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A model of target charging in interaction with an intense short laser pulse is revised. It provides estimates of
the current of energetic electrons escaping the target and the total accumulated electric charge as a function of the
laser pulse characteristics and target thickness. Comparisons with experimental data show the model performance,
in particular, in the case of targets thinner than the mean-free path of energetic electrons.

DOI: 10.1103/PhysRevE.98.033201

I. INTRODUCTION

Interaction of intense electromagnetic pulses with solid tar-
gets results in emission of energetic electrons and target polar-
ization. The recharge current induces strong electromagnetic
pulses (EMPs) reported in numerous publications [1–5]. With
the development of high-intensity laser sources the control
of the electromagnetic environment becomes an urgent and
acute problem. The EMPs produced in laser target interactions
may perturb normal operation of electronic devices [6] or
can be used for controlled magnetic field generation [7–10].
A detailed study of the mechanisms of target charging and
EMP generation has been reported in Refs. [11,12]. It was
demonstrated that target polarization is due to the energetic
electrons ejected from the laser focal zone, and an EMP in
the GHz frequency range is induced by the neutralization
current flowing to the ground through the target holder. For
the picosecond laser pulses, the polarization and neutralization
stages are separated in time and can be considered separately.
In particular, the problem of target charging, in the case where
the electron mean-free path is smaller than the target thickness,
was considered in Ref. [13]. The case of thin targets needs
special attention as the recirculation of energetic electrons may
increase the electron emission current and consequently the
EMP strength. This could be penalizing for such short laser
pulse applications as the x-ray and proton radiography [14–16]
of living cells or small organisms.

The present paper presents an extension of the model
developed in Refs. [11–13] to the case of thin targets. The
major element is an approximate model for the hot electron
distribution function in the target, which is indispensable for
evaluation of electron emission from the rear target side. The
electrons may escape from the both, front, and rear sides of the
target, but their current is controlled by the common potential
barrier depending on the target thickness. In particular, for the
target thickness smaller than the hot electron Debye length, the
electron density is strongly modified as well as the potential
barrier. The revised model provides a description of the hot
electron distribution function and applies to both thin and thick
targets. Its validity is demonstrated by a comparison with the

experimental data obtained in interaction of subpicosecond
laser pulses with thin targets.

The paper is organized as follows: Sec. II outlines the
main elements of the target charging model and presents el-
ements related to the electron distribution function. Section III
provides a comparison of the model with the experiments.
The details related to the potential calculation and numerical
realization are presented in the appendices. The main results
are summarized in Sec. IV.

II. MODEL OF THE TARGET POLARIZATION

The problem of target polarization and subsequent EMP
emission in laser target interaction requires intensive numerical
simulations with electromagnetic, kinetic, and hydrodynamic
codes [11], which are time consuming. This is the motivation
for developing a simplifying model retaining the major physics
elements and providing a quick evaluation of the polarization
charge and the EMP amplitude, with a precision sufficient
for designing the diagnostic equipment and protection of
electronic devices in the interaction chamber.

Our model describes a self-consistent evolution of the hot
electron density and the target electrostatic potential energetic
electrons escaping the target and the total accumulated electric
charge as a function of the laser pulse and target parameters.
The core of the model is the hot electron distribution function
f (ε, t ) inside the target. Its integral represents the total number
of hot electrons, N (t ) = ∫

f (ε, t ) dε, and evolves in time
according to Eq. (1), where the right-hand side describes the
hot electron creation by the laser (first term), the cooling due
to collisions with the target electrons (second term), and the
electron ejection (third and fourth terms):

∂tf (ε, t ) = 1

tlas
flas(ε) �(tlas − t )

− 1

tee(ε)
f (ε, t ) − gfr (ε, t ) − gre(ε, t ). (1)

Here � is the Heaviside function, tlas is the laser pulse duration,
tee is the cooling time depending on the electron energy ε, and
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gfr and gre are the rates of electron ejection from the front and
the rear side of the target, respectively. These terms are detailed
in the following sections.

This model presents a different paradigm in the hot electron
cloud description. The previous model was a concatenation
of a steady state during the laser pulse and a global cooling
after the laser pulse. In the first step, the electron energy
was maintained by the laser and the number of electrons was
defined by an equilibrium between the electron production and
the cooling. The second step corresponded to the global cooling
of all remaining electrons while keeping their number constant.
In this model, the energy of each hot electron is assumed to
be constant during their cooling time. The global cooling is
accounted by the reduction of their number in Eq. (1).This
constant energy approximation may globally overestimate the
mean electron energy over their lifetime by a factor of two.
However, because of this approximation, we are able to provide
a detailed description of the distribution function and detailed
evolution of the ejection current.

