior. A general case was presented for an arbitrary
magnetic field generating many regions which are unstable
to the MRI in both the MHD and quantum two fluid model.
The instability criteria shifts from inwardly increasing angular
velocity to the outwardly increasing angular momentum. The
displacement of electrons due to the aligned spin may give rise
to the accretion process in heavenly compact astrophysical
objects.
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