A. Laser heating

The action of the laser pulse is described in a simplified
manner as the source of hot electrons of a constant power
operating for a time period tlas. The energy distribution of hot
electrons inside the target is supposed to be exponential:

flas(ε) = (N0/T0) exp(−ε/T0). (2)

The total energy of hot electrons in the target, N0T0 = ηElas,
is a fraction η of the laser pulse energy Elas. The initial hot
electron temperature T0 is defined by the laser pulse intensity
and wavelength according to Refs. [17,18] for subrelativistic
intensities or the ponderomotive scaling [19] for higher laser
intensities:

T0 = 3mec
2a

4/3
las , for alas < 0.3, (3a)

T0 = 0.47mec
2a

2/3
las , for alas � 1.1, (3b)

T0 = mec
2
(√

1 + a2
las − 1

)
for alas > 1.1, (3c)

where me is the electron mass and c is the light velocity. These
expressions agree with the experimental data within a factor of
two [20]. Here the dimensionless laser vector potential is alas =
0.85λlasI

1/2
las , the laser intensity is Ilas = 0.65Elas/(tlasπr2

las) in
units of 1018 W cm−2, and rlas the focal radius: half width at
half maximum.

B. Electron collisional cooling

The hot electrons are cooling down in collisions with target
atomic electrons and due to the bremsstrahlung emission;
see Fig. 1. We define the cooling time of hot electrons tee
in our simplified kinetic model as a function of the pen-
etration rangein the target rm(ε) and the electron velocity
v(ε). Convenient interpolations for the nonrelativistic electrons
are provided in Ref. [21] in the continuous slowing-down
approximation. There the electron penetration range rm is
expressed energetic electrons escaping the target and the total
accumulated electric charge as a function of its energy ε and the
material parameters: the atomic number Atar , the atomic charge

FIG. 1. Electron penetration range versus the initial electron
energy for tantalum (red curves), copper (green curve), and aluminum
(blue curves). The data from Ref. [22] (dashed lines) are compared
with the interpolation given by Eq. (4).

Ztar, and the target density ρtar. We extended this scaling to
higher electron energies by using the tables ESTAR [22]. The
extended interpolation for the electron range reads

rm = 2760Atar

ρtar
ε5/3Z

−8/9
tar

(1 + ε + ε4)1/8

(1 + 1.96ε5/3)
, (4)

where the electron range is in microns, electron energy in
MeV, and the target density in g/cc. This function is presented
in Fig. 1 together with the tabulated data from Ref. [22] for
tantalum and aluminum.

The dynamic range is defined following the scaling of
the electron energy as a function of the distance ξ from the
injection layer [21]:

ε(ξ )

ε
= (1 − ξ/rm)3/5. (5)

Expressing electron velocity in terms of energy, one finds
the time needed for an electron to access the position ξ by
integrating the relation dt = dξ/v over the coordinate. Then
the cooling time tee is defined as the time needed for the electron
to reach the stopping range:

tee =
∫ rm

0

dξ

v
. (6)

This integral can be taken numerically or approximated with a
simple formula:

tee(ε) � rm(ε)

v
, (7)

where v is the initial electron velocity. Figure 2 shows the
cooling time for several energy values according to numerical
integration and the interpolation formula (7).

The hot electrons have a stochastic distribution inside the
target presented in Fig. 3(a) adapted from Ref. [21]. The
electrons propagate in the target until their first collision with
an ion at the depth χE that scatters them in any direction.
Several subsequent collisions homogenize the electron cloud
in a truncated sphere: the electron cooling time is much longer
than the time of electron elastic scattering on ions. Such a
spherical segment of a radius rm − χE and centered at depth
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FIG. 2. Hot electron cooling time found from Eq. (6) and the
approximate formula (7) for aluminum (blue), copper (green), and
tantalum (red).

χE is approximated in our model with a cylinder of the radius
rm(ε) − χE (ε) and the height rm(ε). Those dimensions may
be limited by the target size, respectively, the target radius rtar,
and the target thickness etar .

Integration of the equation dt = dξ/v from ξ = 0 to ξ =
r < rm provides us with an expression for the dynamic range
as a function of time. It can be approximated by

ξ (ε, t ) � min [tv, rm(ε)]. (8)

The radial evolution is supposed to be delayed since the
electrons are accelerated inwards and go in an axial direction
before being scattered. To introduce this delay into the model,
the radial expansion is reduced by a factor (rm − χE )/rm:

r (ε, t ) = rm(ε) − min [χE (ε), etar]

rm(ε)
ξ (ε, t ). (9)

Note that the target thickness already interferes here. For a
target thinner than the collision depth χE , this latter is replaced
by the target thickness itself since the electrons are scattered
in every direction after their bounce at the target rear side; see
Figs. 3(b) and 3(c).

In addition, in order to take into account the fact that hot
electrons are created across the whole laser focal spot surface,
we set the radius of the cylinder to be r + rlas. It also may be
limited by the target radius rtar. Then the electron cloud surface
and volume read

s(ε, t ) = π min [r (ε, t ) + rlas, rtar]
2, (10a)

V(ε, t ) = s(ε, t ) min [ξ (ε, t ), etar]. (10b)

The average density of the electron cloud is estimated as a
ratio of the total number of hot electrons and the average cloud
volume, n(t ) = N (t )/Vav(t ), where

N (t ) =
∫ ∞

0
f (ε, t ) dε, (11a)

Vav(t ) = 1

N (t )

∫ ∞

0
f (ε, t )V(ε, t ) dε. (11b)

FIG. 3. (a) Scheme of a mono-energetic electron beam pen-
etration in a target: rm is the maximum range, the factor ζ =
0.187Z

2/3
tar accounts for the electron-ion scattering, χE = 0.5rm(1 +

2ζ − 0.21ζ 2)/(1 + ζ )2 is the maximum energy deposition depth, and
rB is the backscattering range. Angle θfr is the maximum angle of
electron ejection from the front target face, and θre is the maximum
ejection angle from the rear face. Figure adapted from Ref. [21] with
permission. (b) Simplified geometry used for cases where ξ (ε, t ) >

etar and χ (ε) < etar . (c) Simplified geometry used for cases where
ξ (ε, t ) > etar and χ (ε) > etar .

Similarly, the average electron energy and radius are defined
as

T (t ) = 1

N (t )

∫ ∞

0
εf (ε, t ) dε, (12a)

Rav(t ) = 1

N (t )

∫ ∞

0
f (ε, t ) min [r (ε, t ) + rlas, rtar] dε.

(12b)
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These averaged values are used to define the average Debye
length of the hot electrons:

λDh(t ) =
√

ε0VavT/e2N. (13)

C. Electron ejection current

Knowing the hot electron distribution function inside the
target, one can readily estimate the flux of escaping electrons.
The scheme in Fig. 3(a) shows the electrons ejected from the
front surface from the circle of an area πr2

B within a cone with
the opening angle θfr . If the target is thin enough, a second
emission surface may appear when the hot electrons reach the
rear surface. In the cylindrical geometry shown in Fig. 3(b),
the ejection surface is defined by the angles θf r and θre. In the
case etar > χE , we define the ejection angle from the center of
the sphere at χE as follows:

θfr (ε, t ) = arctan
r (ε, t )

χE

, (14a)

θre(ε, t ) = 0 if ξ (ε, t ) < etar, (14b)

θre(ε, t ) = arctan
r (ε, t )

etar − χE

if ξ (ε, t ) > etar. (14c)

Figure 3(c) illustrates the case where etar < χE . The center
of the scattering sphere is at the target rear side where the
major part of electrons are reflected back in the target. Then
the ejection angles are defined as

θfr (ε, t ) = arctan
r (ε, t )

etar
, (15a)

θre(ε, t ) = 0 if ξ (ε, t ) < etar, (15b)

θre(ε, t ) = π/2 if ξ (ε, t ) > etar. (15c)

Note regarding r (ε, t ) > rtar that the ejections can be ejected
in any directions: θfr and θre are set to π/2. This may happen
for a small target at a high laser intensity. We recall that our
model applies to disk-shaped targets (rtar > etar).

The ejection current is composed of hot electrons escaped
from the front and rear target surfaces and able to overcome
the potential barrier �(t ) builtat the target surfaces. The flux
of electrons ejected in the cone with the angle θfr or θre through
the surface s reads

gfr (ε, t ) = vf (ε, t )

min[ξ (ε, t ), etar]
sin2(θfr/2) �(ε − e�), (16a)

gre(ε, t ) = vf (ε, t )

min[ξ (ε, t ), etar]
sin2(θre/2) �(ε − e�). (16b)

The total current of escaping electrons J and the total target
charge Q are calculated then as integrals over the distribution
function and time:

J (t ) = e

∫ ∞

�(t )
(gre + gfr ) dε, (17a)

Q(t ) =
∫ t

0
J (t ′) dt ′. (17b)

The formation of the potential barrier at the target surface is
described in the next section.

D. The potential barrier

The potential barrier model for a semi-infinite target was
described in Ref. [13]. It has two origins, the electron thermal
motion and the target polarization:

�(t ) = φth(t ) + φE (t ). (18)

The thermal potential φth is due to the negative charge created
by hot electrons in the Debye layer above the target surface
λDh = (ε0T/ne2)1/2, where e is the electron charge and ε0 is
the vacuum permittivity. The electrostatic potential φE is due
to the positive charge left on the target surface by escaped fast
electrons. This model applies also to thin targets assuming that
the potential � is the same at the two ejection surfaces. This
is consistent with our initial hypothesis of a homogeneous hot
electron cloud. Then the electrostatic potential φE is calculated
by accounting for the two current contributions from the front
and rear sides. The thermal potential calculation accounts for
the fact that the electron cloud volume is limited by the target
thickness according to Eq. (11b).

According to Ref. [13] the height of the thermal potential
barrier in a thick target depends on the ratio of the Debye length
to the average cloud radius Rav:

eφth

Th

= λ√
λ2 + 1

ln

√
λ2 + 1 + 1

(
√

λ2 + 1 − λ)λ
− ln(2λ), (19)

where λ = √
2eλDh/Rav and e is the base of the natural

logarithm.
Equation (19) is modified for very thin targets where etar

is smaller than λDh and a significant part of hot electrons
circulates in the Debye layer outside the target. Calculations
presented in Appendix A result in the following expression:

eφth

Th

=
{

1

c1c2

[
c2

(√
c2

2 + 1 − c2
) + sinh−1 c2

]

− 2

[
ln 2 − 1 + b√

b2 + 1
ln(

√
b2 + 1 − b)

]

+ 2

[
b√

b2 + 1
ln

(√
b2 + 1

√
c2

2 + 1 − bc2 + 1

c1

)

−
√

c2
2 + 1

c1
− b

c1
− ln c1 + sinh−1 c2

]}
. (20)

Here b = c1 − c2 and the constants α, c1, and c2 are defined
as follows:

α = 2
λ2

Dh

e2
tar

(√
1 + 2

e2
tar

λ2
Dh

− 1

)
, (21a)

c1 = 2λ2
Dh

/
α etarRav, c2 = etar/2Rav. (21b)

For the intermediate thicknesses etar ∼ λDh we use the interpo-
lation formula by taking a minimum of Eqs. (19) and (20). Fig-
ure 4 shows the interpolated potential for the ratio Rav/λDh =
100.

The electrostatic potential is defined according to Ref. [13].
The ejected electron leaves a positive charge at the target
surface, which spreads at a speed of light across the whole
target surface if the target is made of a conducting material.
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FIG. 4. Dependence of the thermal potential φth/Th on the target
thickness for the ratio Rav/λDh = 100. The left red line is the potential
for a thin target (20) valid if etar/λDh < 1. The right blue line is the
potential for a thick target given by Eq. (19).

For insulating target, this charge repartition is limited to the
hot electron cloud radius. A finite size of the target limits this
charge redistribution leading to an increase of the electrostatic
potential and suppression of the ejection current. We assume
that the potential is same on both sides of the target, which is
a reasonable hypothesis if the target thickness is smaller than
its transverse dimension:

φE (t ) = 1

2πε0

∫ t

0

J (t ′)
min [Rav(t ′) + c(t − t ′), rtar]

dt ′. (22)

The model described in this section is realized numerically
as a Fortran90 program CHOCOLAT2.F90 as described in
Appendix B.

III. COMPARISONS AND RESULTS

A. Comparison with previous model

Before discussing our experimental results, we demonstrate
that our model is compatible with the previous results [12,13].
Figure 5 presents the target charge as a function of the pulse
duration calculated with the previous model CHOCOLAT.F90,

FIG. 6. Time evolution of the target charging obtained with
the previous model CHOCOLAT.F90 and with our model CHOCO-
LAT2.F90. Target parameters: aluminum, rtar = 5 mm, etar = 3 mm.
Laser parameters: tlas = 30 fs, Elas = 80 mJ, rlas = 6 μm, η = 40%,
and λlas = 0.8 μm.

our model CHOCOLAT2.F90, and experimental data for thick
copper, aluminum, and tantalum targets. The results are rather
similar with the model showing a smoother transition between
the limit of very short pulses (explosive regime). A weak
dependence on the laser pulse duration and on the target
material observed in experiments is improved in our model.
We notice a global error of a factor of two.

The differences between models become more apparent
when considering the temporal evolution of the target charge as
the electron cooling is described more accurately; see Fig. 6.
In the previous model the ejection current stops at the time
tlas + tee(T0). In our model, the current ejection is delayed and
the saturation time is defined by the cooling time of escaping
electrons, which are hotter than the average. The ejection time
can still be estimated by tlas + tee(T0): the magnitude order is
still correct.

As our model operates with distribution function instead
of averaged values, it provides access to such characteristics
as electron energy distribution function inside and outside the

FIG. 5. Comparison of the measured target charge (symbols) and the model predictions (dashed curves for the previous model
CHOCOLAT.F90 and solid curves for our model CHOCOLAT2.F90) for scans on the laser pulse duration (a) and on the laser energy (b):
tlas varies from 30 fs to 5 ps, Elas varies from 20 to 80 mJ, rlas = 6 μm, laser absorption η = 40%, and λlas = 0.8 μm. Targets are made of
aluminum (blue), copper (green), and tantalum (red).
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FIG. 7. Time evolution of distribution as a function of ejected
electron before (a) and after (b) the potential barrier in the sustained
regime. Target parameters: aluminum, rtar = ∞, etar = 0.1 mm. Laser
parameters: tlas = 10 ps, ηE las = 100 mJ, rlas = 6 μm, and λlas =
0.8 μm.

target. The energy distributions of ejected electrons depend on
the laser pulse duration and intensity. Figure 7 shows the time
evolution of ejected electrons before and after the potential
barrier for the regime of sufficiently long laser pulses:

qin(ε, t ) = e

∫ t

0
[gfr (ε, t

′) + gre(ε, t ′)] dt ′, (23a)

qout (ε, t ) = e

∫ t

0
[gfr (ε + e�, t ′) + gre(ε + e�, t ′)] dt ′.

(23b)

The time evolution is represented by color variation from
red to green and purple. In this sustained regime, the potential
barrier stays constant and the tail of distribution function is
refilled by the laser. The electrons are losing a large amount of
energy while crossing the potential barrier. The residual energy
of ejected electrons is comparable with their temperature
inside the target. This is not the case of short laser pulses
corresponding to the explosive regime, represented in Fig. 8.
In this case, the tail of distribution function is completely
depleted. Then, due to the electron cooling, the potential barrier
drops and new hot electrons are able to escape.

This delayed emission in the explosive regime produces
escaped electrons with a very small residual energy compared
to the temperature inside the target. The residual energy
of ejected electrons is inversely proportional to the ejection
current amplitude and proportional to the potential drop speed.
At the limit, electrons with an instantaneous ejection time
during the potential drop would have no energy remaining.

B. Comparison of the model with thin target experiments

Here we compare the model predictions with experiments
conducted with thin aluminum targets. According to Fig. 1, a
stopping range of a 600 keV electron is 1 mm. So the target
thickness was varied from 20 μm to 3 mm in order to cover
both the thick and thin regimes. The laser parameters are the

FIG. 8. Time evolution of distribution as a function of ejected
electron before (a) and after (b) the potential barrier in the explosive
regime. Target parameters: aluminum, rtar = 10 mm, etar = 0.1 mm.
Laser parameters: tlas = 0.1 ps, ηE las = 100 J, rlas = 6 μm, and λlas =
0.8 μm.

same as described in Refs. [11,12] and shown in Fig. 5. The
experimental results are presented in Fig. 9.

We observe overall good agreement of the model and
the experiment: (i) the accumulated charge increases as the
target thickness decreases, (ii) the charge decreases as the
pulse duration increases, and (iii) the charge increases with
the laser pulse energy. There is a quantitative agreement
in what concerns the dependence on the laser pulse energy
and target thickness. The dependence on the pulse duration
is less satisfactory: the target charge is independent on the
pulse duration of less than 1 ps, while the model shows a
gradual decrease of the charge for shorter pulse durations.
This difference can be explained by the simplified form of
our kinetic equation (1), which maintains the electron energy
but decreases their number during the cooling time. For the
parameters of this experiment, the hot electron energy does not
exceed 100 keV, and the average penetration range is ∼ 50 μm.
So the effect of the rear surface appears at the bottom of our
scan range.

C. Analysis of the model predictions

It is tempting to assume that the charge accumulation on
the target is doubled because of the second ejection surface at
rear side. This is not, however, a complete answer. Figure 10,
top line, shows a fraction of the charge ejected from the rear
surface, Qre/Q, as a function of the target thickness etar and the
laser parameters tlas and ηElas. It the intensity is high enough,
the hot electrons reach the rear side, and we observe a current
repartition between front and rear surface. Figure 10, bottom
line, presents a ratio of the accumulated charge for a thin and a
semi-infinite target. For a high laser intensity, this ratio attains
a factor of five. The contribution to this charge increase has two
origins. The first one is an increase of the electron ejection cone
from the thick target value to a maximum of 4π sr. This increase
includes the rear surface contribution and can increase the
target charge accumulation from a factor of three for aluminum
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FIG. 9. (a, b) Experimental measurements of the target charge Q on laser parameters. Aluminum target with a thickness varying from
20 μm to 1 mm (color code). (c, d) Model calculations for the same parameters. (a–c) Dependence on the laser pulse duration tlas at laser energy
Elas = 80 mJ, rlas = 6 μm, and η = 40%. (b–d) Dependence on the laser pulse energy Elas for tlas = 30 ps, rlas = 6 μm, and η = 40%.

FIG. 10. Top line: fraction of the total charge ejected from the rear surface, Qre/Q in function on tlas and ηElas. Bottom line: the same for
the ratio Q/Qinf . Target parameters: aluminum, rtar = ∞, target thickness is shown. Laser parameters: rlas = 6 μm and λlas = 0.8 μm.
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FIG. 11. Time evolution of the ejected current (a) and the charge
(b) in sustained regime. Target parameters: aluminum, rtar = ∞,
etar = 0.1 mm (solid line), etar = ∞ (dashed line). Laser parameters:
tlas = 10 ps, ηElas = 0.1 J, rlas = 6 μm, and λlas = 0.8 μm.

to two for heavy materials. The second contribution appears
for very thin targets only when their thickness is smaller than
the hot electron Debye length. This corresponds to a drop of
the potential barrier and a current increase.

Those two contributions act differently considering the sus-
tained or explosive regime. For the sustained regime, the charge
accumulation and the ejection current are shown in Fig. 11.
Two cases are plotted: one for a semi-infinite target, a second
for a target of 100 μm thickness. The initial current from a thin
target is stronger than from thick one because the front ejection
angle is larger. A peak of current corresponds to the electron
ejection from the rear side. In this regime, the ejection current
is controlled by the electrostatic potential, which maintains the
feedback control. During the cooling time, the Debye length
increases and exceeds the target thickness. This produce a
potential barrier drop and a second current peak. However,

FIG. 12. Time evolution of the ejected current (a) and the charge
(b) in the explosive regime. Target parameters: aluminum, rtar = ∞,
etar = 0.1 mm (full line), etar = ∞ (dashed line). Laser parameters:
tlas = 0.1 ps, ηElas = 100 J, rlas = 6 μm, and λlas = 0.8 μm.

its impact is limited since it concerns only a small part of the
charge. For this reason, in a sustained regime, there is no much
difference between thin or thick targets.

Similar analysis for the explosive regime is shown in Fig. 12.
Here the sequence of events comes in a different order. The
laser pulse ends before the rear side current appears and the
potential swaps from thick to thin regime. The geometric
contribution from the emission angle to the current increases
the accumulated charge by a factor of three. The ejection angle
cone increases from 70° to 180°. This increase is not affected
by the electrostatic potential. The thermal potential drops at
10 p and leads to increase the charge from 3000 nC (for a
semi-infinite target) to 4000 nC. This increase could be even
higher for thinner targets or more intense laser pulses: the thin
potential formula would apply sooner in the hot electron cloud
dynamics.
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IV. CONCLUSION

The kinetic model is able to predict the target charging as
a function of the laser pulse parameters for thick and thin
targets. The characteristic control parameter is the ratio of
the hot electron mean-free path to the Debye length. This
model is validated by the comparison with a series of dedicated
experiments. The energy distribution of ejected electrons is cal-
culated, it might be useful for analysis of the electromagnetic
emission from the target in the THz domain. An example of
temporal evolution of the electron distribution function inside
the target can be found in the Supplemental Material [23].
A numerical code presented in Appendix B could be used for
quick and sufficiently accurate evaluation of the target for given
experimental conditions.
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APPENDIX A: THIN TARGET THERMAL
POTENTIAL CALCULATION

Calculation of the potential of a thin target is similar to the
case of a thick target presented in Appendix B [13]. The hot
electron density outside the target is calculated by solving a
one-dimensional Poisson equation [24–27]. Then this electron
density is limited radially to a cylinder of a radius Rh and used
for calculation of a three-dimensional potential distribution.
For thin targets, the ratio of the Debye length to the target
thickness defines the charge repartition.

1. Thin target density profile

Let us consider the case of a very thin target, etar � λDh,
where the electron density is constant inside the target. We
solve the Poisson equation with electrons following a truncated
Boltzmann distribution on both sides of the target. This is
graphically illustrated in Fig. 13 where Fig. 13(a) shows
the electron distribution for a semi-infinite target; Fig. 13(b)
presents superposition of these profiles on both sides which
are connected to a constant density inside the target. The
unknown electron density inside is estimated from the charge
conservation. Figure 13(c) presents the potential distribution.
It has a symmetric parabolic form inside the target.

The Poisson-Boltzmann equation reads

ε0∂
2
ξ φth = −e[ni − ne exp(eφth/T )], (A1)

where ε0 is the vacuum dielectric permittivity. The ion density
is described by a Heaviside function, ni = (N/V )�(ξ ±
etar/2), where ξ = 0 defines the target center. Equation (A1)
is simplified by applying the following normalization: φ̂ =

FIG. 13. (a) Density along laser axes in case of semi-infinite
target. (b) Electron density along the laser axes for a combination
of two semi-infinite targets with the constant density approximation.
(c) Parabolic potential from the constant electron density inside the
target.

eφth/T , êtar = etar/λDh, and ξ̂ = ξ/λDh. The derivatives on ξ̂

are noted with a prime. One obtains

φ̂′′ = exp φ̂ if |ξ̂ | > êtar/2, (A2a)

φ̂ = φ̂0 − αξ̂ 2 if |ξ̂ | < êtar/2. (A2b)

033201-9



A. POYÉ et al. PHYSICAL REVIEW E 98, 033201 (2018)

The inside solution is obtained by taking the second derivative
of the parabolic potential:

n̂e = 1 − 2α if |ξ̂ | < êtar, (A3)

where φ̂0 is the normalized potential at the middle of the target
and α is a integration constant to be found.

The outside solution is obtained by integrating twice
Eq. (A2a). We obtain

φ̂ = −2 ln(ξ̂ /
√

2 + k) if |ξ̂ | > êtar/2, (A4a)

n̂e = (ξ̂ /
√

2 + k)−2 if |ξ̂ | > êtar/2, (A4b)

where k is the second integration constant to be determined,
while the first one was found with the boundary conditions at
infinity φ̂(±∞) = −∞ and φ̂′(±∞) = 0.

The continuity equations for, respectively, the density, the
potential, and its derivative are at ξ̂ = êtar/2:

1 − 2α = [êtar/(2
√

2) + k]−2, (A5a)

φ̂0 − α
ê2

tar

4
= −2 ln[êtar/(2

√
2) + k], (A5b)

(αêtar )
2 = 2 exp

(
φ̂0 − α

ê2
tar

4

)
. (A5c)

Note that the continuity equation (A5c) on φ̂′ corresponds
to the electroneutrality. The system is solved to find k and α,
which are required for the density profile:

α = 2

ê2
tar

(√
1 + ê2

tar

2
− 1

)
, (A6a)

k =
√

2

αêtar
− êtar

2
√

2
. (A6b)

We summarize the density equations:

n̂e =
[

(ξ̂ − êtar/2)
1√
2

+
√

2

αêtar

]−2

if ξ̂ > êtar/2, (A7a)

n̂e = 1 − 2α if ξ̂ < êtar/2. (A7b)

2. Thin target potential profile

The zone of interest of the potential is the center of the target.
As it is thinner than the hot Debye length, we can assume that
the middle value of φth is the barrier value encountered by all
hot electrons. So we limit our calculation to this position only.
We assume the density to be constant in the target plane over
the hot electrons cloud radius R, so we can use the potential
formula from homogeneously charged disk [28], integrated
over the axis ξ to sum all the contributions:

φth =
∫ +∞

−∞

e[ni (ξ ) − ne(ξ )]

2ε0
(
√

R2 + ξ 2 − |ξ |)dξ. (A8)

Here the same normalization applies as in Eq. (A1). We in-
troduce the variable ζ = ξ̂ /R̂ and the notation ētar = êtar/R̂ =
etar/R:

φ̂th =
∫ +∞

−∞

[n̂i (ζ ) − n̂e(ζ )]

2
(
√

1 + ζ 2 − |ζ |)dζ. (A9)

The integral is split in half because of the steplike ion density
and the problem symmetry at ζ = 0. Then the contributions
with ξ positive and negative are equal:

φ̂th = 2
∫ ētar/2

0
αR̂2(

√
1 + ζ 2 − ζ )dζ

− 2
∫ +∞

ētar/2

√
1 + ζ 2 − ζ[

(ζ − ētar/2) + 2
αêtarR̂

]2 dζ. (A10)

Those integrals have solutions, with b = 2
αêtarR̂

− ētar
2 :

φ̂th = αR̂2[ζ (
√

ζ 2 + 1 − ζ ) + sinh−1(ζ )]ētar/2
0

− 2

[
b√

b2 + 1
ln

(√
b2 + 1

√
ζ 2 + 1 − bζ + 1

b + ζ

)

− (
√

ζ 2 + 1 + b)

b + ζ
− ln(b + ζ ) + sinh−1(ζ )

]+∞

ētar/2

.

(A11)

Using the relation sinh−1 (∞) − ln (∞) = ln (2), we recover
Eq. (20).

APPENDIX B: ChoCoLaT2.f90

1. Code description

ChoCoLaT2.f90 has a similar architecture than its previous
version [13]. After an initialization step, where the files are read
and created, the static values are calculated such as tlife, T , or
flas, and the code enters into a while loop. This loop iterates
calculations of the distribution function, then averages it, and
calculates the potential and then the ejection currents. The
outputs are generated during this loop at a chosen frequency.
The code is stopped when N is smaller than 0.001 × Q (while
the laser is off): when the hot electron cloud is empty enough
to not affect the charge whatever the possible evolutions.

2. User commands

Compilation command: gfortran -O3 ChoCoLaT2.f90
Launch command:./a.out 1234 {arguments} The number

1234 is the four-digit number of the input file and the arguments
have the format: *.****E±**. For this code source, there are
tree optional arguments: etar, tlas, and Elas.

The code takes the input in this priority order:
(1) Arguments of the launch command line. Manageable

in the code, l. 205-214.
(2) Input file: its name is input_1234.txt.
(3) Default file: its name is input_0000.txt.
(4) Default values. Manageable in the code, l. 176-195.

3. Outputs

The code has two kinds of output. The short one is the file
named output_scalar_1234.txt. It contains energetic averages
of Rav (μm), λD (μm), T (keV), N (nC), φth (keV), φE (keV),
Jfr (kA), Jre (kA), and Q (nC) versus time. The frequency of
the output is set by the parameter diag s in the input file. The
time step of the diagnostic is then dt × diag s.
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FIG. 14. The charge obtained over the reference one with the best resolution (dt = 10−4 ps and dε0 = 6.5 keV) for various time and energy
resolution. Current evolution of the reference case and two unresolved cases (low time resolution or low energy resolution). Target parameters:
aluminum, rtar = 10 mm, etar = 0.1 mm. Laser parameters: tlas = 1 ps, Elas = 10 J, rlas = 6 μm, η = 40%, and λlas = 0.8 μm.

The heavy diagnostic is tree distribution functions of
electrons inside the target, escaped by the front side and
escaped by the rear side (before the potential barrier).
The files are named, respectively, output_f_in_ _ _ 1234.txt,
output_f_Jre_ _1234.txt, and output_f_Jre_ _1234.txt. The
time step of this diagnostic is then dt × diag h, manageable
in the input file.

If diag s and/or diag h are (is) set to zero, the associated
diagnostics are cut to save running time and space disk.

4. Convergence

The temporal scheme is a basic Euler scheme. The CFL
must be accounted for with the try-error method to get a satis-
fying result. Figure 14 provides an example of the convergence
map with the usual troubleshooting due to a bad resolution.

Note that the error will not appear in the charge value, that
does not vary much, but in the current evolution. There are
tree variables that control the resolution in the input file: dt

is set directly. dε is changing with the simulation parameter,
since it involves T0:

dε = Th × NbT0/Nε. (B1)

NbT0 and Nε are tunable in the input file. The first sets the
maximal value of ε as a number of T0. As our model focuses
on the tail of the distribution function, the typical value of NbT0

is 10. The second is the number of points of the distribution
function. As our model needs a proper description of the low-
and medium-energy electrons for the potential calculation, set
a typical value of 1000. This number increases with the laser
intensity.
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